Displaying publications 41 - 60 of 61 in total

Abstract:
Sort:
  1. Ismail SB, Bakar MB, Nik Hussain NH, Norhayati MN, Sulaiman SA, Jaafar H, et al.
    PMID: 25505918 DOI: 10.1155/2014/126138
    Introduction. This study aims to evaluate the effectiveness of Tualang honey on sperm parameters, erectile function, and hormonal and safety profiles. Methodology. A randomized control trial was done using Tualang honey (20 grams) and Tribestan (750 mg) over a period of 12 weeks. Sperm parameters including sperm concentration, motility, and morphology were analyzed and erectile function was assessed using IIEF-5 questionnaire. Hormonal profiles of testosterone, FSH, and LH were studied. The volunteers were randomized into two groups and the outcomes were analyzed using SPSS version 18. Results. A total of 66 participants were involved. A significant increment of mean sperm concentration (P < 0.001), motility (P = 0.015) and morphology (P = 0.008) was seen in Tualang honey group. In Tribestan group, a significant increment of mean sperm concentration (P = 0.007), and morphology (P = 0.009) was seen. No significant differences of sperm concentration, motility, and morphology were seen between Tualang honey and Tribestan group and similar results were also seen in erectile function and hormonal profile. All safety profiles were normal and no adverse event was reported. Conclusion. Tualang honey effect among oligospermic males was comparable with Tribestan in improving sperm concentration, motility, and morphology. The usage of Tualang honey was also safe with no reported adverse event.
    Matched MeSH terms: Saponins
  2. Husain IA, Alkhatib MF, Jammi MS, Mirghani ME, Bin Zainudin Z, Hoda A
    J Oleo Sci, 2014;63(8):747-52.
    PMID: 25007744
    Presence of fat, oil, and grease (FOG) in wastewater is an ever-growing concern to municipalities and solid-waste facility operators. FOG enters the sewer system from restaurants, residences, and industrial food facilities. Its release into the sewer system results in a continuous build-up that causes eventual blockage of sewer pipes. Several researchers have investigated FOG deposition based on the local conditions of sewers and lifestyle. This paper attempts to review the physical and chemical characteristics of FOG, sources of FOG, and potential chemical and biological reactions of FOG. The effect of the aforementioned factors on the FOG-deposition mechanism is also discussed. Moreover, insight into the current control and treatment methods and potential reuse of FOG is highlighted. It is expected that this review would provide scientists and the concerned authorities a holistic view of the recent researches on FOG control, treatment, and reuse.
    Matched MeSH terms: Saponins/chemistry
  3. Ceesay A, Nor Shamsudin M, Aliyu-Paiko M, Ismail IS, Nazarudin MF, Mohamed Alipiah N
    Biomed Res Int, 2019;2019:2640684.
    PMID: 31119160 DOI: 10.1155/2019/2640684
    The aim of the present study was to extract and characterize bioactive components from separate body organs of Holothuria leucospilota. Preliminary qualitative assessment of the crude extracts was positive for phenols, terpenoids, carbohydrates, flavonoids, saponins, glycosides, cardiac glycosides, steroids, phlobatannins, and tannins in all body organs evaluated. Phenolics were the most abundant group of bioactives accounting for approximately 80%. The extraction solvent mixtures that yielded most compounds evaluated were methanol/acetone (3:1, v:v) and methanol/distilled water (3:1, v:v). In other analyses, GC-MS data revealed diverse metabolic and biologically active compounds, where those in high concentrations included 2-Pentanone, 4-hydroxy-4-methyl- among the ketones; phenol- 2,4-bis(1,1-dimethylethyl)-, a phenol group; and 2-Chlorooctane, a hydrocarbon. Among FA and their methyl/ethyl esters, n-hexadecanoic acid, 5,8,11,14-eicosatetraenoic acid ethyl ester (arachidonic acid), and 5,8,11,14,17-eicosapentaenoic acid methyl ester (EPA) were among the most abundant FAMEs accounting for approximately 50% of the subgroups measured. Data from GC-FID analysis revealed methyl laurate (C12:0), methyl myristate (C14:0), methyl palmitate (C16:0), and methyl stearate (18:0) methyl esters as the most abundant saturated FA, whereas cis-9-oleic methyl ester (C18:1) and methyl linoleate (C18:2) were found as the major monounsaturated FA and PUFA FAMEs, respectively, in the body wall of the species. Taken together, the extraction and characterization of different categories of metabolically and biologically active compounds in various organ extracts of H. leucospilota suggest that the species is potentially a rich source of cholesterol-lowering, antioxidant, antimicrobial, and anticancer agents. These substances are known to benefit human health and assist in disease prevention. These findings justify the use of sea cucumbers in traditional folklore medication and the current interest and attention focused on the species to mine for bioactives in new drugs research.
