Displaying publications 41 - 60 of 619 in total

Abstract:
Sort:
  1. Yeganeh Ghotbi M, Javanmard A, Soleimani H
    Sci Rep, 2018 02 21;8(1):3404.
    PMID: 29467510 DOI: 10.1038/s41598-018-21782-3
    A layered nanoreactor (zinc hydroxide gallate/nitrate nanohybrid) has been designed as a nano-vessel to confine the gallate/nitrate reaction inside zinc hydroxide layers for production of metal/nitrogen-doped carbon catalysts. Metals (Fe2+, Co2+ and Ni2+) doped and bare zinc hydroxide nitrates (ZHN) were synthesized as the α-phase hydroxide hosts. By an incomplete ion-exchange process, nitrate anions between the layers of the hosts were then partially replaced by the gallate anions to produce the layered nanoreactors. Under heat-treatment, the reaction between the remaining un-exchanged nitrate anions and the organic moiety inside the basal spacing of each nanohybrid plate resulted in obtaining highly porous 3D metal/nitrogen-doped carbon nanosheets. These catalysts were then used as extremely efficient electrocatalysts for catalyzing oxygen reduction reaction (ORR). This study is intended to show the way to get maximum electrocatalytic activity of the metal/N-doped carbon catalysts toward the ORR. This exceptionally high ORR performance originates from the increased available surface, the best pore size range and the uniform distribution of the active sites in the produced catalysts, all provided by the use of new idea of the layered nanoreactor.
    Matched MeSH terms: Nitrogen
  2. Siregar, Januar Parlaungan, Mohd. Sapuan Salit, Mohd. Zaki Ab. Rahman, Khairul Zaman Hj. Mohd. Dahlan
    MyJurnal
    This paper studied the thermal behaviour of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composite. Thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC) analysis were used to measure the thermal characteristic of HIPS/PALF composites. In particular, the TGA analysis was utilized to measure the degradation and decomposition of materials in neat polystyrene, pineapple fibre, and the composites. The measurements were carried out in the temperature of 25°C – 800°C, at a heating rate of 20°C min-1 and the nitrogen gas flow was 50 mL min-1. The temperature of the DSC analysis was programmed to be between 25°C – 300°C. The results from TGA analysis show that the addition of pineapple fibre has improved the thermal stability of the composites as compared to neat HIPS. In addition, the effects of compatibilising agent and surface modification of PALF with alkali treated were also determined and compared.
    Matched MeSH terms: Nitrogen
  3. Ali G, Nisar J, Iqbal M, Shah A, Abbas M, Shah MR, et al.
    Waste Manag Res, 2019 Aug 13.
    PMID: 31405341 DOI: 10.1177/0734242X19865339
    Due to a huge increase in polymer production, a tremendous increase in municipal solid waste is observed. Every year the existing landfills for disposal of waste polymers decrease and the effective recycling techniques for waste polymers are getting more and more important. In this work pyrolysis of waste polystyrene was performed in the presence of a laboratory synthesized copper oxide. The samples were pyrolyzed at different heating rates that is, 5°Cmin-1, 10°Cmin-1, 15°Cmin-1 and 20°Cmin-1 in a thermogravimetric analyzer in inert atmosphere using nitrogen. Thermogravimetric data were interpreted using various model fitting (Coats-Redfern) and model free methods (Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Friedman). Thermodynamic parameters for the reaction were also determined. The activation energy calculated applying Coats-Redfern, Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Friedman models were found in the ranges 105-148.48 kJmol-1, 99.41-140.52 kJmol-1, 103.67-149.15 kJmol-1 and 99.93-141.25 kJmol-1, respectively. The lowest activation energy for polystyrene degradation in the presence of copper oxide indicates the suitability of catalyst for the decomposition reaction to take place at lower temperature. Moreover, the obtained kinetics and thermodynamic parameters would be very helpful in determining the reaction mechanism of the solid waste in a real system.
    Matched MeSH terms: Nitrogen
  4. Jong VS, Tang FE
    Water Sci Technol, 2015;72(1):84-91.
