Displaying publications 41 - 60 of 1125 in total

Abstract:
Sort:
  1. Khairi MHA, Fatah AYA, Mazlan SA, Ubaidillah U, Nordin NA, Ismail NIN, et al.
    Int J Mol Sci, 2019 Aug 21;20(17).
    PMID: 31438576 DOI: 10.3390/ijms20174085
    The existing mold concept of fabricating magnetorheological elastomer (MRE) tends to encounter several flux issues due to magnetic flux losses inside the chamber. Therefore, this paper presents a new approach for enhancing particle alignment through MRE fabrication as a means to provide better rheological properties. A closed-loop mold, which is essentially a fully guided magnetic field inside the chamber, was designed in order to strengthen the magnetic flux during the curing process with the help of silicone oil (SO) plasticizers. The oil serves the purpose of softening the matrix. Scanning electron microscopy (SEM) was used to observe the surface morphology of the fabricated MRE samples. The field-dependent dynamic properties of the MREs were measured several ways using a rheometer, namely, strain sweep, frequency sweep, and magnetic field sweep. The analysis implied that the effectiveness of the MRE was associated with the use of the SO, and the closed-loop mold helped enhance the absolute modulus up to 0.8 MPa. The relative magnetorheological (MR) effects exhibited high values up to 646%. The high modulus properties offered by the MRE with SO are believed to be potentially useful in industry applications, particularly as vibration absorbers, which require a high range of stiffness.
    Matched MeSH terms: Silicone Oils/chemistry*
  2. Wan Ikhsan SN, Yusof N, Aziz F, Ismail AF, Jaafar J, Wan Salleh WN, et al.
    J Environ Manage, 2021 Jul 15;290:112565.
    PMID: 33873023 DOI: 10.1016/j.jenvman.2021.112565
    The vast amount of oily wastewater released to the environment through industrialization has worsened the water quality in recent years, posing adverse impacts on general human health. Oil emulsified in water is one of the most difficult mixtures to be treated, making it imperative for new technology to be explored to address this issue. The use of conventional water treatment such as flotation, coagulation, precipitation, adsorption, and chemical treatment have low separation efficiencies and high energy costs, and are not applicable to the separation of oil/water emulsions. Therefore, there is a demand for more efficient methods and materials for the separations of immiscible oil/water mixtures and emulsions. Superwetting materials that can repel oil, while letting water pass through have been widely explored to fit into this concern. These materials usually make use of simultaneous hydrophilic/oleophobic mechanisms to allow a solid surface to separate oily emulsion with little to no use of energy. Also, by integrating specific wettability concepts with appropriate pore scale, solid surfaces may achieve separation of multifarious oil/water mixtures namely immiscible oil/water blends and consolidated emulsions. In this review, materials used to impart superwetting in solid surfaces by focusing on superhydrophilic/superoleophobic wetting properties of the materials categorized into fluorinated and non-fluorinated surface modification are summarized. In each material, its background, mechanism, fabricating processes, and their effects on solid surface's wetting capability are elaborated in detail. The materials reviewed in this paper are mainly organic and green, suggesting the alternative material to replace the fluorine group that is widely used to achieve oleophobicity in oily wastewater treatment.
    Matched MeSH terms: Oils*
  3. Cheryl-Low YL, Kong PS, Lee HV
    J Hazard Mater, 2021 04 05;407:124365.
