Displaying publications 41 - 60 of 66 in total

Abstract:
Sort:
  1. Kimura TE, Duggirala A, Hindmarch CC, Hewer RC, Cui MZ, Newby AC, et al.
    J Mol Cell Cardiol, 2014 Jul;72(100):9-19.
    PMID: 24534707 DOI: 10.1016/j.yjmcc.2014.02.001
    AIMS: Cyclic AMP inhibits vascular smooth muscle cell (VSMC) proliferation which is important in the aetiology of numerous vascular diseases. The anti-mitogenic properties of cAMP in VSMC are dependent on activation of protein kinase A (PKA) and exchange protein activated by cAMP (EPAC), but the mechanisms are unclear.

    METHODS AND RESULTS: Selective agonists of PKA and EPAC synergistically inhibited Egr1 expression, which was essential for VSMC proliferation. Forskolin, adenosine, A2B receptor agonist BAY60-6583 and Cicaprost also inhibited Egr1 expression in VSMC but not in endothelial cells. Inhibition of Egr1 by cAMP was independent of cAMP response element binding protein (CREB) activity but dependent on inhibition of serum response element (SRE) activity. SRF binding to the Egr1 promoter was not modulated by cAMP stimulation. However, Egr1 expression was dependent on the SRF co-factors Elk1 and 4 but independent of MAL. Inhibition of SRE-dependent Egr1 expression was due to synergistic inhibition of Rac1 activity by PKA and EPAC, resulting in rapid cytoskeleton remodelling and nuclear export of ERK1/2. This was associated with de-phosphorylation of the SRF co-factor Elk1.

    CONCLUSION: cAMP inhibits VSMC proliferation by rapidly inhibiting Egr1 expression. This occurs, at least in part, via inhibition of Rac1 activity leading to rapid actin-cytoskeleton remodelling, nuclear export of ERK1/2, impaired Elk1-phosphorylation and inhibition of SRE activity. This identifies one of the earliest mechanisms underlying the anti-mitogenic effects of cAMP in VSMC but not in endothelial cells, making it an attractive target for selective inhibition of VSMC proliferation.

    Matched MeSH terms: Muscle, Smooth, Vascular/cytology; Muscle, Smooth, Vascular/drug effects; Muscle, Smooth, Vascular/metabolism
  2. Mustafa MR
    Toxicon, 1993 Jan;31(1):67-74.
    PMID: 8446965
    The effect of the total glysosidic extract of the plant Sarcolobus globosus was investigated on the contractions of the smooth muscle of the guinea-pig ileal longitudinal muscle and taenia coli. In the ileal longitudinal muscle, addition of the extract inhibited the electrical field-stimulated twitches. Similarly to verapamil, it also reduced the contractions of the muscle to acetylcholine, histamine and KCl. However, only the tonic contraction to KCl was reversed by increasing the extracellular calcium concentration. In the taenia coli, lower concentrations of both the extract and verapamil induced a parallel displacement of the dose-response curves to calcium (0.30-30 mM). Addition of the extract also dose-dependently inhibited the KCl-induced contraction of the taenia coli. Increasing the calcium concentration increased the IC50 values of the extract. The result suggests that the inhibitory effect of the Sarcolobus globosus extract on the smooth muscle, like verapamil, is mainly due to inhibition of calcium influx.
    Matched MeSH terms: Muscle, Smooth/drug effects*; Muscle, Smooth/physiology
  3. Harith HH, Di Bartolo BA, Cartland SP, Genner S, Kavurma MM
    J Diabetes, 2016 Jul;8(4):568-78.
    PMID: 26333348 DOI: 10.1111/1753-0407.12339
    BACKGROUND: Insulin regulates glucose homeostasis but can also promote vascular smooth muscle (VSMC) proliferation, important in atherogenesis. Recently, we showed that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) stimulates intimal thickening via accelerated growth of VSMCs. The aim of the present study was to determine whether insulin-induced effects on VSMCs occur via TRAIL.

    METHODS: Expression of TRAIL and TRAIL receptor in response to insulin and glucose was determined by polymerase chain reaction. Transcriptional activity was assessed using wild-type and site-specific mutations of the TRAIL promoter. Chromatin immunoprecipitation studies were performed. VSMC proliferation and apoptosis was measured.

