Displaying publications 41 - 60 of 121 in total

Abstract:
Sort:
  1. Niu Jy Jy, You Xz Xz, Duan Cy Cy, Fun Hk Hk, Zhou Zy Zy
    Inorg Chem, 1996 Jul 03;35(14):4211-4217.
    PMID: 11666630
    A solvated complex of alpha-H(4)SiW(12)O(40).4HMPA.2H(2)O composed the heteropolytungstate alpha-H(4)SiW(12)O(40) and the organic substrate hexamethylphosphoramide (HMPA) has been synthesised, purified, and characterized. The electronic spectra (lambda = 220-500 nm) as well as the (1)H NMR spectra for the title compound dissolved in CD(3)CN establish that this complex dissociates into free SiW(12)O(40)(4)(-) and HMPA moieties in solution unless the organic substrate HMPA is present in very high concentrations. The solid reflectance electronic spectra and IR spectra indicate that there is interaction between the alpha-H(4)SiW(12)O(40) and the organic substrate. The complex has no photosensitivity under irradiation of sunlight, but under the near-UV light result in a charge transfer by oxidation of the HMPA and the reduction of the polyoxometalate. Light yellow polyhedrons of the title compound crystallize from the aqueous solvent of acetonitrile and aqueous solution as the formula of alpha-H(4)SiW(12)O(40).4HMPA.2H(2)O in the monoclinic, space group P2(1). The unit cell has a = 12.791(3) Å, b = 22.103(6) Å, c = 15.532(4) Å, beta = 102.860(10) degrees, and Z = 2. From the bond-valence parameters, it was found that the four hydrogen atoms of the polyoxometalate were combined with the N atoms of the four HMPA respectively. The title compound shows a certain second-order and third-order nonlinear optical response of I(2)(omega) = 0.7I(2)(omega)(KDP) and chi((3)) = 2.63 x 10(-)(11) esu, respectively.
    Matched MeSH terms: Sunlight
  2. Khairidzan, M.K., Fatimah, S.S., Thangasamy, V.K.
    MyJurnal
    Pterygium is a common external eye problem. It is more frequently seen in tropical areas regions where exposure to ultraviolet sunlight is high. Clinically, a pterygium is a wing shaped fibrovascular growth arising from the bulbar conjunctiva onto the superficial cornea. Complications of pterygium include decreased in visual acuity, dryness, foreign body sensation and persistent redness. Surgical management is the mainstay of treatment for this condition. Numerous surgical techniques have been described in the treatment of pterygium. They include the bare sclera technique, simple direct conjunctival closure, rotational conjunctival graft and conjunctival autograft. Additional treatment to some of these techniques may include the use of beta particle therapy and antimetabolite therapy. Despite the wide range of surgical procedures described for its treatment, the main concern from these procedures has been the recurrence, which could be as high as 30% to 70%. Recurrent pterygium is often accompanied by increased conjunctival inflammation and accelerated corneal involvement. Repeated surgical procedures often only worsen the situation, as loss of conjunctival tissue and scarring can result in obliteration of the fornices and mechanical restriction of extraocular movements, with clinically significant diplopia. In Hospital Tengku Ampuan Afzan, pterygium excision is the most common surgical procedure after cataract extraction. We reviewed patients who had undergone pterygium surgery in HTAA in order to determine the most effective surgical method that could minimize recurrence. PURPOSE: To compare success rates of various excision techniques performed for primary and recurrent pterygium in Hospital Tengku Ampuan Afzan, Kuantan, Pahang.