    PMID: 33162238 DOI: 10.1016/j.jhazmat.2020.124365
    Non-edible bio-oil derived from lignocellulosic biomass could be used as environmentally friendly lubricant-ester base stock for maritime and road-type transportations. However, the use of crude bio-oil with highly oxygenated compounds required further upgrading to yield ester that mimicked the characteristics of Group V base oil (polyolesters). In this study, bio-oil based polyolesters was produced via esterification using green biopolymer alginate acid catalyst (Al-Alg). The bio-oil compounds used were acetic acid (AcA), propionic acid (PrA) and levulinic acid (LA), while polyols such as neopentyl glycol (NPG), trimethylolpropane (TMP) and pentaerythritol (PE) were used. Optimization studies revealed that NPG-PrA ester gave the best ester purity of 100%, with 95% of diester selectivity under optimum conditions of 15 wt% Al-Alg, 8 h, 6:1 PrA:NPG and 140 °C. The produced polyolesters showed potential lube characteristics with viscosity index of 76, kinematic viscosity of 2.3 mm2 s-1 at 40 °C and oxidative induction time of 15 min at 100 °C. Furthermore, a reusability study of the Al-Alg catalyst indicated high NPG-PrA diester selectivity (above 90%) for 8 consecutive cycles. The physico-chemical properties of spent Al-Alg catalyst were also discussed.
    Matched MeSH terms: Plant Oils*
  4. Bello MM, Abdul Raman AA
    J Environ Manage, 2017 Aug 01;198(Pt 1):170-182.
    PMID: 28460324 DOI: 10.1016/j.jenvman.2017.04.050
    Palm oil processing is a multi-stage operation which generates large amount of effluent. On average, palm oil mill effluent (POME) may contain up to 51, 000 mg/L COD, 25,000 mg/L BOD, 40,000 TS and 6000 mg/L oil and grease. Due to its potential to cause environmental pollution, palm oil mills are required to treat the effluent prior to discharge. Biological treatments using open ponding system are widely used for POME treatment. Although these processes are capable of reducing the pollutant concentrations, they require long hydraulic retention time and large space, with the effluent frequently failing to satisfy the discharge regulation. Due to more stringent environmental regulations, research interest has recently shifted to the development of polishing technologies for the biologically-treated POME. Various technologies such as advanced oxidation processes, membrane technology, adsorption and coagulation have been investigated. Among these, advanced oxidation processes have shown potentials as polishing technologies for POME. This paper offers an overview on the POME polishing technologies, with particularly emphasis on advanced oxidation processes and their prospects for large scale applications. Although there are some challenges in large scale applications of these technologies, this review offers some perspectives that could help in overcoming these challenges.
    Matched MeSH terms: Plant Oils*
  5. Kabir G, Mohd Din AT, Hameed BH
    Bioresour Technol, 2018 Feb;249:42-48.
    PMID: 29040858 DOI: 10.1016/j.biortech.2017.09.190
    The pyrolysis of oil palm mesocarp fiber (OPMF) was catalyzed with a steel slag-derived zeolite (FAU-SL) in a slow-heating fixed-bed reactor at 450 °C, 550 °C, and 600 °C. The catalytic pyrolysis of OPMF produced a maximum yield of 47 wt% bio-oil at 550 °C, and the crude pyrolysis vapor (CPV) of this process yielded crude pyrolysis oil with broad distribution of bulky oxygenated organic compounds. The bio-oil composition produced at 550 °C contained mainly light and stable acid-rich carbonyls at a relative abundance of 48.02% peak area and phenolic compounds at 12.03% peak area. The FAU-SL high mesoporosity and strong surface acidity caused the conversion of the bulky CPV molecules into mostly light acid-rich carbonyls and aromatics through secondary reactions. The secondary reactions mechanisms facilitated by FAU-SL reduced the distribution of the organic compounds in the bio-oil to mostly acid-rich carbonyls and aromatic in contrast to other common zeolite.
    Matched MeSH terms: Plant Oils*
  6. Al-Fakih AM, Algamal ZY, Lee MH, Aziz M
    SAR QSAR Environ Res, 2017 Aug;28(8):691-703.