    RESULTS: Insulin and glucose exposure to VSMC for 24 h stimulated TRAIL mRNA expression. This was also evident at the transcriptional level. Both insulin- and glucose-inducible TRAIL transcriptional activity was blocked by dominant-negative specificity protein-1 (Sp1) overexpression. There are five functional Sp1-binding elements (Sp1-1, Sp1-2, Sp-5/6 and Sp1-7) on the TRAIL promoter. Insulin required the Sp1-1 and Sp1-2 sites, but glucose needed all Sp1-binding sites to induce transcription. Furthermore, insulin (but not glucose) was able to promote VSMC proliferation over time, associated with increased decoy receptor-2 (DcR2) expression. In contrast, chronic 5-day exposure of VSMC to 1 µg/mL insulin repressed TRAIL and DcR2 expression, and reduced Sp1 enrichment on the TRAIL promoter. This was associated with increased cell death.

    CONCLUSIONS: The findings of the present study provide a new mechanistic insight into how TRAIL is regulated by insulin. This may have significant implications at different stages of diabetes-associated cardiovascular disease. Thus, TRAIL may offer a novel therapeutic solution to combat insulin-induced vascular pathologies.

    Matched MeSH terms: Muscle, Smooth, Vascular/cytology
  4. Nguyen DDN, Zain SM, Kamarulzaman MH, Low TY, Chilian WM, Pan Y, et al.
    Am J Physiol Heart Circ Physiol, 2021 10 01;321(4):H770-H783.
    PMID: 34506226 DOI: 10.1152/ajpheart.00058.2021
    Vascular aging is highly associated with cardiovascular morbidity and mortality. Although the senescence of vascular smooth muscle cells (VSMCs) has been well established as a major contributor to vascular aging, intracellular and exosomal microRNA (miRNA) signaling pathways in senescent VSMCs have not been fully elucidated. This study aimed to identify the differential expression of intracellular and exosomal miRNA in human VSMCs (hVSMCs) during replicative senescence. To achieve this aim, intracellular and exosomal miRNAs were isolated from hVSMCs and subsequently subjected to whole genome small RNA next-generation sequencing, bioinformatics analyses, and qPCR validation. Three significant findings were obtained. First, senescent hVSMC-derived exosomes tended to cluster together during replicative senescence and the molecular weight of the exosomal protein tumor susceptibility gene 101 (TSG-101) increased relative to the intracellular TSG-101, suggesting potential posttranslational modifications of exosomal TSG-101. Second, there was a significant decrease in both intracellular and exosomal hsa-miR-155-5p expression [n = 3, false discovery rate (FDR) < 0.05], potentially being a cell type-specific biomarker of hVSMCs during replicative senescence. Importantly, hsa-miR-155-5p was found to associate with cell-cycle arrest and elevated oxidative stress. Lastly, miRNAs from the intracellular pool, that is, hsa-miR-664a-3p, hsa-miR-664a-5p, hsa-miR-664b-3p, hsa-miR-4485-3p, hsa-miR-10527-5p, and hsa-miR-12136, and that from the exosomal pool, that is, hsa-miR-7704, were upregulated in hVSMCs during replicative senescence (n = 3, FDR < 0.05). Interestingly, these novel upregulated miRNAs were not functionally well annotated in hVSMCs to date. In conclusion, hVSMC-specific miRNA expression profiles during replicative senescence potentially provide valuable insights into the signaling pathways leading to vascular aging.NEW & NOTEWORTHY This is the first study on intracellular and exosomal miRNA profiling on human vascular smooth muscle cells during replicative senescence. Specific dysregulated sets of miRNAs were identified from human vascular smooth muscle cells. Hsa-miR-155-5p was significantly downregulated in both intracellular and exosomal hVSMCs, suggesting its crucial role in cellular senescence. Hsa-miR-155-5p might be the mediator in linking cellular senescence to vascular aging and atherosclerosis.