    Matched MeSH terms: Saponins/chemistry
  4. Ahmed AB, Rao AS, Rao MV, Taha RM
    ScientificWorldJournal, 2012;2012:897867.
    PMID: 22629221 DOI: 10.1100/2012/897867
    Gymnema sylvestre (R.Br.) is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA). The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L) and KN (0.5 mg/L). Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w) was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w). Maximum GA production (58.28 mg/g d.w) was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures of G. sylvestre. The factors optimized for in vitro production of GA during the present study can successfully be employed for their large-scale production in bioreactors.
    Matched MeSH terms: Saponins/biosynthesis*
  5. Xiu W, Zhang Y, Tang D, Lee SH, Zeng R, Ye T, et al.
    Cell Oncol (Dordr), 2024 Dec;47(6):2201-2215.
    PMID: 39373858 DOI: 10.1007/s13402-024-00999-7
    PURPOSE: Taxol is the first-line chemo-drug for advanced non-small cell lung cancer (NSCLC), but it frequently causes acquired resistance, which leads to the failure of treatment. Therefore, it is critical to screen and characterize the mechanism of the taxol-resistance reversal agent that could re-sensitize the resistant cancer cells to chemo-drug.

    METHOD: The cell viability, sphere-forming and xenografts assay were used to evaluate the ability of ASIV to reverse taxol-resistance. Immunohistochemistry, cytokine application, small-interfering RNA, small molecule inhibitors, and RNA-seq approaches were applied to characterize the molecular mechanism of inhibition of epiregulin (EREG) and downstream signaling by ASIV to reverse taxol-resistance.

    RESULTS: ASIV reversed taxol resistance through suppression of the stemness-associated genes of spheres in NSCLC. The mechanism exploration revealed that ASIV promoted the K48-linked polyubiquitination of EREG along with degradation. Moreover, EREG could be triggered by chemo-drug treatment. Consequently, EREG bound to the ErbB receptor and activated the ERK signal to regulate the expression of the stemness-associated genes. Inhibition of EREG/ErbB/ERK could reverse the taxol-resistance by inhibiting the stemness-associated genes. Finally, it was observed that TGFβ and Hedgehog signaling were downstream of EREG/ErbB/ERK, which could be targeted using inhibitors to reverse the taxol resistance of NSCLC.

    CONCLUSIONS: These findings revealed that inhibition of EREG by ASIV reversed taxol-resistance through suppression of the stemness of NSCLC via EREG/ErbB/ERK-TGFβ, Hedgehog axis.

    Matched MeSH terms: Saponins/pharmacology
  6. Chan KW, Ismail M, Mohd Esa N, Mohamed Alitheen NB, Imam MU, Ooi J, et al.
    Oxid Med Cell Longev, 2018;2018:6742571.
    PMID: 29849908 DOI: 10.1155/2018/6742571
    The present study aimed to investigate the antioxidant and anti-inflammatory properties of defatted kenaf seed meal (DKSM) and its phenolic-saponin-rich extract (PSRE) in hypercholesterolemic rats. Hypercholesterolemia was induced using atherogenic diet feeding, and dietary interventions were conducted by incorporating DKSM (15% and 30%) or PSRE (at 2.3% and 4.6%, resp., equivalent to the total content of DKSM-phenolics and saponins in the DKSM groups) into the atherogenic diets. After ten weeks of intervention, serum total antioxidant capacities of hypercholesterolemic rats were significantly enhanced by DKSM and PSRE supplementation (p < 0.05). Similarly, DKSM and PSRE supplementation upregulated the hepatic mRNA expression of antioxidant genes (Nrf2, Sod1, Sod2, Gsr, and Gpx1) of hypercholesterolemic rats (p < 0.05), except for Gpx1 in the DKSM groups. The levels of circulating oxidized LDL and proinflammatory biomarkers were also markedly suppressed by DKSM and PSRE supplementation (p < 0.05). In aggregate, DKSM and PSRE attenuated the hypercholesterolemia-associated oxidative stress and systemic inflammation in rats, potentially by enhancement of hepatic endogenous antioxidant defense via activation of the Nrf2-ARE pathway, which may be contributed by the rich content of phenolics and saponins in DKSM and PSRE. Hence, DKSM and PSRE are prospective functional food ingredients for the potential mitigation of atherogenic risks in hypercholesterolemic individuals.
