Displaying publications 41 - 60 of 302 in total

Abstract:
Sort:
  1. Sofian Ibrahim, Chantara Thevy Ratnam, Chai, Chee Keong, Noor Hasni M. Ali, Mohd Noorwadi Mat Lazim, Khairiah Badri
    MyJurnal
    Peroxide pre-vulcanized natural rubber latex prepared by using gamma irradiation technique is an alternative over the conventionally prepared peroxide pre-vulcanized that used activator to promote the peroxide decomposition in natural rubber latex. Through this technique the problems aroused by some activators such as tends to darken the natural rubber latex film during the drying process can also be overcome. For this preliminary study, data obtained from crosslink density and mechanical measurements were used to evaluate the effectiveness of gamma irradiation in the vulcanization process. Increasing the quantity of tert-butyl hydroperoxide (t-BHPO) from 0.1 pphr to 0.3 pphr while the irradiation dose maintain at 12 kGy has successfully delivered peroxide vulcanized natural rubber latex films with average tensile strength, modulus @ 500% and modulus @ 700% around 15.33, 1.01 and 3.42 MPa, respectively. The effective pre-vulcanization irradiation dose with respect to maximum crosslinking density (85.8 %) was observed on film prepared at 0.1 pphr t-BHPO.
    Matched MeSH terms: Tensile Strength
  2. Sofian Ibrahim, Keong, Chai Chee, Ratnam, Chantara Thevy, Khairiah Badri
    ASM Science Journal, 2018;11(2):67-75.
    MyJurnal
    Radiation pre-vulcanised natural rubber latex (RVNRL) prepared by using gamma irradiation technique has many advantages over the conventionally prepared sulphur pre-vulcanised natural rubber latex (SPVL). Despite the fact that many potential latex dipped products can be made from RVNRL, little effort was made to fully commercialise the products because of the inferior strength of RVNRL products compared to SPVL products. An attempt was made to improve the tensile strength of RVNRL by combining both radiation and peroxide vulcanisation in order to ensure that the products will not tear or fail, and has sufficient stretch. Hexanediol diacrylate (HDDA) plays the main role as sensitizer during radiation vulcanisation and tert-butyl hydroperoxide (t-BHPO) as the co-sensitizer in peroxide vulcanisation. Pre-vulcanised natural rubber latex dipped films via hybrid radiation and peroxidation vulcanisations obtained showed tensile strength of 26.7 MPa, an increment of more than 15% compared to controlled film (22.5 MPa). Besides, the crosslink percentage of the rubber films also showed around 5% increment from 90.7% to 95.6%.
    Matched MeSH terms: Tensile Strength
  3. Siyamak S, Ibrahim NA, Abdolmohammadi S, Yunus WM, Rahman MZ
    Molecules, 2012 Feb 16;17(2):1969-91.
    PMID: 22343368 DOI: 10.3390/molecules17021969
    In this work, the oil palm empty fruit bunch (EFB) fiber was used as a source of lignocellulosic filler to fabricate a novel type of cost effective biodegradable composite, based on the aliphatic aromatic co-polyester poly(butylene adipate-co-terephtalate) PBAT (Ecoflex™), as a fully biodegradable thermoplastic polymer matrix. The aim of this research was to improve the new biocomposites' performance by chemical modification using succinic anhydride (SAH) as a coupling agent in the presence and absence of dicumyl peroxide (DCP) and benzoyl peroxide (BPO) as initiators. For the composite preparation, several blends were prepared with varying ratios of filler and matrix using the melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 (wt %) and characterized. The effects of fiber loading and coupling agent loading on the thermal properties of biodegradable polymer composites were evaluated using thermal gravimetric analysis (TGA). Scanning Electron Microscopy (SEM) was used for morphological studies. The chemical structure of the new biocomposites was also analyzed using the Fourier Transform Infrared (FTIR) spectroscopy technique. The PBAT biocomposite reinforced with 40 (wt %) of EFB fiber showed the best mechanical properties compared to the other PBAT/EFB fiber biocomposites. Biocomposite treatment with 4 (wt %) succinic anhydride (SAH) and 1 (wt %) dicumyl peroxide (DCP) improved both tensile and flexural strength as well as tensile and flexural modulus. The FTIR analyses proved the mechanical test results by presenting the evidence of successful esterification using SAH/DCP in the biocomposites' spectra. The SEM micrograph of the tensile fractured surfaces showed the improvement of fiber-matrix adhesion after using SAH. The TGA results showed that chemical modification using SAH/DCP improved the thermal stability of the PBAT/EFB biocomposite.