    METHODS: The outcome of 47 cases of pterygia (44 primary and 3 recurrent) excised with various techniques between January 2004 to September 2004 was retrospectively reviewed. Six clinical specialists and four trainees performed the surgical procedures. Outcome was evaluated in terms of recurrence of pterygia onto the cornea. RESULTS: The mean follow up was 3.04 months (range, 1-7 months). All pterygia were morphologically graded as intermediate or fleshy type except one. Four types of pterygium excision techniques were performed. Twenty-four cases had bare sclera, seventeen cases had conjunctival autograft transplantation, six cases had direct conjunctival closure and one had amniotic membrane transplantation done. Recurrence of pterygia occurred in thirteen eyes. Twelve cases from primary pterygia group and one case from recurrent group recurred. Recurrence rate was noted to be higher in direct conjunctival closure (4 out of 6 cases) and lowest in conjunctival autograft transplantation (2 out of 17 cases). Recurrence rate for bare sclera technique was noted to rank second in this study (6 out of 24 cases). In five cases of recurrence, subconjunctival tissue invasions were more than 1 mm but further surgical interventions were not needed at the time of this review was done. CONCLUSIONS: Conjunctival autografting was found to have less recurrent rate when compared with other techniques. The bare sclera technique was quoted to be associated with higher recurrence rate in other literatures. Interestingly in our series, recurrence rate for direct conjunctival closure technique was higher when compared to the former technique. This may be related to inadequate excision of pterygia tissue, which led to direct apposition of abnormal tissue to the cornea in the direct conjunctival closure technique. Even though the bare sclera technique is associated with a higher recurrence rate, it is still the preferred excision technique. This could be because it is less time consuming and technically easier to perform. Based on this study, conjunctival autografting should be the surgical procedure of choice for pteryigum in order to minimise the risk of recurrence.
    Matched MeSH terms: Sunlight
  3. Ilyas M, Abdul Aziz D, Tajuddin MR
    Int J Dermatol, 1988 Jun;27(5):315-8.
    PMID: 3391727
    Results from a 6-year study of solar ultraviolet A (UVA) radiation measurements at the equatorial location of Penang (5 degrees N) are presented. On clear days, the diurnal flux reaches a very high dosage of about 3.0 x 10(-2) KWHM-2 around midday. The average daily total flux is in the range of 1.6 x 10(-1) KWHM-2 and does not change much seasonally. The high 83% cloud cover only reduces the incoming flux to about half. The radiation flux represents a lower limit of the incident UVA radiation applicable to much of the equatorial/tropical region.
    Matched MeSH terms: Sunlight*
  4. Petit JH
    Int J Dermatol, 1976 Sep;15(7):505-12.
    PMID: 965135
    Matched MeSH terms: Sunlight
  5. Jamil NA, Shahudin NN, Abdul Aziz NS, Jia Qi C, Wan Aminuddin WAA, Mat Ludin AF, et al.
    PMID: 31783521 DOI: 10.3390/ijerph16234735
    This study assessed knowledge, attitude and practice (KAP) related to vitamin D and its relationship with vitamin D status among Malay female office workers. A total of 147 women aged between 20 and 55 years were recruited from a university in Kuala Lumpur. They answered questionnaires related to KAP on vitamin D, sun exposure, dietary vitamin D intake and physical activity. Serum 25-hydroxyvitamin D (25OHD) was analysed using an enzyme-linked immunoassay. Nearly half (45%) of the subjects had good knowledge but moderate attitude (76%) and practice (84%) towards sunlight exposure and dietary vitamin D intake. Median serum 25OHD was 34.1 nmol/L with the majority (91%) had vitamin D insufficiency (25OHD < 50 nmol/L). Knowledge was weakly associated with attitude (r = 0.29, p < 0.001) but no association was found between knowledge and practice (r = 0.08, p = 0.355) nor attitude and practice (r = -0.001, p = 0.994). Serum 25OHD was positively associated with sunlight exposure (r = 0.22, p = 0.008) and dietary vitamin D intake (r = 0.37, p < 0.001). It can be implied that this group is at increased risk of low bone health status, which highlights the needs of public health campaigns to improve their vitamin D status.
    Matched MeSH terms: Sunlight
  6. Hussain MA, Shah A, Jantan I, Shah MR, Tahir MN, Ahmad R, et al.
    Int J Nanomedicine, 2015;10:2079-88.