    Matched MeSH terms: Saponins/pharmacology; Saponins/chemistry
  7. Chan KW, Ismail M, Mohd Esa N, Imam MU, Ooi J, Khong NMH
    Food Funct, 2018 Feb 21;9(2):925-936.
    PMID: 29313544 DOI: 10.1039/c7fo01109a
    Kenaf is one of the important commercial fiber crops worldwide and defatted kenaf seed meal (DKSM) is a secondary by-product from the kenaf industry. Thus, efforts to turn this low-cost agricultural waste into value-added functional food ingredients will definitely bring advantageous impacts to the community health, environment and economy. The present study was aimed to investigate the cardioprotective properties of DKSM and its phenolics-saponins rich extract (PSRE) in diet-induced hypercholesterolemic rat model. Hypercholesterolemia was induced in Sprague-Dawley rats via atherogenic diet feeding and dietary interventions were conducted by incorporating DKSM (15% and 30%) and equivalent levels of PSRE (2.3% and 4.6%, respectively, equivalent to the total content of phenolics and saponins in DKSM groups) into the atherogenic diets. After 10 weeks of DKSM and PSRE supplementation, the hepatosomatic index, hepatosteatosis, serum lipid profile, Castelli risk indexes as well as hepatic and renal functions of hypercholesterolemic rats were significantly improved (p < 0.05). Besides, the levels of hepatic Hmgcr and serum Pcsk9 were lowered, along with transcriptional upregulations of hepatic Cyp7a1, Abca1, Lcat, ApoA2 and ApoE (p < 0.05). The gene expression of hepatic Ldlr was marginally enhanced by DKSM supplementation (p > 0.05), but superiorly upregulated by PSRE (p < 0.05). The combined results showed that hypercholesterolemia and the atherogenic risk in rats were effectively attenuated by DKSM and PSRE supplementation, possibly via modulations of multiple vital processes in hepatic cholesterol metabolism. Furthermore, phenolics and saponins may be the bioactives conferring DKSM and PSRE with their anti-hypercholesterolemic properties. In conclusion, DKSM and PSRE are prospective cardioprotective functional food ingredients for hypercholesterolemic individuals.
    Matched MeSH terms: Saponins/administration & dosage*; Saponins/analysis
  8. Bande F, Arshad SS, Bejo MH, Omar AR, Moeini H, Khadkodaei S, et al.
    Microb Pathog, 2020 Dec;149:104560.
    PMID: 33068733 DOI: 10.1016/j.micpath.2020.104560
    Infectious Bronchitis (IB) is an economically important avian disease that considerably threatens the global poultry industry. This is partly, as a result of its negative consequences on egg production, weight gain as well as mortality rate.The disease is caused by a constantly evolving avian infectious bronchitis virus whose isolates are classified into several serotypes and genotypes that demonstrate little or no cross protection. In order to curb the menace of the disease therefore, broad based vaccines are urgently needed. The aim of this study was to develop a recombinant DNA vaccine candidate for improved protection of avian infectious bronchitis in poultry. Using bioinformatics and molecular cloning procedures, sets of monovalent and bivalent DNA vaccine constructs were developed based on the S1 glycoprotein from classical and variants IBV strains namely, M41 and CR88 respectively. The candidate vaccine was then encapsulated with a chitosan and saponin formulated nanoparticle for enhanced immunogenicity and protective capacity. RT-PCR assay and IFAT were used to confirm the transcriptional and translational expression of the encoded proteins respectively, while ELISA and Flow-cytometry were used to evaluate the immunogenicity of the candidate vaccine following immunization of various SPF chicken groups (A-F). Furthermore, histopathological changes and virus shedding were determined by quantitative realtime PCR assay and lesion scoring procedure respectively following challenge of various subgroups with respective wild-type IBV viruses. Results obtained from this study showed that, groups vaccinated with a bivalent DNA vaccine construct (pBudCR88-S1/M41-S1) had a significant increase in anti-IBV antibodies, CD3+ and CD8+ T-cells responses as compared to non-vaccinated groups. Likewise, the bivalent vaccine candidate significantly decreased the oropharyngeal and cloacal virus shedding (p < 0.05) compared to non-vaccinated control. Chickens immunized with the bivalent vaccine also exhibited milder clinical signs as well as low tracheal and kidney lesion scores following virus challenge when compared to control groups. Collectively, the present study demonstrated that bivalent DNA vaccine co-expressing dual S1 glycoprotein induced strong immune responses capable of protecting chickens against infection with both M41 and CR88 IBV strains. Moreso, it was evident that encapsulation of the vaccine with chitosan-saponin nanoparticle further enhanced immune responses and abrogates the need for multiple booster administration of vaccine. Therefore, the bivalent DNA vaccine could serve as efficient and effective alternative strategy for the control of IB in poultry.