    PMID: 26114275 DOI: 10.2166/wst.2015.186
    In this study, the treatment of septage (originating from septic tanks) was carried out in a pilot-scale, two-staged, vertical-flow engineered wetland (VFEW). Palm kernel shells (PKS) were incorporated as part of the VFEW's substrate (B-PKS), to compare its organic matter (OM) and nitrogen (N) removal efficiency against wetlands with only sand substrates (B-SD). The results revealed satisfactory OM removal with >90% reduction efficiencies at both wetlands B-PKS and B-SD. No increment of chemical oxygen demand (COD) concentration was observed in the effluent of B-PKS. Ammonia load removal efficiencies were comparable (>91% and 95% in wetland B-PKS and B-SD, respectively). However, nitrate accumulation was observed in the effluent of B-SD where PKS was absent. This was due to the limited denitrification in B-SD, as sand is free of carbon. A lower nitrate concentration was associated with higher COD concentration in the effluent at B-PKS. This study has shown that the use of PKS was effective in improving the N removal efficiency in engineered wetlands.
    Matched MeSH terms: Nitrogen/analysis
  5. Pandion K, Arunachalam KD, Dowlath MJH, Chinnapan S, Chang SW, Chang W, et al.
    Environ Monit Assess, 2022 Nov 19;195(1):126.
    PMID: 36401680 DOI: 10.1007/s10661-022-10568-w
    The current study focused on the monitoring of pollution loads in the Kalpakkam coastal zone of India in terms of physico-chemical characteristics of sediment. The investigation took place at 12 sampling points around the Kalpakkam coastal zone for one year beginning from 2019. The seasonal change of nutrients in the sediment, such as nitrogen, phosphorus, potassium, total organic carbon, and particles size distribution, was calculated. Throughout the study period, the pH (7.55 to 8.99), EC (0.99 to 4.98 dS/m), nitrogen (21.74 to 58.12 kg/ha), phosphorus (7.5 to 12.9 kg/ha), potassium (218 to 399 kg/ha), total organic carbon (0.11 to 0.88%), and particle size cumulative percent of sediments (from 9.01 to 9.39%) was observed. A number of multivariate statistical techniques were used to examine the changes in sediment quality. The population means were substantially different according to the three-way ANOVA test at the 0.05 level. Principal component analysis and cluster analysis showed a substantial association with all indicators throughout all seasons, implying contamination from both natural and anthropogenic causes. The ecosystem of the Kalpakkam coastal zone has been affected by nutrient contamination.
    Matched MeSH terms: Nitrogen/analysis
  6. Ishak A, Mohamad E, Hambali A, Johari NL
    Water Sci Technol, 2022 Nov;86(9):2233-2247.
    PMID: 36378177 DOI: 10.2166/wst.2022.360
    This paper presents the promising method of synchronizing the Six Sigma and reliability analyses at 15 sewage treatment plants (STPs) operating in Melaka, Malaysia. Five different suspended growth treatment technologies in various capacities were investigated. The sequential batch reactor (SBR) and extended aeration activated sludge (EAAS) processes, conventional activated sludge (CAS), aerated lagoon (AL), and oxidation pond (OP) were compared using innovative Niku's treatment reliability and Six Sigma process capability method for biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids (TSS), oil and grease (O&G), and ammoniacal nitrogen (NH3-N) effluent parameters and justified the importance of understanding the lognormal behavior of the effluent parameters in interpreting the performance monitoring results and discharge compliance. The results showed that the SBR and EAAS systems relatively fulfilled the highest performance (>95%) compared to conventional systems to ensure the high quality of effluent discharge. Although the whole system is incapable of removing nutrients efficiently, ranging between 42.31% and 90.48%, may lead to eutrophication issues. Process modification and treatment control should become a critical priority in order to reduce variability, improve stability, and increase the efficiency of nutrient removal. These initiatives promote global sustainable development goals (SDGs) 2030 and the domestic water sector transformation (WST) 2040 by treatment cost reduction, improving environmental sustainability and guaranteeing social and health benefits.
    Matched MeSH terms: Nitrogen/analysis
  7. Ibrahim MH, Jaafar HZ
    Molecules, 2011 Jun 29;16(7):5514-26.
    PMID: 21716173 DOI: 10.3390/molecules16075514
    Kacip Fatimah (Labisia pumila Blume), one of the most famous and widely used herbs, especially in Southeast Asia, is found to have interesting bioactive compounds and displays health promoting properties. In this study, the antioxidant activities of the methanol extracts of leaves, stems and roots of three varieties of L. pumila (var. alata, pumila and lanceolata) were evaluated in an effort to compare and validate the medicinal potential of this indigenous Malaysian herb species. The antioxidant activity determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, as well as the total amount of phenolics and flavonoids were the highest in the leaves, followed by the stems and roots in all the varieties. A similar trend was displayed by the ferric reducing antioxidant potential (FRAP) activity, suggesting that the L. pumila varieties possess high foliar antioxidant properties. At low FRAP activity concentrations, the values of the leaves' inhibition activity in the three varieties were significantly higher than those of the stems and roots, with var. alata exhibiting higher antioxidant activities and total contents of phenolics and flavonoids compared to the varieties pumila and lanceolata. The high production of secondary metabolites and antioxidant activities in var. alata were firmly related to low nitrogen content and high C/N ratio in plant parts. The study also demonstrated a positive correlation between secondary metabolite content and antioxidant activities, and revealed that the consumption of L. pumila could exert several beneficial effects by virtue of its antioxidant activity.