    Matched MeSH terms: Muscle, Smooth, Vascular/metabolism*
  5. Govindaraju, Kayatri, Lee, Mei Kee, Mbaki, Yvonne, Ting, Kang Nee
    MyJurnal
    The general notion of activation of Gq-protein coupled receptors (GPCR) involves the mobilisation of stored and extracellular calcium and leads to smooth muscle tissue contraction. The aim of this study was to investigate the involvement of calcium mediated contractions in vascular and airway smooth muscles. Using standard organ bath procedures, aortic and tracheal rings were obtained from 6 to 8 week-old male Sprague Dawley rats. To activate the Gq protein receptors, phenylephrine (PE), an α1-adrenoceptor agonist, and carbachol, a M3 cholinoceptor agonist was added to baths containing the aortic and tracheal rings, respectively. The maximum response (Emax) to PE was reduced from 158.8 ± 11.8% (n=6) to 62.5 ± 12.4 % (n=8) upon removal of extracellular calcium in Krebs-Ringer solution. Maximal response to PE was also suppressed in the presence of nifedipine, a L-type Ca2+ channel inhibitor, (70.3 ± 11 %, n=8) and SKF96365, a canonical transient receptor potential cation channel inhibitor, (26.7 ± 13.2 %, n=5) when the influx of extracellular calcium was blocked. Removal of stored calcium also attenuated the PE contraction (p0.05). From these observations, we conclude that the role of stored and extracellular calcium in Gq protein activation is not the same across different types of smooth muscle tissues.
    Matched MeSH terms: Muscle, Smooth
  6. Ng BHK, Tang IP, Suhashini G, Chai CK
    Indian J Otolaryngol Head Neck Surg, 2019 Oct;71(Suppl 1):795-797.
    PMID: 31742066 DOI: 10.1007/s12070-018-1553-7
    Laryngeal leiomyosarcoma is a rare smooth muscle malignancy of the head and neck region. Diagnosis is based on immunohistochemistry. Here we present a case of laryngeal leiomyosarcoma that was diagnosed and treated in our center, focusing on the clinical features, histological diagnosis and management of this rare disease.
    Matched MeSH terms: Muscle, Smooth
  7. Nguyen DND, Chilian WM, Zain SM, Daud MF, Pung YF
    Can J Physiol Pharmacol, 2021 Sep;99(9):827-838.
    PMID: 33529092 DOI: 10.1139/cjpp-2020-0581
    Cardiovascular disease (CVD) is among the leading causes of death worldwide. MicroRNAs (miRNAs), regulatory molecules that repress protein expression, have attracted considerable attention in CVD research. The vasculature plays a big role in CVD development and progression and dysregulation of vascular cells underlies the root of many vascular diseases. This review provides a brief introduction of the biogenesis of miRNAs and exosomes, followed by overview of the regulatory mechanisms of miRNAs in vascular smooth muscle cells (VSMCs) intracellular signaling during phenotypic switching, senescence, calcification, and neointimal hyperplasia. Evidence of extracellular signaling of VSMCs and other cells via exosomal and circulating miRNAs is also presented. Lastly, current drawbacks and limitations of miRNA studies in CVD research and potential ways to overcome these disadvantages are discussed in detail. In-depth understanding of VSMC regulation via miRNAs will add substantial knowledge and advance research in diagnosis, disease progression, and (or) miRNA-derived therapeutic approaches in CVD research.
    Matched MeSH terms: Muscle, Smooth, Vascular/cytology*
  8. Yu EPK, Reinhold J, Yu H, Starks L, Uryga AK, Foote K, et al.
    Arterioscler Thromb Vasc Biol, 2017 12;37(12):2322-2332.
    PMID: 28970293 DOI: 10.1161/ATVBAHA.117.310042
    OBJECTIVE: Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis.

    APPROACH AND RESULTS: Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE-/-) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE-/- mice overexpressing the mitochondrial helicase Twinkle (Tw+/ApoE-/-). Tw+/ApoE-/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw+/ApoE-/- mice had decreased necrotic core and increased fibrous cap areas, and Tw+/ApoE-/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis.

    CONCLUSIONS: Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis.