    Matched MeSH terms: Saponins/immunology*; Saponins/chemistry
  9. Suleiman JB, Mohamed M, Abu Bakar AB, Nna VU, Zakaria Z, Othman ZA, et al.
    Molecules, 2021 Aug 15;26(16).
    PMID: 34443531 DOI: 10.3390/molecules26164943
    The aim of the study was to determine the chemical profile, antioxidant properties and antimicrobial activities of Heterotrigona itama bee bread from Malaysia. The pH, presence of phytochemicals, antioxidant properties, total phenolic content (TPC) and total flavonoid content (TFC), as well as antimicrobial activities, were assessed. Results revealed a decrease in the pH of bee bread water extract (BBW) relative to bee bread ethanolic extract (BBE) and bee bread hot water extract (BBH). Further, alkaloids, flavonoids, phenols, tannins, saponins, terpenoids, resins, glycosides and xanthoproteins were detected in BBW, BBH and BBE. Also, significant decreases in TPC, TFC, DPPH activity and FRAP were detected in BBW relative to BBH and BBE. We detected phenolic acids such as gallic acid, caffeic acid, trans-ferulic acid, trans 3-hydroxycinnamic acid and 2-hydroxycinnamic acid, and flavonoids such as quercetin, kaempferol, apigenin and mangiferin in BBE using high-performance liquid chromatography analysis. The strongest antimicrobial activity was observed in Klebsilla pneumonia (MIC50 1.914 µg/mL), followed by E. coli (MIC50 1.923 µg/mL), Shigella (MIC50 1.813 µg/mL) and Salmonella typhi (MIC50 1.617 µg/mL). Bee bread samples possess antioxidant and antimicrobial properties. Bee bread contains phenolic acids and flavonoids, and could be beneficial in the management and treatment of metabolic diseases.
    Matched MeSH terms: Saponins/chemistry
  10. Chai KF, Adzahan NM, Karim R, Rukayadi Y, Ghazali HM
    Food Chem, 2019 Feb 15;274:808-815.
    PMID: 30373014 DOI: 10.1016/j.foodchem.2018.09.065
    Rambutan seed is usually discarded during fruit processing. However, the seed contains a considerable amount of crude fat. Hence, the objective of this study was to investigate the fat properties and antinutrient content of the seed during fermentation of rambutan fruit. Results showed that the crude fat content of the seed reduced by 22% while its free fatty acid content increased by 4.3 folds after 10 days of fermentation. Arachidic acid was selectively reduced and was replaced by linoleic acid from the seventh day of fermentation onwards. Only 14.5% of triacylglycerol remained in the seed fat at the end of fermentation. The complete melting temperature, crystallization onset temperature and solid fat index at 37 °C of the fermented seed fat were higher than that of non-fermented seed fat. The saponin and tannin contents of the seed were reduced by 67% and 47%, respectively, after fermentation.
    Matched MeSH terms: Saponins/analysis
  11. Medina MFE, Alaba PA, Estrada-Zuñiga ME, Velázquez-Ordoñez V, Barbabosa-Pliego A, Salem MZM, et al.
    Microb Pathog, 2017 Dec;113:286-294.