    PMID: 28976224 DOI: 10.1080/1062936X.2017.1375010
    A robust screening approach and a sparse quantitative structure-retention relationship (QSRR) model for predicting retention indices (RIs) of 169 constituents of essential oils is proposed. The proposed approach is represented in two steps. First, dimension reduction was performed using the proposed modified robust sure independence screening (MR-SIS) method. Second, prediction of RIs was made using the proposed robust sparse QSRR with smoothly clipped absolute deviation (SCAD) penalty (RSQSRR). The RSQSRR model was internally and externally validated based on [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], Y-randomization test, [Formula: see text], [Formula: see text], and the applicability domain. The validation results indicate that the model is robust and not due to chance correlation. The descriptor selection and prediction performance of the RSQSRR for training dataset outperform the other two used modelling methods. The RSQSRR shows the highest [Formula: see text], [Formula: see text], and [Formula: see text], and the lowest [Formula: see text]. For the test dataset, the RSQSRR shows a high external validation value ([Formula: see text]), and a low value of [Formula: see text] compared with the other methods, indicating its higher predictive ability. In conclusion, the results reveal that the proposed RSQSRR is an efficient approach for modelling high dimensional QSRRs and the method is useful for the estimation of RIs of essential oils that have not been experimentally tested.
    Matched MeSH terms: Oils, Volatile/chemistry*
  7. Tamrin KF, Zahrim AY
    Environ Sci Pollut Res Int, 2017 Jul;24(19):15863-15869.
    PMID: 28013466 DOI: 10.1007/s11356-016-8235-3
    The main limitation of a conventional palm oil mill effluent (POME) ponding system lies in its inability to completely decolourise effluent. Decolourisation of effluent is aesthetically and environmentally crucial. However, determination of the optimum process parameters is becoming more complex with the increase of the number of coagulants and responses. The primary objective of this study is to determine the optimum polymeric coagulant in the coagulation-flocculation process of palm oil mill effluent by considering all output responses, namely lignin-tannin, low molecular mass coloured compounds (LMMCC), chemical oxygen demand (COD), ammonia nitrogen (NH3-N), pH and conductivity. Here, multiple-objective optimisation on the basis of ratio analysis (MOORA) is employed to discretely measure multiple response characteristics of five different types of coagulants as a function of assessment value. The optimum coagulant is determined based on the highest assessment value and was identified as QF25610 (cationic polyacrylamide). On the other hand, the lowest assessment value was represented by AN1800 (anionic polyacrylamide). This study highlights the simplicity of MOORA approach in handling various input and output parameters, and it may be useful in other wastewater treatment processes as well.
    Matched MeSH terms: Plant Oils*
  8. Dheyauldeen Salahdin O, Othman H, Hafsan H, Mohammed F, Ahmed Hamza T, Kadhim MM, et al.
    Arch Razi Inst, 2023 Feb;78(1):95-105.
    PMID: 37312740 DOI: 10.22092/ARI.2022.359522.2442
    Due to its beneficial components, such as glycyrrhizin, licorice is regarded a medicinal and fragrant plant. This research was designed to investigate the efficacy of licorice essential oil as an alternative to chemical antibiotics on broiler production, carcass features, cellular and humoral safety, and numerous biochemical variables in broiler blood serum. A total of 160 day-old broiler chicks were assigned to four treatment groups using a totally randomized approach. Each treatment consisted of 4 replicates, with 10 chicks in each replication. The experimental treatments included a control group, a group receiving an elemental diet containing 0.1% licorice essential oil, a group receiving an elemental diet containing 0.2% licorice essential oil, and a group receiving an elemental diet containing 0.3% licorice essential oil. Broilers had ad libitum access to feed and water in accordance with a three-phase feeding schedule consisting of a starter, grower, and finisher diet. There was no statistically significant difference (P>0.05) in body weight, feed intake, or feed conversion ratio between birds given the control or essential oil licorice at various stages of the experiment. However, birds receiving 0.1% licorice essential oil had a lower gallbladder relative weight and 0.3% licorice essential oil had less abdominal fat than the control group (P<0.05). Blood glucose, cholesterol, and LDL concentrations all fell considerably in licorice essential oil-treated birds relative to controls (P<0.05). The cellular immune response of birds fed licorice-containing diets did not differ from that of control birds (P>0.05), however there was a significant difference in the humoral immune response at 0.1% licorice essential oil compared to the control group (P<0.05). In overall, the results of this experiment demonstrated that incorporating licorice essential oil into a bird's diet improves its health and safety.