    PMID: 25844038 DOI: 10.2147/IJN.S75874
    Polysaccharides are attracting the vigil eye of researchers in order to design the green synthesis of silver nanoparticles (Ag NPs) of diverse size, shape, and application. We report an environmentally friendly method to synthesize Ag NPs where no physical reaction conditions were employed. Hydroxypropylcellulose (HPC) was used as a template nanoreactor, stabilizer, and capping agent to obtain Ag NPs. Different concentrations of AgNO3 solutions (50 mmol, 75 mmol, and 100 mmol) were mixed with a concentrated aqueous solution of HPC and the progress of the reaction was monitored by noting color changes of the reaction mixture at different reaction times for up to 24 hours. Characteristic ultraviolet-visible spectroscopy (UV/Vis) absorption bands of Ag NPs were observed in the range of 388-452 nm. The morphology of the Ag NPs was studied by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy. The TEM images confirmed that the size of the Ag NPs was in the range of 25-55 nm. Powder X-ray diffraction studies showed that the crystal phase of the Ag NPs was face-centered cubic. The as-prepared Ag NPs were found to be stable, and no changes in size and morphology were observed after storage in HPC thin films over 1 year, as indicated by UV/Vis spectra. So, the present work furnishes a green and economical strategy for the synthesis and storage of stable Ag NPs. As-synthesized Ag NPs showed significant antimicrobial activity against different bacterial (Escherichia coli, Staphylococcus epidermidis, S. aureus, Bacillus subtilis, Pseudomonas aeruginosa) and fungal strains (Actinomycetes and Aspergillus niger).
    Matched MeSH terms: Sunlight
  7. Burdon CA, Johnson NA, Chapman PG, Munir Che Muhamed A, O'Connor HT
    Int J Sport Nutr Exerc Metab, 2013 Aug;23(4):418-24.
    PMID: 23295183
    The aim of this study was to measure the effect of environmental conditions and aid-station beverage- cooling practices on the temperature of competitor beverages.
    Matched MeSH terms: Sunlight
  8. Syahrul Affandi Saidi, Beh, Jun Long, Mohd Sharizan Md Sarip, Wan Azani Mustafa
    MyJurnal
    This article presents a Wall Climbing Robot (WCR) that able to move on ferromagnetic vertical surface to carry out visual inspection process. Visual inspection process is important in the industry to check the condition of storage tank, surface of building, piping or equipment thus can prevents structures collapsing or explosion which would bring a huge loss to the company. Moreover, most of the structures nowadays is expose under the sun and rain, corrosion and cracks could easily occur on the surface after exposing under sunlight and rain a long period of time. Therefore the periodic visual inspection process need to be carry out to detect the damaged occur on the surface of the structure and take action at the fastest time to ensure the safety of the structures and extend the lifespan of the structures. With the well maintenance to the structures, the condition of the structures is monitored and the lifespan is longer. The risk of collapse of the building is decrease by a large margin. Normally, the periodic visual inspection process is performed by operator. Sometime the temporary scaffolding is needed to reach the higher place to carry out the inspection. However, this method create a hazardous environment to the operator and cause the safety of the operator threatened. Therefore, the proposed WCR could help operator to work at the hazardous environment. The permanent magnet is used to provide adhesion for WCR, thus WCR able to move on vertical ferromagnetic surface. The WCR is controlled by operator via wireless remote to reach the higher place or the hazardous environment. The operator then can stream the on the real time images via web browser which connected to the same network with the WCR. Hence, the condition of the surface can be observed.
    Matched MeSH terms: Sunlight
  9. Madya Mastika binti Ahmad, Amirah binti Mohd Arif
    MyJurnal
    In this day and age, with the ever-growing population and energy demand, we should take the renewable option route in our energy source. We should also keep in mind that said energy should not cause any lasting environmental damage, one of the perfect example being solar energy. A country that is hot and sunny all year long is the perfect contributor to solar energy, case in point, Malaysia. With that in mind Solar Tree is designed and developed to facilitate consumers who need electric power at any place, anytime, anywhere. The objective of this study is to assess a mini project in the likes of Solar Tree that can generate electricity without harming the environment, despite the weather. Intended specifically to be a mini project, it is understandable that electricity generated is limited, with only up to 500W in total. As a trial, two electronic devices were tested, specifically a mobile phone and a laptop, as both devices are used almost every day. The data collected is then tabulated and analysed. It was concluded the solar tree developed proved efficient in charging both devices and will continue to do so given enough sunlight.