    Matched MeSH terms: Muscle, Smooth, Vascular/metabolism*; Muscle, Smooth, Vascular/pathology
  9. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Muscle, Smooth, Vascular/drug effects; Muscle, Smooth, Vascular/physiopathology
  10. Vijakumaran U, Yazid MD, Hj Idrus RB, Abdul Rahman MR, Sulaiman N
    Front Pharmacol, 2021;12:663266.
    PMID: 34093194 DOI: 10.3389/fphar.2021.663266
    Objective: Hydroxytyrosol (HT), a polyphenol of olive plant is well known for its antioxidant, anti-inflammatory and anti-atherogenic properties. The aim of this systematic search is to highlight the scientific evidence evaluating molecular efficiency of HT in halting the progression of intimal hyperplasia (IH), which is a clinical condition arises from endothelial inflammation. Methods: A systematic search was performed through PubMed, Web of Science and Scopus, based on pre-set keywords which are Hydroxytyrosol OR 3,4-dihydroxyphenylethanol, AND Intimal hyperplasia OR Neointimal hyperplasia OR Endothelial OR Smooth muscles. Eighteen in vitro and three in vitro and in vivo studies were selected based on a pre-set inclusion and exclusion criteria. Results: Based on evidence gathered, HT was found to upregulate PI3K/AKT/mTOR pathways and supresses inflammatory factors and mediators such as IL-1β, IL-6, E-selectin, P-selectin, VCAM-1, and ICAM-1 in endothelial vascularization and functioning. Two studies revealed HT disrupted vascular smooth muscle cells (SMC) cell cycle by dephosphorylating ERK1/2 and AKT pathways. Therefore, HT was proven to promote endothelization and inhibit vascular SMCs migration thus hampering IH development. However, none of these studies described the effect of HT collectively in both vascular endothelial cells (EC) and SMCs in IH ex vivo model. Conclusions: Evidence from this concise review provides an insight on HT regulation of molecular pathways in reendothelization and inhibition of VSMCs migration. Henceforth, we propose effect of HT on IH prevention could be further elucidated through in vivo and ex vivo model.
    Matched MeSH terms: Muscle, Smooth, Vascular
  11. Khoo JJ, Alwi RI, Abd-Rahman I
    Malays J Pathol, 2009 Jun;31(1):77-80.
    PMID: 19694319 MyJurnal
    Breast hamartoma is an uncommon poorly recognised benign breast neoplasm. Hamartoma displaying marked smooth muscle components known as myoid hamartoma of the breast is a much rarer entity. We present a case of myoid hamartoma of breast with chondroid differentiation in a 46-year-old woman. The painless breast lump was circumscribed and mammography showed a well-encapsulated large, dense mass with no calcification. Core needle biopsy was reported as fibroadenoma. The lesion was excised. Microscopically, it composed of many groups of mammary glandular components with dense fibrous stroma, adipose tissue and marked groups of smooth muscle fibres. Foci of chondroid differentiation were noted in the lesion. The smooth muscle cells showed strong and diffuse immunoreactivity for vimentin, myogloblin, alpha-smooth muscle actin, desmin and CD34 and failed to express pan-cytokeratin or S100 protein. The ducts lined by epithelial cells were reactive to pan-cytokeratin while the myoepithelial cells were reactive to S100 protein. The various immuno-histochemical staining as well as the cyto-histological changes encountered in myoid hamartomas are discussed with clinical, radiological and pathological correlation to differentiate it from other benign and malignant breast lesions.
    Matched MeSH terms: Muscle, Smooth/metabolism; Muscle, Smooth/pathology*
  12. Tan HM
    Int. J. Androl., 2000;23 Suppl 2:87-8.
    PMID: 10849506
    The quest for improving and maintaining sexual function has been going on since time immemorial. The advent of an effective oral drug, sildenafil, has brought about unprecedented open discussion on male erectile dysfunction, and gas accelerated the pace of development of new therapies for erectile dysfunction. New knowledge in the physiology of sexual function has enabled researchers to target drug treatment at the whole network of the central nervous system and the numerous cascadic enzymatic reactions leading to relaxation of the corporal smooth muscle. One of the brightest potential applications of future molecular technology in the study of erectile dysfuction is in the utilization of gene therapy.