    PMID: 29101063 DOI: 10.1016/j.micpath.2017.10.053
    The aim of this study is to investigate the biopotency of methanolic extracts of Vitex mollis, Psidium guajava, Dalbergia retusa, and Crescential alata leaves against various staphylococcal strains isolated from cattle and rabbits. Methicillin-resistant S. aureus strains were isolated from cattle, while other strains were isolated from rabbits using standard methodology. The total phytochemical phenolic and saponins contents were obtained being the main groups of the antinutritional factors. The antimicrobial activity of the extracts against the standard culture of S. aureus (control) and S. aureus isolated from cattle and rabbits were investigated comparatively relative to that of oxacillin. It was found that both the control S. aureus and the isolated S. aureus are susceptible to all the four plant extracts, and sensitive to oxacillin. Of all the S. aureus including the control, MRSA2 is the most susceptible to all the extracts at 1000 μg/mL, except that of V. mollis where it is the least susceptible. Among all the plant extracts, P. guajava is the most active against MRSA2 and SOSA2. Therefore, the isolates from cattle (MRSA1 and MRSA2) are more susceptible to all the plant extracts than the isolates from rabbits. Among all the rabbit isolates, CoNS3 is the least susceptible to the extracts. Since all the plant extracts exhibit remarkable inhibitory activities against all the S. aureus strains, they are promising towards the production of therapeutic drugs.
    Matched MeSH terms: Saponins/analysis
  12. Lim WF, Mohamad Yusof MI, Teh LK, Salleh MZ
    Nutrients, 2020 Sep 30;12(10).
    PMID: 33007803 DOI: 10.3390/nu12102993
    Moringa oleifera is a miracle plant with many nutritional and medicinal properties. Chemopreventive values of the combined mixture of moringa leaves and seed residue (MOLSr) at different ratios (M1S9, M1S1 and M9S1) were investigated. MOLSr extracts were subjected to phytochemical screening, antioxidant assays, metabolite profiling and cytotoxic activity on the primary mammary epithelial cells (PMECs), non-malignant Chang's liver cells and various human cancer cell lines (including breast, cervical, colon and liver cancer cell lines). The MOLSr ratio with the most potent cytotoxic activity was used in xenograft mice injected with MDA-MB-231 cells for in vivo tumorigenicity study as well as further protein and gene expression studies. M1S9, specifically composed of saponin and amino acid, retained the lowest antioxidant activity but the highest glucosinolate content as compared to other ratios. Cell viability decreased significantly in MCF-7 breast cancer cells and PMECs after treatment with M1S9. Solid tumor from MDA-MB-231 xenograft mice was inhibited by up to 64.5% at third week after treatment with high-dose M1S9. High-dose M1S9 significantly decreased the expression of calcineurin (CaN) and vascular endothelial cell growth factor (VEGF) proteins as well as the secreted frizzled-related protein 1 (SFRP1) and solute carrier family 39 member 6 (SLC39A6) genes. This study provides new scientific evidence for the chemoprevention potential of MOLSr extracts in a breast cancer model; however, the precise mechanism warrants further investigation.
    Matched MeSH terms: Saponins
  13. Alam I, Forid MS, Roney M, Aluwi MFFM, Huq AM
    Data Brief, 2021 Apr;35:106839.
    PMID: 33659597 DOI: 10.1016/j.dib.2021.106839
    The current data report describes the predictive identification of phytochemical constituents in the bioactive extract of Ipomoea mauritiana (IM) whole plant. For several formulations this plant was commonly used as 'Vidari' for Ayurvedic medicine. Traditionally, IM tubers are used to alleviate spinal cord pain, improve breast milk, as a tonic, increase sperm count and treating jaundice. The methanol extract can potentially scavenge free radicals and possess antibacterial activity that could be correlated with its chemical composition. So it is crucial to identify the major compounds of IM. An ultra-performance liquid chromatography coupled electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF/MS) method was adopted to detect the flavonoids, saponins, alkaloids, terpenoids in IM methanol extract. Data presented here is related to a published work Antioxidant and antibacterial activity of Ipomoea mauritiana Jacq.: A traditionally used medicinal plant in Bangladesh (Alam et al., 2020). Secondary metabolites were analyzed by the comparison of the mass fragmentation arrangements with Waters UNIFI library that enables for positive identification of the compounds based on the spectral match.