    Matched MeSH terms: Oils, Volatile*
  9. Notz Q, Lee ZY, Menger J, Elke G, Hill A, Kranke P, et al.
    Crit Care, 2022 01 19;26(1):23.
    PMID: 35045885 DOI: 10.1186/s13054-022-03896-3
    BACKGROUND: Parenteral lipid emulsions in critical care are traditionally based on soybean oil (SO) and rich in pro-inflammatory omega-6 fatty acids (FAs). Parenteral nutrition (PN) strategies with the aim of reducing omega-6 FAs may potentially decrease the morbidity and mortality in critically ill patients.

    METHODS: A systematic search of MEDLINE, EMBASE, CINAHL and CENTRAL was conducted to identify all randomized controlled trials in critically ill patients published from inception to June 2021, which investigated clinical omega-6 sparing effects. Two independent reviewers extracted bias risk, treatment details, patient characteristics and clinical outcomes. Random effect meta-analysis was performed.

    RESULTS: 1054 studies were identified in our electronic search, 136 trials were assessed for eligibility and 26 trials with 1733 critically ill patients were included. The median methodologic score was 9 out of 14 points (95% confidence interval [CI] 7, 10). Omega-6 FA sparing PN in comparison with traditional lipid emulsions did not decrease overall mortality (20 studies; risk ratio [RR] 0.91; 95% CI 0.76, 1.10; p = 0.34) but hospital length of stay was substantially reduced (6 studies; weighted mean difference [WMD] - 6.88; 95% CI - 11.27, - 2.49; p = 0.002). Among the different lipid emulsions, fish oil (FO) containing PN reduced the length of intensive care (8 studies; WMD - 3.53; 95% CI - 6.16, - 0.90; p = 0.009) and rate of infectious complications (4 studies; RR 0.65; 95% CI 0.44, 0.95; p = 0.03). When FO was administered as a stand-alone medication outside PN, potential mortality benefits were observed compared to standard care.

    CONCLUSION: Overall, these findings highlight distinctive omega-6 sparing effects attributed to PN. Among the different lipid emulsions, FO in combination with PN or as a stand-alone treatment may have the greatest clinical impact. Trial registration PROSPERO international prospective database of systematic reviews (CRD42021259238).

    Matched MeSH terms: Fish Oils/therapeutic use
  10. Alharthi AM, Kadir DH, Al-Fakih AM, Algamal ZY, Al-Thanoon NA, Qasim MK
    SAR QSAR Environ Res, 2023;34(10):831-846.
    PMID: 37885432 DOI: 10.1080/1062936X.2023.2261855
    The horse herd optimization algorithm (HOA), one of the more contemporary metaheuristic algorithms, has demonstrated superior performance in a number of challenging optimization tasks. In the present work, the descriptor selection issue is resolved by classifying different essential oil retention indices using the binary form, BHOA. Based on internal and external prediction criteria, Z-shape transfer functions (ZTF) were tested to verify their efficiency in improving BHOA performance in QSPR modelling for predicting retention indices of essential oils. The evaluation criteria involved the mean-squared error of the training and testing datasets (MSE), and leave-one-out internal and external validation (Q2). The degree of convergence of the proposed Z-shaped transfer functions was compared. In addition, K-fold cross validation with k = 5 was applied. The results show that ZTF, especially ZTF1, greatly improves the performance of the original BHOA. Comparatively speaking, ZTF, especially ZTF1, exhibits the fastest convergence behaviour of the binary algorithms. It chooses the fewest descriptors and requires the fewest iterations to achieve excellent prediction performance.
    Matched MeSH terms: Oils, Volatile*
  11. Siwayanan P, Chin LZ, Parthiban A, Ayodele OB, Hong BZ
    J Oleo Sci, 2024;73(4):479-487.