    Matched MeSH terms: Tensile Strength
  4. Siyamak S, Ibrahim NA, Abdolmohammadi S, Yunus WM, Rahman MZ
    Int J Mol Sci, 2012;13(2):1327-46.
    PMID: 22408394 DOI: 10.3390/ijms13021327
    A new class of biocomposites based on oil palm empty fruit bunch fiber and poly(butylene adipate-co-terephthalate) (PBAT), which is a biodegradable aliphatic aromatic co-polyester, were prepared using melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 wt% and characterized. Chemical treatment of oil palm empty fruit bunch (EFB) fiber was successfully done by grafting succinic anhydride (SAH) onto the EFB fiber surface, and the modified fibers were obtained in two levels of grafting (low and high weight percentage gain, WPG) after 5 and 6 h of grafting. The FTIR characterization showed evidence of successful fiber esterification. The results showed that 40 wt% of fiber loading improved the tensile properties of the biocomposite. The effects of EFB fiber chemical treatments and various organic initiators content on mechanical and thermal properties and water absorption of PBAT/EFB 60/40 wt% biocomposites were also examined. The SAH-g-EFB fiber at low WPG in presence of 1 wt% of dicumyl peroxide (DCP) initiator was found to significantly enhance the tensile and flexural properties as well as water resistance of biocomposite (up to 24%) compared with those of untreated fiber reinforced composites. The thermal behavior of the composites was evaluated from thermogravimetric analysis (TGA)/differential thermogravimetric (DTG) thermograms. It was observed that, the chemical treatment has marginally improved the biocomposites' thermal stability in presence of 1 wt% of dicumyl peroxide at the low WPG level of grafting. The improved fiber-matrix surface enhancement in the chemically treated biocomposite was confirmed by SEM analysis of the tensile fractured specimens.
    Matched MeSH terms: Tensile Strength
  5. Sivaranjana P, Nagarajan ER, Rajini N, Jawaid M, Rajulu AV
    Int J Biol Macromol, 2017 Jun;99:223-232.
    PMID: 28237574 DOI: 10.1016/j.ijbiomac.2017.02.070
    Cotton linters were dissolved in aq. (8% LiOH+15% urea) that was pre-cooled to -12.5°C. Using this solution cellulose gel films were prepared by regeneration method with ethyl alcohol as a coagulant. These wet films were diffused with 10wt% Cassia alata leaf extract that acted as a reducing agent. The leaf extract diffused cellulose wet films were used as the matrix. The wet matrix films were dipped individually in lower concentrated 1-5mM aq.AgNO3 source solutions in the presence of sunlight and allowed the solutions to react with the diffused leaf extract reducing agent which in situ generated the silver nanoparticles (AgNPs) inside the films as well as in the source solution. The AgNPs formed in the source solution were observed by transmission electron microscope (TEM) and scanning electron microscope (SEM) while those formed in situ the films were observed by SEM and the particle size distribution was determined. The cellulose/AgNP composite films showed good antibacterial activity against Escherichia coli bacteria. These nanocomposite films were also characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and tensile tests. At temperatures below 300°C, the thermal stability of the nanocomposite films was lower than that of the matrix due to the catalytic effect of AgNPs. The nanocomposite films also possessed good tensile properties. The ecofriendly cellulose/AgNP composite films with good antibacterial activity and tensile properties can be considered for medical applications like dressing materials.
    Matched MeSH terms: Tensile Strength
  6. Siva R, Valarmathi TN, Palanikumar K, Samrot AV
    Carbohydr Polym, 2020 Sep 15;244:116494.