    Matched MeSH terms: Sunlight
  10. Bauer M, Glenn T, Alda M, Andreassen OA, Angelopoulos E, Ardau R, et al.
    J Affect Disord, 2014;167:104-11.
    PMID: 24953482 DOI: 10.1016/j.jad.2014.05.032
    The onset of bipolar disorder is influenced by the interaction of genetic and environmental factors. We previously found that a large increase in sunlight in springtime was associated with a lower age of onset. This study extends this analysis with more collection sites at diverse locations, and includes family history and polarity of first episode.
    Matched MeSH terms: Sunlight/adverse effects*
  11. Fatima N, Karimov KS, Qasuria TA, Ibrahim MA
    J Alloys Compd, 2020 Dec 30;849:156702.
    PMID: 32834521 DOI: 10.1016/j.jallcom.2020.156702
    In this research, due to the present pandemic of COVID-19, we are proposing a stable and fixed semitransparent photo-thermoelectric cell (PTEC) module for green energy harvesting. This module is based on the alloy of Bismuth Telluride Selenide (Bi2Te3Se), designed in a press tablet form and characterized under solar energy. Here, both aspects of solar energy i.e., light and heat are utilized for both energy production and water heating. The semitransparent PTEC converts heat energy directly to electrical energy due to the gradient of temperature between two electrodes (top and bottom) of thermoelectric cells. The PTEC is 25% transparent, which can be varied according to the necessity of the utilizer. The X-ray diffraction of material and electric characterization of module i.e., open-circuited voltage (VOC) and Seebeck coefficient were performed. The experimental observations disclose that in the proposed PTEC module with an increment in the average temperature (TAvg) from 34 to 60 °C, results in the rise of VOC ∼ 2.4 times. However, by modifying the size of heat-absorbing top electrode and by increasing the temperature gradient through the addition of water coolant under the bottom electrode, an uplift in the champion device results in as increment of VOC ∼5.5 times and Seebeck coefficient obtained was -250 μV/0C, respectively. Results show that not only the selection of material but also the external modifications in the device highly effective the power efficiency of the devices. The proposed modules can generate electric power from light and utilize the penetrating sunlight inside the room and for the heating of the water which also acts as a coolant. These semitransparent thermoelectric cells can be built-in within windows and roofs of buildings and can potentially contribute to green energy harvesting, in situations where movement is restricted locally or globally.
    Matched MeSH terms: Sunlight
  12. Basri DF, Abu Bakar NF, Fudholi A, Ruslan MH, Saroeun I
    J Environ Public Health, 2015;2015:470968.
    PMID: 25688274 DOI: 10.1155/2015/470968
    The content of 12 elements in Cambodian dried striped snakehead fish was determined using inductively coupled plasma mass spectrometry. The present study compares the level of the trace toxic metals and nutritional trace elements in the fish processed using solar drying system (SDS) and open sun drying (OSD). The skin of SDS fish has lower level of As, Pb, and Cd compared to the OSD sample. As such, the flesh of the fish accumulated higher amount of toxic metals during OSD compared to SDS. However, arsenic was detected in both samples within the safe limit. The nutritional elements (Fe, Mn, Mg, Se, Mo, Cu, Ni, and Cr) were higher in the skin sample SDS fish compared to OSD fish. These beneficial metals were not accumulated in the flesh sample SDS fish demonstrating lower level compared to drying under conventional system. The reddish coloration of the SDS fish was due to the presence of high Cu content in both the skin and flesh samples which possibly account for no mold formation 5 days after packaging. As conclusion, drying of Cambodian C. striata using solar-assisted system has proven higher content of the nutritious elements compared to using the conventional system despite only slight difference in the toxic metals level between the two systems.