    PMID: 38556282 DOI: 10.5650/jos.ess23121
    Global demand for epoxidized vegetable oil has been steadily growing. Epoxidized vegetable oils are typically produced using a two-pot synthesis process in which the oxidation and epoxidation reactions are carried out sequentially. This two-pot synthesis method, however, has a major drawback in industrialscale production, particularly when it comes to operational and process safety issues. A laboratory-scale one-pot synthesis method was attempted in this study with the aim to safely synthesize epoxidized Moringa Oleifera oil (eMOo) by avoiding the occurrence of undesired exothermic runaway reaction. The oil extracted from Moringa Oleifera oil seed kernel (MOo) was used as a starting component due to its high degree of unsaturation and also because the Moringa Oleifera plant can be freely grown in any soil conditions. Two parallel oxidation and epoxidation reactions were carried out simultaneously in this one-pot synthesis method to produce eMOo. The effect of five different mole ratios of MOo, acetic acid and hydrogen peroxide (1:1:1, 1:1:2, 1:1.5:2, 1:1.75:2 and 1:2:2, respectively) on reaction mechanism was investigated at the controlled temperature range of 43 - 55°C and reaction time of 0 - 120 min. The physicochemical properties of MOo as well as the oxirane oxygen content (OOC) of the resulting eMOo were characterized. In addition, GC-MS and FTIR analysis were performed to verify the molecular composition of MOo and also to identify the epoxy group of the resulting eMOo respectively. Among the five different mole ratios studied, the 1:1.5:2 mole ratio has the highest unsaturation conversion of 79.57% and OOC of 4.12%.
    Matched MeSH terms: Plant Oils/chemistry
  12. Ng WK
    Asia Pac J Clin Nutr, 2002;11 Suppl 7:S473-6.
    PMID: 12492637
    One key ingredient used in the formulation of aquafeed is fish oil, which is produced from small marine pelagic fish and represents a finite fishery resource. At the present time, global fish oil production has reached a plateau and is not expected to increase beyond current levels. Recent estimates suggest that fish oils may be unable to meet demands from the rapidly growing aquaculture industry by as early as 2005. Therefore, there is currently great interest within the aquafeed industry in evaluating alternatives to fish oils. The ever-expanding oil palm cultivation in Malaysia and other tropical countries offers the possibility of an increased and constant availability of palm oil products for aquafeed formulation. Research into the use of palm oil in aquafeed begun around the mid-1990s and this review examines some of the findings from these studies. The use of palm oil in fish diets has generally shown encouraging results. Improved growth, feed efficiency, protein utilisation, reproductive performance and higher concentrations of alpha-tocopherol in fish fillets have been reported. Recent evidence for the ability of palm oil to substitute for fish oil in catfish diets is reviewed. The potential of palm oil use in aquafeed and future experimental directions are suggested. The aquaculture feed industry offers a great avenue to increase and diversify the use of palm oil-based products.
    Matched MeSH terms: Fish Oils/administration & dosage; Fish Oils/supply & distribution; Plant Oils/administration & dosage*; Plant Oils/supply & distribution
  13. Mat Yusoff M, Gordon MH, Ezeh O, Niranjan K
    Food Chem, 2016 Nov 15;211:400-8.
    PMID: 27283648 DOI: 10.1016/j.foodchem.2016.05.050
    This paper reports on the extraction of Moringa oleifera (MO) oil by using aqueous enzymatic extraction (AEE) method. The effect of different process parameters on the oil recovery was discovered by using statistical optimization, besides the effect of selected parameters on the formation of its oil-in-water cream emulsions. Within the pre-determined ranges, the use of pH 4.5, moisture/kernel ratio of 8:1 (w/w), and 300stroke/min shaking speed at 40°C for 1h incubation time resulted in highest oil recovery of approximately 70% (goil/g solvent-extracted oil). These optimized parameters also result in a very thin emulsion layer, indicating minute amount of emulsion formed. Zero oil recovery with thick emulsion were observed when the used aqueous phase was re-utilized for another AEE process. The findings suggest that the critical selection of AEE parameters is key to high oil recovery with minimum emulsion formation thereby lowering the load on the de-emulsification step.