    Matched MeSH terms: Saponins
  14. Nur Syafiqah Martang, Nadia Majitol, Farnidah Jasnie, Lo Chor-Wai
    Borneo Akademika, 2020;4(4):15-20.
    MyJurnal
    Most of the plants in the ginger family Zingeberaceae are well-known for their medicinal properties. However, the genus Hornstedtia found in Sabah is less reported. This research aims to investigate the phytochemical constituent and vitamin C content of a fruit, locally known as the Tolidus fruit in Sabah. The dried fruit sample was extracted using three solvents which were water, ethanol and methanol. The phytochemical constituents were determined using standard Colour Test for the presence of alkaloid, flavonoid, saponin and tannin. Then, the content of Vitamin C was determined using the standard Colorimetric Titration and ascorbic acid as standard. The phytochemical evaluation revealed that all three targeted constituents were present in all extracts except for the alkaloid. The vitamin C content was determined in both dried and fresh sample of fruits, where 52.84 mg was quantified in the fresh fruit aqueous extract and 23.93 mg in the dried fruit aqueous extract respectively. These results are comparable to the content of vitamin C in orange and lime fruits. The phytochemical evaluation and vitamin C content of Tolidus suggested the potential of this underutilised fruit to be the natural and affordable source of vitamin C. Additionally, may protect the body against harmful free radicals. However, further analysis is needed to determine other constructive natural contents and evaluate the efficacy of this fruit as a natural source of antioxidant
    Matched MeSH terms: Saponins
  15. Trop Biomed, 2021 Jun 01;38(2):40-47.
    PMID: 33973571 DOI: 10.47665/tb.38.2.035
    The reduced efficacy of the mainstay antimalarial drugs due to the widespread of drugresistant Plasmodium falciparum has necessitated efforts to discover new antimalarial drugs with new targets. Quercus infectoria (Olivier) has long been used to treat various ailments including fever. The acetone extract of the plant galls has recently been reported to have a promising antimalarial activity in vitro. This study was aimed to determine the effect of the Q. infectoria gall acetone crude extract on pH of the digestive vacuole of Plasmodium falciparum. A ratiometric fluorescent probe, fluorescein isothiocyanate-dextran (FITC-dextran) was used to facilitate a quantitative measurement of the digestive vacuole pH by flow cytometry. Mid trophozoite stage malaria parasites grown in resealed erythrocytes containing FITC-dextran were treated with different concentrations of the acetone extract based on the 50% inhibitory concentration (IC50). Saponin-permeabilized parasites were analyzed to obtain the ratio of green/yellow fluorescence intensity (Rgy) plotted as a function of pH in a pH calibration curve of FITC-dextran. Based on the pH calibration curve, the pH of the digestive vacuole of the acetone extract-treated parasites was significantly altered (pH values ranged from 6.35- 6.71) in a concentration-dependent manner compared to the untreated parasites (pH = 5.32) (p < 0.001). This study provides a valuable insight into the potential of the Q. infectoria galls as a promising antimalarial candidate with a novel mechanism of action.
    Matched MeSH terms: Saponins
  16. Chung ELT, Predith M, Nobilly F, Samsudin AA, Jesse FFA, Loh TC
    Trop Anim Health Prod, 2018 Jun 20.
    PMID: 29926360 DOI: 10.1007/s11250-018-1641-4
    Brachiaria decumbens is an extremely productive tropical grass due to its aggressive growth habit and its adaptation to a varied range of soil types and environments. As a result of the vast availability, treated B. decumbens demonstrates as a promising local material that could be utilised as an improved diet for sheep and goats. Despite the fact that the grass significantly increases weight gains in grazing farm animals, there were many reports of general ill-thrift and sporadic outbreaks of photosensitivity in livestock due to the toxic compound of steroidal saponin found in B. decumbens. Ensiling and haymaking were found to be effective in removing toxin and undesirable compounds in the grass. Biological treatments using urea, activated charcoal, polyethylene glycol, and effective microorganisms were found to be useful in anti-nutritional factor deactivation and improving the nutritive values of feedstuffs. Besides, oral administration of phenobarbitone showed some degree of protection in sheep that fed on B. decumbens pasture. In this review, we aim to determine the effect of B. decumbens toxicity and possible treatment methods on the grass to be used as an improved diet for small ruminant.