    Matched MeSH terms: Sunlight
  13. Pandey AK, Reji Kumar R, B K, Laghari IA, Samykano M, Kothari R, et al.
    J Environ Manage, 2021 Nov 01;297:113300.
    PMID: 34293672 DOI: 10.1016/j.jenvman.2021.113300
    This article offers a trend of inventions and implementations of photocatalysis process, desalination technologies and solar disinfection techniques adapted particularly for treatment of industrial and domestic wastewater. Photocatalysis treatment of wastewater using solar energy is a promising renewable solution to reduce stresses on global water crisis. Rendering to the United Nation Environment Programme, 1/3 of world population live in water-stressed countries, while by 2025 about 2/3 of world population will face water scarcity. Major pollutants exhibited from numerous sources are critically discussed with focus on potential environmental impacts & hazards. Treatment of wastewater by photocatalysis technique, solar thermal electrochemical process, solar desalination of brackish water and solar advanced oxidation process have been presented and systematically analysed with challenges. Both heterogenous and homogenous photocatalysis techniques employed for wastewater treatment are critically reviewed. For treating domestic wastewater, solar desalination technologies adopted for purifying brackish water into potable water is presented along with key challenges and remedies. Advanced oxidation process using solar energy for degradation of organic pollutant is an important technique to be reviewed due to their effectiveness in wastewater treatment process. Present article focused on three key issues i.e. major pollutants, wastewater treatment techniques and environmental benefits of using solar power for removal of pollutants. The review also provides close ideas on further research needs and major concerns. Drawbacks associated with conventional wastewater treatment options and direct solar energy-based wastewater treatment with energy storage systems to make it convenient during day and night both listed. Although, energy storage systems increase the overall cost of the wastewater treatment plant it also increases the overall efficiency of the system on environmental cost. Cost-efficient wastewater treatment methods using solar power would significantly ensure effective water source utilization, thereby contributing towards sustainable development goals.
    Matched MeSH terms: Sunlight
  14. Amjad M, Mohyuddin A, Ulfat W, Goh HH, Dzarfan Othman MH, Kurniawan TA
    J Environ Manage, 2024 Feb 27;353:120287.
    PMID: 38335595 DOI: 10.1016/j.jenvman.2024.120287
    Textile wastewater laden with dyes has emerged as a source of water pollution. This possesses a challenge in its effective treatment using a single functional material. In respond to this technological constraint, this work presents multifunctional cotton fabrics (CFs) within a single, streamlined preparation process. This approach utilizes the adherence of Ag NPs (nanoparticles) using Si binder on the surface of CFs, resulting in Ag-coated CFs through a pad dry method. The prepared samples were characterized using scanning electron microscope-energy dispersive X-ray electroscopy (SEM-EDS), thermal gravimetric analysis (TGA), Fourier transformation infrared (FT-IR). It was found that the FT-IR spectra of Ag NPs-coated CFs had peaks appear at 3400, 2900, and 1200 cm-1, implying the stretching vibrations of O-H, C-H, and C-O, respectively. Based on the EDX analysis, the presence of C, O, and Ag related to the coated CFs were detected. After coating the CFs with varying concentrations of Ag NPs (1%, 2% and 3% (w/w)), they were used to remove dyes. Under the same concentration of 10 mg/L and optimized pH 7.5 and 2 h of reaction time, 3% (w/w) Ag-coated CFs exhibited a substantial MB degradation of 98 %, while removing 95% of methyl orange, 85% of rhodamine B, and 96% of Congo red, respectively, following 2 h of Vis exposure. Ag NPs had a strong absorption at 420 nm with 2.51 eV of energy band gap. Under UV irradiation, electrons excited and produced free radicals that promoted dyes photodegradation. The oxidation by-products included p-dihydroxybenzene and succinic acid. Spent Ag-coated CFs attained 98% of regeneration efficiency. The utilization of Ag-coated CFs as a photocatalyst facilitated treated effluents to meet the required discharge standard of lower than 1 mg/L mandated by national legislation. The integration of multifunctional CFs in the treatment system presents a new option for tackling water pollution due to dyes.