    Matched MeSH terms: Plant Oils/analysis*; Plant Oils/metabolism
  14. Ho CL, Tan YC
    Phytochemistry, 2015 Jun;114:168-77.
    PMID: 25457484 DOI: 10.1016/j.phytochem.2014.10.016
    Basal stem rot (BSR) of oil palm roots is due to the invasion of fungal mycelia of Ganoderma species which spreads to the bole of the stem. In addition to root contact, BSR can also spread by airborne basidiospores. These fungi are able to break down cell wall components including lignin. BSR not only decreases oil yield, it also causes the stands to collapse thus causing severe economic loss to the oil palm industry. The transmission and mode of action of Ganoderma, its interactions with oil palm as a hemibiotroph, and the molecular defence responses of oil palm to the infection of Ganoderma boninense in BSR are reviewed, based on the transcript profiles of infected oil palms. The knowledge gaps that need to be filled in oil palm-Ganoderma molecular interactions i.e. the associations of hypersensitive reaction (HR)-induced cell death and reactive oxygen species (ROS) kinetics to the susceptibility of oil palm to Ganoderma spp., the interactions of phytohormones (salicylate, jasmonate and ethylene) at early and late stages of BSR, and cell wall strengthening through increased production of guaiacyl (G)-type lignin, are also discussed.
    Matched MeSH terms: Plant Oils/pharmacology; Plant Oils/chemistry*
  15. Tuan Noor Maznee TI, Hazimah AH, Wan Zin WY
    J Oleo Sci, 2012;61(5):297-302.
    PMID: 22531058
    Optimization of the enzymatic synthesis of palm fatty hydrazide by the response surface methodology (RSM) was conducted using the Design-Expert 6 software. The palm fatty hydrazide was synthesized from refined, bleached and deodorized palm olein (RBDPOo) and neutralized hydrazine monohydrate in the presence of Rhizomucor miehei lipase, Lipozyme RMIM, an immobilized lipase in n-hexane. The reaction conditions such as the percentage of enzyme, reaction temperature, stirring speed and reaction time were selected as independent variables or studied factors, while the amount of crude palm fatty hydrazide obtained was selected as a dependent variable or response. The study was conducted using a central composite design (CCD) at five coded levels and the experimental data were analyzed using a quadratic model. The analysis of variance (ANOVA) indicates that the model was significant at 95% confidence level with Prob>F of 0.0033, where the regression coefficient value, R² was 0.8415 and lack-of-fit of 0.0984. A percentage of enzyme of 6%, a reaction temperature of 40°C, a stirring speed of 350 rpm and a reaction time of 18 h were found to be the optimum conditions for the conversion of RBDPOo into palm fatty hydrazide.
    Matched MeSH terms: Plant Oils/metabolism*; Plant Oils/chemistry
  16. Salim YS, Sharon A, Vigneswari S, Mohamad Ibrahim MN, Amirul AA
    Appl Biochem Biotechnol, 2012 May;167(2):314-26.
    PMID: 22544728 DOI: 10.1007/s12010-012-9688-6
    This paper investigates the degradation of polyhydroxyalkanoates and its biofiber composites in both soil and lake environment. Time-dependent changes in the weight loss of films were monitored. The rate of degradation of poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-23 mol% 4HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-9 mol% 3HV-co-19 mol% 4HB)] were investigated. The rate of degradation in the lake is higher compared to that in the soil. The highest rate of degradation in lake environment (15.6% w/w week(-1)) was observed with P(3HB-co-3HV-co-4HB) terpolymer. Additionally, the rate of degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-38 mol% 3HV)] was compared to PHBV biofiber composites containing compatibilizers and empty fruit bunch (EFB). Here, composites with 30% EFB displayed the highest rate of degradation both in the lake (25.6% w/w week(-1)) and soil (15.6% w/w week(-1)) environment.