    Matched MeSH terms: Muscle, Smooth, Vascular/drug effects; Muscle, Smooth, Vascular/physiopathology
  13. Loh YC, Tan CS, Ch'ng YS, Ahmad M, Asmawi MZ, Yam MF
    Molecules, 2016 Apr 15;21(4):495.
    PMID: 27092479 DOI: 10.3390/molecules21040495
    This paper is a review on the types of antagonists and the signaling mechanism pathways that have been used to determine the mechanisms of action employed for vasodilation by test compounds. Thus, we exhaustively reviewed and analyzed reports related to this topic published in PubMed between the years of 2010 till 2015. The aim of this paperis to suggest the most appropriate type of antagonists that correspond to receptors that would be involved during the mechanistic studies, as well as the latest signaling pathways trends that are being studied in order to determine the route(s) that atest compound employs for inducing vasodilation. The methods to perform the mechanism studies were included. Fundamentally, the affinity, specificity and selectivity of the antagonists to their receptors or enzymes were clearly elaborated as well as the solubility and reversibility. All the signaling pathways on the mechanisms of action involved in the vascular tone regulation have been well described in previous review articles. However, the most appropriate antagonists that should be utilized have never been suggested and elaborated before, hence the reason for this review.
    Matched MeSH terms: Muscle, Smooth, Vascular/drug effects*; Muscle, Smooth, Vascular/metabolism; Muscle, Smooth, Vascular/pathology
  14. Muharis SP, Top AG, Murugan D, Mustafa MR
    Nutr Res, 2010 Mar;30(3):209-16.
    PMID: 20417882 DOI: 10.1016/j.nutres.2010.03.005
    Diabetes and hypertension are closely associated with impaired endothelial function. Studies have demonstrated that regular consumption of edible palm oil may reverse endothelial dysfunction. The present study investigates the effect of palm oil fractions: tocotrienol rich fraction (TRF), alpha-tocopherol and refined palm olein (vitamin E-free fraction) on the vascular relaxation responses in the aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats (SHR). We hypothesize that the TRF and alpha-tocopherol fractions are able to improve endothelial function in both diabetic and hypertensive rat aortic tissue. A 1,1-diphenyl picryl hydrazyl assay was performed on the various palm oil fractions to evaluate their antioxidant activities. Endothelium-dependent (acetylcholine) and endothelium-independent (sodium nitroprusside) relaxations were examined on streptozotocin-induced diabetic and SHR rat aorta following preincubation with the different fractions. In 1-diphenyl picryl hydrazyl antioxidant assay, TRF and alpha-tocopherol fractions exhibited a similar degree of activity while palm olein exhibited poor activity. TRF and alpha-tocopherol significantly improved acetylcholine-induced relaxations in both diabetic (TRF, 88.5% +/- 4.5%; alpha-tocopherol, 87.4% +/- 3.4%; vehicle, 65.0 +/- 1.6%) and SHR aorta (TRF, 72.1% +/- 7.9%; alpha-tocopherol, 69.8% +/- 4.0%, vehicle, 51.1% +/- 4.7%), while palm olein exhibited no observable effect. These results suggest that TRF and alpha-tocopherol fractions possess potent antioxidant activities and provide further support to the cardiovascular protective effects of palm oil vitamin E. TRF and alpha-tocopherol may potentially improve vascular endothelial function in diabetes and hypertension by their sparing effect on endothelium derived nitric oxide bioavailability.
    Matched MeSH terms: Muscle, Smooth, Vascular/physiopathology
  15. Ghayur MN, Gilani AH, Khan A, Amor EC, Villaseñor IM, Choudhary MI
    Phytother Res, 2006 Jan;20(1):49-52.