    Matched MeSH terms: Nitrogen/metabolism*
  8. Ibrahim MH, Jaafar HZ, Rahmat A, Rahman ZA
    Molecules, 2010 Dec 29;16(1):162-74.
    PMID: 21191319 DOI: 10.3390/molecules16010162
    A factorial split plot 4 × 3 experiment was designed to examine and characterize the relationship among production of secondary metabolites (total phenolics, TP; total flavonoids, TF), carbohydrate content and photosynthesis of three varieties of the Malaysian medicinal herb Labisia pumila Benth. namely the varieties alata, pumila and lanceolata under CO(2) enrichment (1,200 µmol mol(-1)) combined with four levels of nitrogen fertilization (0, 90, 180 and 270 kg N ha(-1)). No varietal differences were observed, however, as the levels of nitrogen increased from 0 to 270 kg N ha(-1), the production of TP and TF decreased in the order leaves>roots>stems. The production of TP and TF was related to increased total non structural carbohydrate (TNC), where the increase in starch content was larger than that in sugar concentration. Nevertheless, the regression analysis exhibited a higher influence of soluble sugar concentration (r(2) = 0.88) than starch on TP and TF biosynthesis. Photosynthesis, on the other hand, displayed a significant negative relationship with TP and TF production (r(2) = -0.87). A decrease in photosynthetic rate with increasing secondary metabolites might be due to an increase in the shikimic acid pathway that results in enhanced production of TP and TF. Chlorophyll content exhibited very significant negative relationships with total soluble sugar, starch and total non structural carbohydrate.
    Matched MeSH terms: Nitrogen/metabolism*
  9. Zailina Hashim, Juliana Jalaludin, Norzila Muhamad Zainudin, Azizi Omar, Jamal H. Hashim
    MyJurnal
    A study on 30 asthmatic children was conducted in Kuala Lumpur. The objective of this study was to study the relationship between respirable particulate (PM10), sulphur dioxide, ozone and various meteorological factors such as humidity, level ofrainfall and temperature with asthma attacks. This study was conducted from 1st September to 31 December 1994. Patients were selected from the Paediatric Unit, Kuala Lumpur Hospital. Questionnaires were used to obtain information from their parents on the history and severity ofasthmatic attacks ofthese patients. Questionnaires were also used to determine if the indoor sources contributed to the attack. Diary cards were used to collect information on the frequency of asthmatic attacks. Each patient's progress was followed through every week during the study period and the attacks were recorded. The data on air quality on the PM10, sulphur dioxide, nitrogen dioxide, carbon monoxide and ozone were collected hourly using the microcomputer system of air monitoring unit from the Universiti Pertanian Malaysia air quality monitoring station located at the City Hall, Kuala Lumpur. The meteorological parameters such as temperature, relative humidity and rain-fall levels were also monitored daily. The asthmatic attack percentage was obtained by dividing the number of attacks in a day with the total number of sample and multiplying by a hundred. Statistical tests indicated that there was a significant correlation between asthmatic attacks and the PM10 concentrations (r=0.73), nitrogen dioxide (r=0.57) and.carbon monoxide (r=0.53) throughout the study period. During the haze episode, more significant correlations between asthmatic attacks, PM10 concentra-tions (0.86), carbon monoxide (0.79) and nitrogen oxide (0.53) were found. Multiple regression statistical test showed that PM10 had the greatest influence on the asthmatic attack rate. The minute respirable particulate which entered the respiratory system of the asthmatics triggered attacks on these patients.
    Matched MeSH terms: Nitrogen Dioxide; Nitrogen Oxides
  10. Lim PN, Wu TY, Sim EY, Lim SL
    J Sci Food Agric, 2011 Nov;91(14):2637-42.