    PMID: 32536404 DOI: 10.1016/j.carbpol.2020.116494
    In recent days, there is an increasing use of green composites in composite manufacturing, where cellulosic natural fibers have been started using for this purpose. In line with this, a novel cellulose fiber was extracted from the Kigelia africana fruit and its physical, chemical and thermal properties, crystallography and surface morphology analysis were studied and reported in this investigative research paper. The physical analysis revealed the mean tensile strength as 50.31 ± 24.71 to 73.12 ± 32.48 MPa, diameter as 0.507 ± 0.162 to 0.629 ± 0.182 mm and density as 1.316 g/cm³ for the Kigelia africana fiber. The proximate chemical analysis estimated the cellulose percentage to be 61.5 % and the existence of different basic components like cellulose, hemicellulose and lignin are confirmed by Fourier transform infrared spectroscopy analysis. Thermogravimetric analysis establishes the thermal stability of the fiber as 212 ⁰C. The crystallinity index, 57.38 % of the fiber was determined by X-ray diffraction. Surface morphology by field emission scanning electron microscopy reveals the presence of protrusions in fiber which aid in the better adhesion with the matrix in composite manufacturing.
    Matched MeSH terms: Tensile Strength
  7. Siregar, J.P., Sapuan, S.M., Rahman, M.Z.A., Zaman, H.M.D.K.
    MyJurnal
    A study on the effects of alkali treatment and compatibilising agent on the tensile properties of pineappleleaf fibre (PALF) reinforced high impact polystyrene (HIPS) composite is presented in this paper. Thetensile properties of natural fibre reinforced polymer composites are mainly influenced by the interfacialadhesion between the matrix and the fibres. In this study, several chemical modifications were employedto improve the interfacial matrix-fibre bonding and this resulted in the enhancement of tensile propertiesof the composites. In this study, the surface modification of pineapple fibre with alkali treatments andcompatibilizer were used to improve the adhesion between hydrophilic pineapple fibre and hydrophobicpolymer matrix. There are two concentrations of NaOH treatments and compatibilizer used in this study,namely, 2 and 4 wt. %. The results show that the alkali treated fibre and the addition of compatibilisingagent in PALF/HIPS composites have improved the tensile strength and tensile modulus of the composites.
    Matched MeSH terms: Tensile Strength
  8. Sinniah, Saraswathy D., Jones, Steven P., Georgiou, George, Cunningham, Susan J., Petrie, Aviva
    Compendium of Oral Science, 2016;3(1):17-24.
    MyJurnal
    used with bonded retainers. Setting: Department of Orthodontics, UCL Eastman Dental Institute, United Kingdom. Methods: Flowable composite resins (Transbond TM Supreme LV, StarFlowTM and Tetric EvoFlow®) and non -flowable control resin (TransbondTM LR) were made into cylinders prior to bonding to hydoxyapatite discs. They were then mounted into jigs and tested in the InstronTM Universal Testing Machine in both shear and tensile modes. Results: The highest mean shear bond strength was seen with StarFlow TM (14.09 MPa), which was significantly higher than both TransbondTM LR (9.48 MPa) and TransbondTM Supreme LV (8.20 MPa). The mean shear bond strength of Tetric EvoFlow® (11.86 MPa) was also significantly higher than TransbondTM Supreme LV. The highest mean tensile bond strength was seen with Tetric EvoFlow® (2.14 MPa), which was significantly higher than TransbondTM LR (1.15 MPa) and TransbondTM Supreme LV (0.61 MPa) but not significantly different to StarFlowTM (1.47 MPa). For shear loading, StarFlowTM had the highest 50th percentile survival estimate at 15.10 MPa, followed by Tetric EvoFlow® (13.00 MPa) and TransbondTM Supreme LV (7.50 MPa). TransbondTM LR had a 50th percentile estimate at 9.00 MPa. For tensile loading, Tetric EvoFlow® had the highest 50th percentile survival estimate at 2.50 MPa, followed by StarFlowTM (1.30 MPa) and TransbondTM Supreme LV (0.50 MPa). TransbondTM LR had a 50th percentile estimate at 1.00 MPa. Conclusions: Mean shear bond strengths for all of the resins were significantly higher than the mean tensile bond strengths. StarFlowTM and Tetric EvoFlow® could potentially be suitable clinical alternatives to TransbondTM LR due to its low viscosity flow characteristics and adequate shear and tensile bond strengths.
    Matched MeSH terms: Tensile Strength
  9. Sin LT, Bee ST, Tee TT, Kadhum AA, Ma C, Rahmat AR, et al.
    Carbohydr Polym, 2013 Nov 6;98(2):1281-7.