    PMID: 16397921
    Syzygium samarangense (Family; Myrtaceae) or 'makopa', as it is commonly known, is native to Malaysia, some islands of Indonesia and to Far East in general. This study was undertaken to rationalize the use of this plant in hypermotility states of the gut. The hexane extract of S. samarangense (Ss.Hex) was found to dose-dependently (10-3000 microg/mL) relax the spontaneously contracting isolated rabbit jejunum. When tested for a possible calcium channel blocking (CCB) activity, the extract (10-1000 microg/mL) relaxed the high K+-induced contractions and also decreased the Ca++ dose-response curves in a dose-dependent manner (30-100 microg/mL), confirming the CCB activity. Four flavonoids isolated from the hexane extract were tested for a possible spasmolytic activity. All flavonoids, identified as: 2'-hydroxy-4',6'-dimethoxy-3'-methylchalcone (SS1), 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (SS2), 2',4'-dihydroxy-6'-methoxy-3'-methylchalcone (SS3) and 7-hydroxy-5-methoxy-6,8-dimethylflavanone (SS4), showed dose-dependent (10-1000 microg/mL) spasmolytic activity with SS2 being the most potent. These results indicate that the presence of compounds with spasmolytic and calcium antagonist activity may be responsible for the medicinal use of the plant in diarrhoea.
    Matched MeSH terms: Muscle, Smooth/drug effects
  16. Mokhtar SS, Vanhoutte PM, Leung SW, Suppian R, Yusof MI, Rasool AH
    Eur J Pharmacol, 2016 Feb 15;773:78-84.
    PMID: 26825543 DOI: 10.1016/j.ejphar.2016.01.013
    Diabetes is associated with endothelial dysfunction, which is characterized by impaired endothelium-dependent relaxations. The present study aimed to examine the role of nitric oxide (NO), prostacyclin and endothelium-dependent hyperpolarization (EDH), in the relaxation of ventral tail arteries of rats under diabetic conditions. Relaxations of tail arteries of control and diabetic rats were studied in wire myograph. Western blotting and immunostaining were used to determine the presence of proteins. Acetylcholine-induced relaxations were significantly smaller in arteries of diabetic compared to control rats (Rmax; 70.81 ± 2.48% versus 85.05 ± 3.15%). Incubation with the combination of non-selective cyclooxygenase (COX) inhibitor, indomethacin and potassium channel blockers, TRAM 34 and UCL 1684, demonstrated that NO-mediated relaxation was attenuated significantly in diabetic compared to control rats (Rmax; 48.47 ± 5.84% versus 68.39 ± 6.34%). EDH-type (in the presence of indomethacin and NO synthase inhibitor, LNAME) and prostacyclin-mediated (in the presence of LNAME plus TRAM 34 and UCL 1684) relaxations were not significantly reduced in arteries of diabetic compared to control rats [Rmax: (EDH; 17.81 ± 6.74% versus 34.16 ± 4.59%) (prostacyclin; 15.85 ± 3.27% versus 17.23 ± 3.75%)]. Endothelium-independent relaxations to sodium nitroprusside, salbutamol and prostacyclin were comparable in the two types of preparations. Western blotting and immunostaining indicated that diabetes diminished the expression of endothelial NO synthase (eNOS), while increasing those of COX-1 and COX-2. Thus, since acetylcholine-induced NO-mediated relaxation was impaired in diabetes because of reduced eNOS protein expression, pharmacological intervention improving NO bioavailability could be useful in the management of diabetic endothelial dysfunction.
    Matched MeSH terms: Muscle, Smooth, Vascular/drug effects; Muscle, Smooth, Vascular/metabolism
  17. Koh, P.S., Muhilan, P., Dublin, N., Razack, A.H.
    JUMMEC, 2009;12(1):39-43.
    MyJurnal
    Renal angiomyolipoma, once considered a rare benign renal tumour, is relatively common these days. They account for 0.3-3.0% of all renal masses. Histologically, it is composed of adipose tissue, smooth muscles and blood vessels. Here, we wish to highlight five cases of renal angiomyolipomas which were presented to the University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia, over a two-year period between June 2005 and June 2007. This study wish to illustrate its varied clinical presentation and the management undertaken for each underlying condition. These cases were presented in the form of spontaneous perirenal haemorrhage, a large asymptomatic renal mass, a small asymptomatic renal mass, a symptomatic renal angiomyolipoma and a case of renal angiomyolipoma mimicking a renal tumour. Each of these cases varied in its clinical presentation; thus, management has become very challenging to clinicians ranging from conservative management to active intervention, be it operatively or non-operatively.