    PMID: 21725978 DOI: 10.1002/jsfa.4504
    Soybean (Glycine max L.) is one the most commonly consumed legumes worldwide, with 200 million metric tons produced per year. However, the inedible soy husk would usually be removed during the process and the continuous generation of soybean husk may represent a major disposal problem for soybean processing industries. Thus, the main aim of the present study was to investigate the possibility to convert soybean husk (S) amended with market-rejected papaya (P) into vermicompost using Eudrilus eugeniae.
    Matched MeSH terms: Nitrogen Cycle
  11. Sanjaya EH, Chen Y, Guo Y, Wu J, Chen H, Din MFM, et al.
    Bioresour Technol, 2022 Feb;346:126622.
    PMID: 34958906 DOI: 10.1016/j.biortech.2021.126622
    The simultaneous partial nitritation, anammox, denitrification, and COD oxidation (SNADCO) method was successfully carried out in an air-lift moving bed biofilm reactor (AL-MBBR) with cylinders carriers for the treatment of digested fish processing wastewater (FPW). Synthetic wastewater was used as substrate at stage 1. It changed into the digested FPW with dilution variation in order to increase the nitrogen and COD loading rates. With influent concentration of NH4+-N of 909 ± 101 mg-N/L and COD of 731 ± 26 mg/L, the nitrogen removal efficiency was 86.8% (nitrogen loading rate of 1.21 g-TN/L/d) and the COD removal efficiency was 50.5% (COD loading rate at 0.98 g-COD/L/d). This study showed that the process has the advantages in treating the real high ammonia concentration of digested wastewater containing organic compounds. The nitritation and anammox route was predominant in nitrogen removal, while COD oxidation and microbe proliferation played the main role in COD removal.
    Matched MeSH terms: Nitrogen
  12. Karthivashan G, Kura AU, Arulselvan P, Md Isa N, Fakurazi S
    PeerJ, 2016;4:e2127.
    PMID: 27441110 DOI: 10.7717/peerj.2127
    N-Acetyl-p-Aminophenol (APAP), also known as acetaminophen, is the most commonly used over-the counter analgesic and antipyretic medication. However, its overdose leads to both liver and kidney damage. APAP-induced toxicity is considered as one of the primary causes of acute liver failure; numerous scientific reports have focused majorly on APAP hepatotoxicity. Alternatively, not many works approach APAP nephrotoxicity focusing on both its mechanisms of action and therapeutic exploration. Moringa oleifera (MO) is pervasive in nature, is reported to possess a surplus amount of nutrients, and is enriched with several bioactive candidates including trace elements that act as curatives for various clinical conditions. In this study, we evaluated the nephro-protective potential of MO leaf extract against APAP nephrotoxicity in male Balb/c mice. A single-dose acute oral toxicity design was implemented in this study. Group 2, 3, 4 and 5 received a toxic dose of APAP (400 mg/kg of bw, i.p) and after an hour, these groups were administered with saline (10 mL/kg), silymarin-positive control (100 mg/kg of bw, i.p), MO leaf extract (100 mg/kg of bw, i.p), and MO leaf extract (200 mg/kg bw, i.p) respectively. Group 1 was administered saline (10 mL/kg) during both the sessions. APAP-treated mice exhibited a significant elevation of serum creatinine, blood urea nitrogen, sodium, potassium and chloride levels. A remarkable depletion of antioxidant enzymes such as SOD, CAT and GSH-Px with elevated MDA levels has been observed in APAP treated kidney tissues. They also exhibited a significant rise in pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and decreased anti-inflammatory (IL-10) cytokine level in the kidney tissues. Disorganized glomerulus and dilated tubules with inflammatory cell infiltration were clearly observed in the histology of APAP treated mice kidneys. All these pathological changes were reversed in a dose-dependent manner after MO leaf extract treatment. Therefore, MO leaf extract has demonstrated some therapeutic effectiveness against APAP-induced nephrotoxicity through enhancement of the endogenous antioxidant system and a modulatory effect on specific inflammatory cytokines in kidney tissues.
    Matched MeSH terms: Blood Urea Nitrogen
  13. Abd Rahim MH, Lim EJ, Hasan H, Abbas A
    J Microbiol Methods, 2019 09;164:105672.
    PMID: 31326443 DOI: 10.1016/j.mimet.2019.105672
    PURPOSE: This study aimed to assess the effect of nitrogen, salt and pre-culture conditions on the production of lovastatin in A. terreus ATCC 20542.

    METHODS: Different combinations of nitrogen sources, salts and pre-culture combinations were applied in the fermentation media and lovastatin yield was analysed chromatographically.