    PMID: 24053804 DOI: 10.1016/j.carbpol.2013.07.069
    In this study, the interactions of α-tocopherol (α-TOH) in PVOH-starch blends were investigated. α-TOH is an interacting agent possesses a unique molecule of polar chroman "head" and non-polar phytyl "tail" which can improve surface interaction of PVOH and starch. It showed favorable results when blending PVOH-starch with α-TOH, where the highest tensile strengths were achieved at 60 wt.% PVOH-starch blend for 1 phr α-TOH and 50 wt.% for 3 phr α-TOH, respectively. This due to the formation of miscible PVOH-starch as resulted by the compatibilizing effect of α-TOH. Moreover, the enthalpy of melting (ΔHm) of 60 wt.% PVOH-starch and 50 wt.% PVOH-starch added with 1 and 3 phr α-TOH respectively were higher than ΔHm of the neat PVOH-starch blends. The thermogravimetry analysis also showed that α-TOH can be used as thermal stabilizer to reduce weight losses at elevated temperature. The surface morphologies of the compatible blends formed large portion of continuous phase where the starch granules interacted well with α-TOH by acting as compatilizer to reduce surface energy of starch for embedment into PVOH matrix.
    Matched MeSH terms: Tensile Strength
  10. Siah, W.M., Aminah, A., Ishak, A.
    MyJurnal
    A new patent pending process is proposed in this study to produce edible film directly from seaweed (Kappaphycus alvarezii). Seaweed together with other ingredients has been used to produce the film through casting technique. Physical and mechanical tests were performed on the edible films to examine the thickness, colour, transparency, solubility, tensile strength,
    elongation at break, water permeability rate, oxygen permeability rate and surface morphology. Produced film was transparent, stretchable, sealable and have basic properties as a film for food packaging. This study suggests that the edible film could be used as novel materials in food industry as sachet/pouch/bag for instant coffee, breakfast cereals drinks, seasoning powder,
    candies etc; as wrapper for seasoning cube and chocolate; as interleaf for frozen foods such as burger patties to avoid the patties from sticking together; and also as material for edible logo in bakeries products. Other than that, the edible film also could be used in pharmaceutical industry as functional strips such as oral freshener strips and drug strips. In cosmetic and toiletries industries, the edible film could be used to produce facial mask and bag for pre-portioned detergent. Compared with edible film developed earlier using alginate and carrageenan, film developed in this research used seaweed directly. The developed film reduced the need to extract the alginate and carrageenan, making material preparation easier and cheaper.
    Matched MeSH terms: Tensile Strength
  11. Shazleen SS, Yasim-Anuar TAT, Ibrahim NA, Hassan MA, Ariffin H
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513688 DOI: 10.3390/polym13030389
    Polylactic acid (PLA), a potential alternative material for single use plastics, generally portrays a slow crystallization rate during melt-processing. The use of a nanomaterial such as cellulose nanofibers (CNF) may affect the crystallization rate by acting as a nucleating agent. CNF at a certain wt.% has been evidenced as a good reinforcement material for PLA; nevertheless, there is a lack of information on the correlation between the amount of CNF in PLA that promotes its functionality as reinforcement material, and its effect on PLA nucleation for improving the crystallization rate. This work investigated the nucleation effect of PLA incorporated with CNF at different fiber loading (1-6 wt.%) through an isothermal and non-isothermal crystallization kinetics study using differential scanning calorimetry (DSC) analysis. Mechanical properties of the PLA/CNF nanocomposites were also investigated. PLA/CNF3 exhibited the highest crystallization onset temperature and enthalpy among all the PLA/CNF nanocomposites. PLA/CNF3 also had the highest crystallinity of 44.2% with an almost 95% increment compared to neat PLA. The highest crystallization rate of 0.716 min-1 was achieved when PLA/CNF3 was isothermally melt crystallized at 100 °C. The crystallization rate was 65-fold higher as compared to the neat PLA (0.011 min-1). At CNF content higher than 3 wt.%, the crystallization rate decreased, suggesting the occurrence of agglomeration at higher CNF loading as evidenced by the FESEM micrographs. In contrast to the tensile properties, the highest tensile strength and Young's modulus were recorded by PLA/CNF4 at 76.1 MPa and 3.3 GPa, respectively. These values were, however, not much different compared to PLA/CNF3 (74.1 MPa and 3.3 GPa), suggesting that CNF at 3 wt.% can be used to improve both the crystallization rate and the mechanical properties. Results obtained from this study revealed the dual function of CNF in PLA nanocomposite, namely as nucleating agent and reinforcement material. Being an organic and biodegradable material, CNF has an increased advantage for use in PLA as compared to non-biodegradable material and is foreseen to enhance the potential use of PLA in single use plastics applications.