    Matched MeSH terms: Saponins
  17. Ramasamy S, Kiew LV, Chung LY
    Molecules, 2014 Feb 24;19(2):2588-601.
    PMID: 24566323 DOI: 10.3390/molecules19022588
    Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP) enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL), CYP2C9 (36.49/12.5 µg/mL), CYP1A2 (52.20/25.1 µg/mL); competitive inhibition of CYP3A4 (83.95/14.5 µg/mL) and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL). However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day), B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%). These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.
    Matched MeSH terms: Saponins/administration & dosage
  18. Sasidharan S, Sumathi V, Jegathambigai NR, Latha LY
    Nat Prod Res, 2011 Dec;25(20):1982-7.
    PMID: 21707251 DOI: 10.1080/14786419.2010.523703
    Diabetes mellitus is a global disease that is increasing in an alarming rate. The present study was undertaken to study the antidiabetic effect of the ethanol extracts of Carica papaya and Pandanus amaryfollius on streptozotocin-induced diabetic mice. The results of the present study indicated that there was no significant difference in the body weight of the treated groups when compared to diabetic control. Whereas, there was significant (P 
    Matched MeSH terms: Saponins/analysis
  19. Han H, Yang Y, Wu Z, Liu B, Dong L, Deng H, et al.
    Biomed Pharmacother, 2021 Jan;133:110999.
    PMID: 33227710 DOI: 10.1016/j.biopha.2020.110999
    Abnormal angiogenesis is associated with intraocular diseases such as proliferative diabetic retinopathy and neovascular age-related macular degeneration, and current therapies for these eye diseases are not satisfactory. The purpose of this study was to determine whether capilliposide B (CPS-B), a novel oleanane triterpenoid saponin derived from Lysimachia capillipes Hemsl, can inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis signaling events and cellular responses in primary human retinal microvascular endothelial cells (HRECs). Our study revealed that the capilliposide B IC50 for HRECs was 8.5 μM at 72 h and that 1 μM capilliposide B specifically inhibited VEGF-induced activation of VEGFR2 and its downstream signaling enzymes Akt and Erk. In addition, we discovered that this chemical effectively blocked VEGF-stimulated proliferation, migration and tube formation of the HRECs, suggesting that capilliposide B is a promising prophylactic for angiogenesis-associated diseases such as proliferative diabetic retinopathy.
    Matched MeSH terms: Saponins/pharmacology*
  20. Sellke FW, Armstrong ML, Harrison DG
    Circulation, 1990 May;81(5):1586-93.
    PMID: 2110036
    Atherosclerosis impairs endothelium-dependent relaxation of large conduit arteries. Because coronary resistance vessels are spared from the development of overt atherosclerosis, endothelium-dependent responses were examined in these vascular segments. Malaysian cynomolgus monkeys (n = 6) were made atherosclerotic by being fed a 0.7% cholesterol diet for 18 months. Control monkeys (n = 6) were fed a standard diet. Coronary microvessels (122-220 microns) were studied in a pressurized (20 mm Hg), no-flow state using a video-imaging apparatus. Relaxations of microvessels, preconstricted with the thromboxane analogue U46619, were determined in response to acetylcholine, bradykinin, the calcium ionophore A23187, adenosine, and sodium nitroprusside. Microvascular relaxations to bradykinin and A23187 were reduced in atherosclerotic monkeys compared with controls, whereas acetylcholine produced additional contraction in atherosclerotic monkeys. Responses of preconstricted microvessels to adenosine and sodium nitroprusside were identical in atherosclerotic and control animals. Indomethacin did not alter responses in control or atherosclerotic animals. Histologic examination revealed neither intimal thickening nor plaque formation in microvessels of this size class despite marked changes in conduit arteries. Electron microscopy showed minor alterations of endothelial cell morphology in microvessels of atherosclerotic animals. In conclusion, long-term hypercholesterolemia markedly impairs endothelium-dependent vascular relaxation in the coronary microcirculation where overt atherosclerosis does not develop. These changes in endothelial cell function may significantly alter regulation of myocardial perfusion by neurohumoral stimuli.
    Matched MeSH terms: Saponins
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links