    RESULT: The exclusion of MnSO4 ·5H2O, CuSO4·5H2O and FeCl3·6H2O were shown to significantly improve lovastatin production (282%), while KH2PO4, MgSO4·7H2O, and NaCl and ZnSO4·7H2O were indispensable for good lovastatin production. Simple nitrogen source (ammonia) was unfavourable for morphology, growth and lovastatin production. In contrast, yeast extract (complex nitrogen source) produced the highest lovastatin yield (25.52 mg/L), while powdered soybean favoured the production of co-metabolites ((+)-geodin and sulochrin). Intermediate lactose: yeast extract (5:4) ratio produced the optimal lovastatin yield (12.33 mg/L) during pre-culture, while high (5:2) or low (5:6) lactose to yeast extract ratio produced significantly lower lovastatin yield (7.98 mg/L and 9.12 mg/L, respectively). High spore concentration, up to 107 spores/L was shown to be beneficial for lovastatin, but not for co-metabolite production, while higher spore age was shown to be beneficial for all of its metabolites.

    CONCLUSION: The findings from these investigations could be used for future cultivation of A. terreus in the production of desired metabolites.

    Matched MeSH terms: Nitrogen
  14. Nashriyah Mat, Shamsiah Abdul Rahman, Ismail Che Haron, Mazleha Maskin, Mohd. Razi Ismail
    MyJurnal
    A study to determine the influence of soil water status on the physiology of rice plant Oryza sativa var. MR220 after panicle initiation stage was carried out at Ladang Merdeka Mulong Lating in the Kemubu Agricultural Development Authority (KADA) area, Kelantan. Five water management treatments imposed on direct seeded rice were; T1. Continuous flooding, T2. Early flooding up to panicle initiation stage followed by saturated (F55-saturated), T3. Early flooding for the first month followed by saturated (F-30 saturated), T4. Continuous saturated, and T5. Continuous field capacity condition throughout the growth stage. The treatments were arranged in Randomized Complete Block Design (RCBD) with four replicates. In-situ stomatal conductance measurement was carried out at 68 DAS (days after seeding) and the elemental analysis of soil and plant samples was carried out using the Instrumental Neutron Activation Analysis (INAA). Results from this study showed significant differences between treatments for soil moisture content and plant moisture content, but no significance different in leaf stomatal conductance. Rice plant moisture, soil moisture and leaf stomatal conductance showed no interaction. Early flooding up to panicle initiation stage followed by saturated (T2: F55-saturated) resulted in higher plant moisture content. Soil plant transfer coefficient was highest in continuous saturated (T4) for nitrogen, early flooding for the first month followed by saturated (T3: F-30 saturated) for potassium, continuous field capacity condition throughout the growth stage (T5) for magnesium, and continuous flooding (T1) for sodium.
    Matched MeSH terms: Nitrogen
  15. Alongi DM, Chong VC, Dixon P, Sasekumar A, Tirendi F
    Mar Environ Res, 2003 May;55(4):313-33.
    PMID: 12517423
    The impact of floating net cages culturing the seabass, Lates calcarifer, on planktonic processes and water chemistry in two heavily used mangrove estuaries in Malaysia was examined. Concentrations of dissolved inorganic and particulate nutrients were usually greater in cage vs. adjacent (approximately 100 m) non-cage waters, although most variability in water-column chemistry related to water depth and tides. There were few consistent differences in plankton abundance, production or respiration between cage and non-cage sites. Rates of primary production were low compared with rates of pelagic mineralization reflecting high suspended loads coupled with large inputs of organic matter from mangrove forests, fishing villages, fish cages, pig farms and other industries within the catchment. Our preliminary sampling did not reveal any large-scale eutrophication due to the cages. A crude estimate of the contribution of fish cage inputs to the estuaries shows that fish cages contribute only approximately 2% of C but greater percentages of N (32-36%) and P (83-99%) to these waters relative to phytoplankton and mangrove inputs. Isolating and detecting impacts of cage culture in such heavily used waterways--a situation typical of most mangrove estuaries in Southeast Asia--are constrained by a background of large, highly variable fluxes of organic material derived from extensive mangrove forests and other human activities.
    Matched MeSH terms: Nitrogen/analysis
  16. Shen TC
    Plant Physiol, 1969 Nov;44(11):1650-5.