    Matched MeSH terms: Muscle, Smooth
  18. Fahisham Taib
    MyJurnal
    Asthma is considered as heterogeneous multidimensional disorder due to variable phenotypic presentation. Phenotype is defined as a cluster of either clinical or pathologic features, which tends to be associated with the understanding the mechanisms of the disease. Asthma is typically characterized by airway inflammation, variable airway obstruction, bronchial hyper-reactivity, smooth muscle hypertrophy and apparent reversible airflow obstruction by bronchodilators. ‘Asthma syndrome’ is a term to describe complex pathophysiology of the condition which is not exclusive to allergen triggered episodes. Diagnosing childhood asthma is difficult, due to the similarity of symptoms and overlapping with other wheezing conditions. The precise mechanism for asthma exacerbation, for each individual phenotype is not fully understood. However, it is influenced by genetic interaction with variety of external environmental stimuli. The current understanding on asthma phenotypes were interpreted based on age of onset, associated triggers, clinical aspects, physiologic parameters and type of inflammation (Table 1). Due to the illdefined of the current phenotypic definition and disagreement among the respirologists, it is becoming a challenge to label specific phenotype with certainty. Accurate definition of each phenotype should therefore be helpful to provide better understanding of different mechanistic pathways and focusing on targeted therapy for individual phenotype. (Copied from article).
    Matched MeSH terms: Muscle, Smooth
  19. Afroz R, Cao Y, Rostam MA, Ta H, Xu S, Zheng W, et al.
    Pharmacol Ther, 2018 07;187:88-97.
    PMID: 29454855 DOI: 10.1016/j.pharmthera.2018.02.005
    Atherosclerosis commences with the trapping of low density lipoproteins (LDLs) in blood vessels by modified proteoglycans (PGs) with hyperelongated glycosaminoglycan (GAG) chains. GAG chain synthesis and growth factor mediated hyperelongation regulates the composition and size of PGs in a manner that would cause low density lipoprotein (LDLs) retention in vessel wall. Galactosaminoglycans are a class of GAGs, commonly observed on PGs. Multiple enzymes are involved in galactosaminoglycan biosynthesis. Galactosaminoglycan synthesis is regulated by various signalling pathways which are amenable to pharmacological manipulation to treat atherosclerosis. Receptor mediated signalling pathways including protein tyrosine kinase receptors (PTKRs), serine/threonine kinase receptors (S/TKRs) and G-protein coupled receptors (GPCRs) pathways regulate galactosaminoglycan synthesizing enzyme expression. Increased expression of these enzymes modify galactosaminoglycan chain structure by making them hyperelongated. This review focuses on the signalling pathways regulating the expression of genes involved in galactosaminoglycan synthesis and modification. Furthermore, there are multiple other processes for inhibiting the interactions between LDL and galactosaminoglycans such as peptide mimetics of ApoB100 and anti-galactosaminoglycan antibodies and the therapeutic potential of these strategies is also addressed.
    Matched MeSH terms: Muscle, Smooth, Vascular/metabolism*
  20. Noor Liza Ishak, Primuharsa Putra Sabir Athar Husin, Suria Hayati Md Pauzi, Isa Mohd Rose, Mohd Razif Mohamad Yunus
    MyJurnal
    Solitary fibrous tumours of the head and neck region are
    extremely rare. The clinical diagnosis is often difficult to
    establish, and this lesion may be indistinguishable from other
    soft tissue neoplasms. An 18-year old Chinese gentleman
    presented with a painless right submandibular swelling which
    was increasing in size for eight months. A computed
    tomography scan showed a well-defined solid mass measuring
    about 2.0 x 2.96 cm in the submandibular region. The tumour
    was resected and was confined within its capsule.
    Immunohistochemical staining was strongly positive for CD34,
    CD 99, and vimentin and negative for desmin, smooth muscle
    actin (SMA), cytokeratin, S100 and CD68. The microscopic and
    immunohistochemical profile were compatible with solitary
    fibrous tumour. Distinguishing solitary fibrous tumours from
    various spindle neoplasms can be difficult. In view of the
    resemblance, immunohistochemical staining can help
    differentiate solitary fibrous tumour from spindle neoplasm.
    Matched MeSH terms: Muscle, Smooth
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links