    Matched MeSH terms: Sunlight
  15. Ho LN, Ong SA, Osman H, Chong FM
    J Environ Sci (China), 2012;24(6):1142-8.
    PMID: 23505883
    Fish scale (FS) loaded TiO2 composites were investigated as photocatalysts in degradation of Methyl Orange under solar light irradiation. Composites were prepared through sol-gel method by varying mass ratio of TiO2/FS at 90:10, 70:30 and 50:50, respectively. The catalysts prepared in this study were characterized by using XRD, SEM, FT-IR and nitrogen sorption. The effects of solar irradiation, mass ratio of TiO2/FS composites, irradiation time and catalyst loadings were studied. Synergistic effect was found in TiO2/FS of 90:10 composite which performed higher photocatalytic degradation than synthesized TiO2 under solar light irradiation. However, further increasing fish scale content in the composites reduced the photocatalytic activity drastically. Under solar light irradiation, all the catalysts in this study exhibited photocatalytic activity, except TiO2/FS of 50:50 composite that only acted as a weak biosorbent without performing any photocatalytic property. Photocatalytic degradation increased with increasing catalyst loading and irradiation time but decreased with increased of initial dye concentration.
    Matched MeSH terms: Sunlight
  16. Chang KH, Yew CH, Abdullah AF
    J Forensic Sci, 2015 Jul;60(4):869-77.
    PMID: 25771708 DOI: 10.1111/1556-4029.12745
    Gunshot residues, produced after shooting activity, have acquired their importance in analysis due to the notoriety of firearms-related crimes. In this study, solid-phase microextraction was performed to extract the headspace composition of spent cartridges using 85-μm polyacrylate fiber at 66°C for 21 min. Organic compounds, that is, naphthalene, 2,6-dinitrotoluene, 2,4-dinitrotoluene, diphenylamine, and dibutyl phthalate were detected and analyzed by gas chromatography-flame ionization detection technique. Evaluation of chromatograms for diphenylamine, dibutyl phthalate, and naphthalene indicates the period after a gunshot was discharged, whether it was 1 days, 2-4 days, <5 days, 10 days, 20 days, or more than 30 days ago. This study revealed the potential effects of environmental factors such as occasional wind blow and direct sunlight on the estimation of time after spent cartridges were discharged. In conclusion, we proposed reliable alternative in analyzing the headspace composition of spent cartridges in a simulated crime scene.
    Matched MeSH terms: Sunlight
  17. Idris A, Misran E, Hassan N, Abd Jalil A, Seng CE
    J Hazard Mater, 2012 Aug 15;227-228:309-16.
    PMID: 22682796 DOI: 10.1016/j.jhazmat.2012.05.065
    In this study magnetic separable photocatalyst beads containing maghemite nanoparticles (γ-Fe(2)O(3)) in polyvinyl alcohol (PVA) polymer were prepared and used in the reduction of Cr(VI) to Cr(III) in an aqueous solution under sunlight. The unique superparamagnetic property of the photocatalyst contributed by the γ-Fe(2)O(3) and robust property of PVA polymer allow the magnetic beads to be recovered easily and reused for at least 7 times without washing. The concentration of γ-Fe(2)O(3) was varied from 8% (v/v) to 27% (v/v) and the results revealed that the beads with 8% (v/v) γ-Fe(2)O(3) exhibited the best performance where Cr(VI) was reduced to Cr(III) in only 30 min under sunlight. The use of the PVA has improved the bead properties and life cycle of beads which is in line with sustainable practices.
    Matched MeSH terms: Sunlight
  18. Idris A, Hassan N, Rashid R, Ngomsik AF
    J Hazard Mater, 2011 Feb 15;186(1):629-35.