    PMID: 16657253
    Nitrate reduotase is induced by nitrate in excised embryos and germinating intact seedlings of rice (Oryza sativa L.). The enzyme is induced 24 hr after imbibition. The rate of enzyme formation increases with the age of seedlings. There is a lag period of 30 to 40 min between the addition of substrate and the formation of nitrate reductase. Formation of the enzyme is promoted by the presence of ammonium. Chloramphenicol, actinomycin D and cycloheximide effectively inhibit the formation of nitrate reductase.Rice seedlings can assimilate nitrate from the beginning of germination. However, the utilization of nitrate is completely suppressed by the presence of ammonium. As soon as ammonium is depleted from the medium, nitrate utilization is resumed. Ammonium inhibits the first step of nitrate reduction, i.e., NO(-) (3) --> NO(-) (2), but does not inhibit the assimilation of nitrite. This provides an example of feedback inhibition in higher plants.
    Matched MeSH terms: Nitrogen Oxides
  17. Pyle JA, Warwick NJ, Harris NR, Abas MR, Archibald AT, Ashfold MJ, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3210-24.
    PMID: 22006963 DOI: 10.1098/rstb.2011.0060
    We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.
    Matched MeSH terms: Nitrogen Oxides/chemistry
  18. Norfazillah Ab Manan, Rozita Hod, Hanizah Mohd Yusoff, Mazrura Sahani, Rosnah Ismail, Wan Rozita Wan Mahiyuddin
    Int J Public Health Res, 2016;6(1):707-712.
    MyJurnal
    Air pollution has been widely known to have an influence on health of the general population.
    Air pollution can result from natural causes, human activities and transboundary air pollution.
    Weather and climate play crucial role in determining the pattern of air quality. In recent years,
    air pollution and recurrent episodes of haze has become a major concern in Malaysia.
    Surveillance data on concentrations of main air pollutants such as carbon dioxide, (CO2),
    Nitrogen Dioxide (NO2), Ozone (O3), sulphur dioxide (SO2) and particulate matter (PM10)
    were found to be higher during the haze days and this may have an impact on health of the
    community as reflected by an increase in hospital admissions particularly the respiratory and
    cardiovascular diseases.
    Matched MeSH terms: Nitrogen Dioxide
  19. Ali N, Halim NS, Jusoh A, Endut A
    Bioresour Technol, 2010 Mar;101(5):1459-65.
    PMID: 19786347 DOI: 10.1016/j.biortech.2009.08.070
    The focus of this research is to study the potential of nanofiltration membrane technology in removing ammonia-nitrogen from the aquaculture system. One of the major fabrication parameters that directly affect the separation performance is shear rate or casting rate during membrane fabrication. In this study, asymmetric polyethersulfone (PES) nanofiltration membranes were prepared at five different shear rates within the range of 67-400 s(-1). Membrane productivity and separation performance were assessed via pure water, salt and ammonia-nitrogen permeation experiments, and their structural properties were determined by employing the combination of the irreversible thermodynamic (IT) model, solution diffusion model, steric hindrance pore (SHP) model and Teorell-Meyers (TMS) model. The study reveals that the alteration of shear rate enormously affects the membrane morphology and structural parameters, hence subsequently significantly influencing the membrane performance. It was found that, membrane produced at the shear rate 200 s(-1) or equivalent to 10s of casting speed during membrane fabrications managed to remove about 68% of ammonia-nitrogen, in which its separation performance is the most favourable by means of highest flux and rejection ability towards unwanted solutes. Besides, from the research findings, nano-membrane technology is a potential candidate for the treatment of aquaculture wastewater.
    Matched MeSH terms: Nitrogen/isolation & purification*
  20. Izyan Munirah M. Zaideen, Suhaimi Suratman, Norhayati Mohd Tahir
    Sains Malaysiana, 2017;46:1513-1520.
    This study investigates the spatial variation of water quality parameters in Sungai Setiu Basin at ten different locations from March 2010 to February 2011. The water quality was assessed using the Water Quality Index by Malaysian Department of Environment (DOE-WQI) and classified according to the Malaysia Interim National Water Quality Standard (INWQS). Six water quality parameters embedded in the DOE-WQI were dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), pH, ammoniacal nitrogen (AN) and total suspended solid (TSS). In addition, this study also examined the changes in water quality over the past 10 years by comparing the present water quality to the previous works. The overall mean WQI value obtained was 84.0 which indicate that the Sungai Setiu basin is in clean condition and all measured water quality parameters gave value within the permissible limits of the INWQS classification except for pH which fall in Class III. It can be concluded that water quality in Sungai Setiu does not varies greatly over a decade. Hence continuous monitoring is needed to improve the water quality and minimize water pollution.
    Matched MeSH terms: Nitrogen
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links