Methods: Based on the morphine withdrawal model, rats were morphine treated with increasing doses from 10 to 50 mg/kg twice daily over a period of 6 days. The treatment was discontinued on day 7 in order to induce a spontaneous morphine abstinence. The withdrawal signs were measured daily after 24 h of the last morphine administration over a period of 28 abstinence days. In rats that developed withdrawal signs, a drug replacement treatment was given using mitragynine, methadone, or buprenorphine and the global withdrawal score was evaluated.
Results: The morphine withdrawal model induced profound withdrawal signs for 16 days. Mitragynine (5-30 mg/kg; i.p.) was able to attenuate acute withdrawal signs in morphine dependent rats. On the other hand, smaller doses of methadone (0.5-2 mg/kg; i.p.) and buprenorphine (0.4-1.6 mg/kg; i.p.) were necessary to mitigate these effects.
Conclusions: These data suggest that mitragynine may be a potential drug candidate for opiate withdrawal treatment.
AIM OF THE STUDY: To evaluate kratom's effects towards hematological and clinical-chemistry parameters among regular kratom users in Malaysia.
METHODS: A total of 77 subjects (n=58 regular kratom users, and n=19 healthy controls) participated in this cross-sectional study. All the surveys were conducted through face-to-face interview to elicit subject's socio-demographic characteristics and kratom use history. A full-blood test was also administered. Laboratory analysis was conducted using GC-MS to determine mitragynine content in the acquired kratom samples in order to relate mitragynine consumption with possible alterations in the blood parameters of kratom users.
RESULTS: Findings showed that there were no significant differences in the hematological and clinical-chemistry parameters of traditional kratom users and healthy controls, except for HDL and LDL cholesterol values; these were found to be above the normal reference range for the former. Similarly, long-term kratom consumption (>5 years), and quantity of daily kratom use (≥3 ½ glasses; mitragynine content 76.3-114.8mg) did not appear to alter the hematological and biochemical parameters of kratom users.
CONCLUSION: These data suggest that even long-term and heavy kratom consumption did not significantly alter the hematological and clinical-chemistry parameters of kratom users in a traditional setting.
AIM OF STUDY: To investigate the effect of mitragynine after chronic morphine treatment on cyclic AMP (cAMP) level and mRNA expression of mu-opioid receptor (MOR) in human neuroblastoma SK-N-SH cell.
METHOD AND MATERIALS: Mitragynine was isolated from the Mitragyna speciosa plant using the acid-base extraction method. The cAMP level upon forskolin stimulation in the cells was determined using the Calbiochem(®) Direct Immunoassay Kit. The mRNA expression of the MOR was carried out using quantitative RT-PCR.
RESULT: Cotreatment and pretreatment of morphine and mitragynine significantly reduced the production of cAMP level at a lower concentration of mitragynine while the higher concentration of this compound could lead to the development of tolerance and dependence as shown by the increase of the cAMP level production in foskolin stimulation. In MOR mRNA expression study, cotreatment of morphine with mitragynine significantly reduced the down-regulation of MOR mRNA expression as compared to morphine treatment only.
CONCLUSION: These finding suggest that mitragynine could possibly avoid the tolerance and dependence on chronic morphine treatment by reducing the up-regulation of cAMP level as well as reducing the down-regulation of MOR at a lower concentration of mitragynine.
MATERIALS AND METHODS: MTG and SRM was analyzed for their reducing power ability, ABTS radical inhibition and 1,1-diphenyl-2-picryl hydrazylfree radicals scavenging activities. Furthermore, the antiproliferation efficacy was evaluated using MTT assay on K 562 and HCT116 cancer cell lines versus NIH/3T3 and CCD18-Co normal cell lines respectively.
RESULTS: SRM and MTG demonstrate moderate antioxidant value with ABTS assay (Trolox equivalent antioxidant capacity (TEAC): 2.25±0.02 mmol trolox / mmol and 1.96±0.04 mmol trolox / mmol respectively) and DPPH (IC50=3.75±0.04 mg/mL and IC50=2.28±0.02 mg/mL respectively). Both MTG and SRM demonstrate equal potency (IC50=25.20±1.53 and IC50= 22.19±1.06 respectively) towards K 562 cell lines, comparable to control, betulinic acid (BA) (IC5024.40±1.26). Both compounds showed concentration-dependent cytototoxicity effects and exert profound antiproliferative efficacy at concentration > 100 μM towards HCT 116 and K 562 cancer cell lines, comparable to those of BA and 5-FU (5-Fluorouracil). Furthermore, both MTG and SRM exhibit high selectivity towards HCT 116 cell lines with selective indexes of 3.14 and 2.93 respectively compared to 5-FU (SI=0.60).
CONCLUSIONS: These findings revealed that the medicinal and nutitional values of mitragynine obtained from ketum leaves that growth in tropical forest of Southeast Asia and its analogues does not limited to analgesic properties but could be promising antioxidant and anticancer or chemopreventive compounds.