    PMID: 21168966 DOI: 10.1016/j.jhazmat.2010.11.101
    Physical adsorption and photocatalytic reduction of Cr(VI) in magnetic separable beads were investigated. In order to elucidate the kinetics of photocatalytic process, operating parameters such as catalyst dosage and the initial concentration were examined in detail. It was observed that the reduction rate of Cr(VI) increased with an increase in the catalyst loading, as this translated into an increase in the number of available active sites. Critical scrutiny of the percentage of the initial reduction rate versus time at various initial concentration of Cr(VI) revealed that the rate of substrate conversion decreased as the initial concentration increased. The kinetic analysis of the photoreduction showed that the removal of Cr(VI) satisfactory obeyed the pseudo first-order kinetic according to the Langmuir-Hinshelwood (L-H) model and the absorption of Cr(VI) on the magnetic beads surfaces was the controlling step in the entire reduction process. Furthermore, desorption experiments by elution of the loaded gels with sodium hydroxide indicated that the magnetic photocatalyst beads could be reused without significant losses of their initial properties even after 3 adsorption-desorption cycles.
    Matched MeSH terms: Sunlight*
  19. Razali MH, Noor AFM, Yusoff M
    J Nanosci Nanotechnol, 2020 02 01;20(2):965-972.
    PMID: 31383093 DOI: 10.1166/jnn.2020.16944
    In this study, a series of copper-ion-doped titanium dioxide (Cu-ion-doped TiO₂) nanotubes (NTs) were synthesized via a hydrothermal method by the concentration variation of doped Cu ions (0.00, 0.50, 1.00, 2.50, and 5.00 mmol). In addition, the samples were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), nitrogen gas adsorption measurements, and ultraviolet-visible (UV-Vis) diffuse-reflectance spectroscopy. The photocatalytic activity of the Cu-iondoped TiO₂ NTs was investigated for the degradation of methyl orange (MO) under sunlight. The results obtained from the structural and morphological studies revealed that, at low concentrations of Cu-doped TiO₂ NTs, Cu is incorporated into the interstitial positions of the TiO₂ lattice, affording a new phase of TiO₂ (hexagonal) instead of the anatase TiO₂ (tetragonal) observed for undoped TiO₂ NTs. EDX analysis confirmed the presence of Cu in the TiO₂-based photocatalyst. All of the investigated samples exhibited a hollow fibrous-like structure, indicative of an NT morphology. The inner and outer diameters of the NTs were 4 nm and 10 nm, respectively. The photocatalysts exhibited a large surface area due to the NT morphology and a type IV isotherm and H3 hysteresis, corresponding to the mesopores and slit-shaped pores. The Cu-ion-doped TiO₂ NTs were excited by sunlight because of their low bandgap energy; and after the incorporation of Cu ions into the interstitial positions of the TiO₂ lattice, the NTs exhibited high visible-light activity owing to the low bandgap.
    Matched MeSH terms: Sunlight
  20. Moy FM
    J. Photochem. Photobiol. B, Biol., 2011 Sep 02;104(3):444-8.
    PMID: 21636288 DOI: 10.1016/j.jphotobiol.2011.05.002
    Vitamin D status is influenced by sun exposure, geographic latitude, daily outdoor activities, body surface exposed to sunlight and dietary intakes. Malaysia, is sunny all year round. However, the vitamin D status of this population especially among the healthy and free living adults is not known. Therefore a study of vitamin D status and associated factors was initiated among an existing Malay cohort in Kuala Lumpur. A total of 380 subjects were sampled to have their vitamin D status assessed using 25-hydroxyvitamin D (25(OH)D). A short questionnaire enquiring socio-demographic characteristics, exposure to sunlight and clothing style was administered. Their mean age was 48.5±5.2years and the mean 25(OH)D for males and females were 56.2±18.9nmol/L and 36.2±13.4nmol/L respectively. There were significant positive correlation for sun exposure score (r=0.27, p<0.001) and negative correlation for sun protection score (r=-0.41, p<0.001) with 25(OH)D levels. In the logistic regression model, females (OR=2.93; 95% CI: 1.17, 7.31), BMI (1.1; 1.03, 1.20) and sun exposure score (0.998; 0.996, 0.999) were significantly associated with vitamin D status as represented by 25(OH)D levels. Our findings show that obesity, lifestyle behaviours and clothing style are directly associated with our participants especially females' low vitamin D status.
    Matched MeSH terms: Sunlight
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links