METHODS: Subjects underwent a randomized double-blind crossover trial, consuming diets supplemented with 20 g/day of either soybean oil-based mayonnaise (SB-mayo) or palm olein-based mayonnaise (PO-mayo) for 4 weeks each with a 2-week wash-out period. The magnitude of changes for metabolic outcomes between dietary treatments was compared with PO-mayo serving as the control. The data was analyzed by ANCOVA using the GLM model. Analysis was adjusted for weight changes.
RESULTS: Treatments resulted in significant reductions in TC (diff = -0.25 mmol/L; P = 0.001), LDL-C (diff = -0.17 mmol/L; P = 0.016) and HDL-C (diff = -0.12 mmol/L; P 0.05). Lipoprotein particle change was significant with large LDL particles increasing after PO-mayo (diff = +63.2 nmol/L; P = 0.007) compared to SB-mayo but small LDL particles remained unaffected. Plasma glucose, apolipoproteins and oxidative stress markers remained unchanged.
CONCLUSIONS: Daily use with 20 g of linoleic acid-rich SB-mayo elicited reductions in TC and LDL-C concentrations without significantly changing LDL-C:HDL-C ratio or small LDL particle distributions compared to the PO-mayo diet.
TRIAL REGISTRATION: This clinical trial was retrospectively registered with the National Medical Research Register, National Institute of Health, Ministry of Health Malaysia, (NMRR-15-40-24035; registered on 29/01/2015; https://www.nmrr.gov.my/fwbPage.jsp?fwbPageId=ResearchISRForm&fwbAction=Update&fwbStep=10&pk.researchID=24035&fwbVMenu=3&fwbResearchAction=Update ). Ethical approval was obtained from the National University of Malaysia's Medical Ethics Committee (UKM 1.5.3.5/244/SPP/NN-054-2011, approved on 25/05/2011).
METHODS: Adult male Sprague-Dawley rats were divided into 11 groups; the control group was fed with rat chow, and the other groups were fed with chow that was mixed with 15% weight/weight palm or soy oils, which were either in a fresh form or heated once, twice, five, or ten times. Blood pressures were measured at the baseline and throughout the 24-week study. Plasma nitric oxide levels were assessed prior to treatment and at the end of the study. Following 24 weeks, the rats were sacrificed to investigate their vascular reactivity using the thoracic aorta.
RESULTS: Palm and soy oils had no detrimental effects on blood pressure, and they significantly elevated the nitric oxide contents and reduced the contractile responses to phenylephrine. However, trials using palm and soy oils that were repeatedly heated showed an increase in blood pressure, enhanced phenylephrine-induced contractions, reduced acetylcholine- and sodium nitroprusside-induced relaxations relative to the control and rats that were fed fresh vegetable oils.
CONCLUSIONS: The blood pressure-raising effect of the heated vegetable cooking oils is associated with increased vascular reactivity and a reduction in nitric oxide levels. The chronic consumption of heated vegetable oils leads to disturbances in endogenous vascular regulatory substances, such as nitric oxide. The thermal oxidation of the cooking oils promotes the generation of free radicals and may play an important contributory role in the pathogenesis of hypertension in rats.
METHODS: A systematic review of available evidence for each parenteral nutrient was undertaken and new standardised formulations and guidelines were developed.
RESULTS: Five existing preterm Amino acid-Dextrose formulations have been modified and two new concentrated Amino acid-Dextrose formulations added to optimise amino acid and nutrient intake according to gestation. Organic phosphate has replaced inorganic phosphate allowing for an increase in calcium and phosphate content, and acetate reduced. Lipid emulsions are unchanged, with both SMOFlipid (Fresenius Kabi, Australia) and ClinOleic (Baxter Healthcare, Australia) preparations included. The physicochemical compatibility and stability of all formulations have been tested and confirmed. Guidelines to standardise the parenteral nutrition clinical practice across facilities have also been developed.
CONCLUSIONS: The 2017 PN formulations and guidelines developed by the 2017 Neonatal Parenteral Nutrition Consensus Group offer concise and practical instructions to clinicians on how to implement current and up-to-date evidence based PN to the NICU population.