    Matched MeSH terms: Plant Oils/metabolism*; Plant Oils/chemistry
  17. Lin SW, Huey SM
    J Oleo Sci, 2009;58(11):549-55.
    PMID: 19844069
    Acidolysis to incorporate oleic acid into refined, bleached and deodorized (RBD) palm olein (IV 56) using various lipases (enzymes) as catalysts to increase the oleic content of the oil was investigated. Immobilised lipases (lipase PLG, Lipozyme TL IM, Lipozyme RM IM and Novozym 435) and non-immobilised lipase (lipase PL) were used in this study to compare the effectiveness of the selected lipases in catalyzing the reaction to produce a high oleic oil. The results showed that the TAG of OLO/OOL content was increased at least 4 fold and OOO content was increased at least 3 fold when a 5% enzyme load was used. Lipase PL showed the greatest increase in tri-unsaturated triacylglycerols (TAGs) content. A pilot scale experiment conducted using TL IM enzyme, followed by recovery of the oil and fractionation allows the production of oils with varying oleic contents. A high oleic content of 56% was achievable.
    Matched MeSH terms: Plant Oils/metabolism*; Plant Oils/chemistry
  18. Abdullah MA, Rahmah AU, Man Z
    J Hazard Mater, 2010 May 15;177(1-3):683-91.
    PMID: 20060641 DOI: 10.1016/j.jhazmat.2009.12.085
    Ceiba pentandra (L.) Gaertn (kapok) is a natural sorbent that exhibits excellent hydrophobic-oleophilic characteristics. The effect of packing density, the oil types and solvent treatment on the sorption characteristics of kapok was studied in a batch system. Oil sorption capacity, retention capacity, entrapment stability and kapok reusability were evaluated. Based on SEM and FTIR analyses, kapok fiber was shown to be a lignocellulosic material with hydrophobic waxy coating over the hollow structures. Higher packing density at 0.08 g/ml showed lower sorption capacity, but higher percentage of dynamic oil retention, with only 1% of oil drained out from the test cell. Kapok remained stable after fifteen cycles of reuse with only 30% of sorption capacity reduction. The oil entrapment stability at 0.08 g/ml packing was high with more than 90% of diesel and used engine oil retained after horizontal shaking. After 8h of chloroform and alkali treatment, 2.1% and 26.3% reduction in sorption capacity were observed, respectively, as compared to the raw kapok. The rigid hollow structure was reduced to flattened-like structure after alkali treatment, though no major structural difference was observed after chloroform treatment. Malaysian kapok has shown great potential as an effective natural oil sorbent, owing to high sorption and retention capacity, structural stability and high reusability.
    Matched MeSH terms: Oils/isolation & purification; Oils/pharmacokinetics*
  19. Ramli MR, Lin SW, Yoo CK, Idris NA, Sahri MM
    J Oleo Sci, 2008;57(11):605-12.
    PMID: 18838833
    Solid fat from fractionation of palm-based products was converted into cake shortening at different processing conditions. High oleic palm stearin with an oleic content of 48.2 % was obtained from fractionation of high oleic palm oil which was produced locally. Palm product was blended with different soft oils at pre-determined ratio and further fractionated to obtain the solid fractions. These fractions were then converted into cake shortenings named as high oleic, N1 and N2 blends. The physico-chemical properties of the experimental shortenings were compared with those of control shortenings in terms of fatty acid composition (FAC), iodine value (IV), slip melting point (SMP), solid fat content (SFC) and polymorphic forms. Unlike the imported commercial shortenings as reported by other studies and the control, experimental shortenings were trans-free. The SMP and SFC of experimental samples, except for the N2 sample, fell within the ranges of commercial and control shortenings. The IV was higher than those of domestic shortenings but lower when compared to imported and control shortenings. They were also observed to be beta tending even though a mixture of beta and beta' was observed in the samples after 3 months of storage. The shortenings were also used in the making of pound cake and sensory evaluation showed the good performance of high oleic sample as compared to the other shortenings.
    Matched MeSH terms: Plant Oils/analysis; Plant Oils/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links