    Matched MeSH terms: Tensile Strength
  12. Sharip NS, Ariffin H, Andou Y, Shirosaki Y, Bahrin EK, Jawaid M, et al.
    Molecules, 2020 Sep 30;25(19).
    PMID: 33008017 DOI: 10.3390/molecules25194498
    Incorporation of nanocellulose could improve wear resistance of ultra-high molecular weight polyethylene (UHMWPE) for an artificial joint application. Yet, the extremely high melt viscosity of the polymer may constrict the mixing, leading to fillers agglomeration and poor mechanical properties. This study optimized the processing condition of UHMWPE/cellulose nanofiber (CNF) bionanocomposite fabrication in triple screw kneading extruder by using response surface methodology (RSM). The effect of the process parameters-temperature (150-190 °C), rotational speed (30-60 rpm), and mixing time (30-45 min)-on mechanical properties of the bionanocomposites was investigated. Homogenous filler distribution, as confirmed by scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analysis, was obtained through the optimal processing condition of 150 °C, 60 rpm, and 45 min. The UHMWPE/CNF bionanocomposites exhibited improved mechanical properties in terms of Young's and flexural modulus by 11% and 19%, respectively, as compared to neat UHMWPE. An insignificant effect was observed when maleic anhydride-grafted-polyethylene (MAPE) was added as compatibilizer. The obtained results proved that homogenous compounding of high melt viscosity UHMWPE with CNF was feasible by optimizing the melt blending processing condition in triple screw kneading extruder, which resulted in improved stiffness, a contributing factor for wear resistance.
    Matched MeSH terms: Tensile Strength
  13. Sharip NS, Ariffin H, Yasim-Anuar TAT, Andou Y, Shirosaki Y, Jawaid M, et al.
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513876 DOI: 10.3390/polym13030404
    The major hurdle in melt-processing of ultra-high molecular weight polyethylene (UHMWPE) nanocomposite lies on the high melt viscosity of the UHMWPE, which may contribute to poor dispersion and distribution of the nanofiller. In this study, UHMWPE/cellulose nanofiber (UHMWPE/CNF) bionanocomposites were prepared by two different blending methods: (i) melt blending at 150 °C in a triple screw kneading extruder, and (ii) non-melt blending by ethanol mixing at room temperature. Results showed that melt-processing of UHMWPE without CNF (MB-UHMWPE/0) exhibited an increment in yield strength and Young's modulus by 15% and 25%, respectively, compared to the Neat-UHMWPE. Tensile strength was however reduced by almost half. Ethanol mixed sample without CNF (EM-UHMWPE/0) on the other hand showed slight decrement in all mechanical properties tested. At 0.5% CNF inclusion, the mechanical properties of melt-blended bionanocomposites (MB-UHMWPE/0.5) were improved as compared to Neat-UHMWPE. It was also found that the yield strength, elongation at break, Young's modulus, toughness and crystallinity of MB-UHMWPE/0.5 were higher by 28%, 61%, 47%, 45% and 11%, respectively, as compared to the ethanol mixing sample (EM-UHMWPE/0.5). Despite the reduction in tensile strength of MB-UHMWPE/0.5, the value i.e., 28.4 ± 1.0 MPa surpassed the minimum requirement of standard specification for fabricated UHMWPE in surgical implant application. Overall, melt-blending processing is more suitable for the preparation of UHMWPE/CNF bionanocomposites as exhibited by their characteristics presented herein. A better mechanical interlocking between UHMWPE and CNF at high temperature mixing with kneading was evident through FE-SEM observation, explains the higher mechanical properties of MB-UHMWPE/0.5 as compared to EM-UHMWPE/0.5.
    Matched MeSH terms: Tensile Strength
  14. Sharif Hossain ABM, Uddin MM, Fawzi M, Veettil VN
    Data Brief, 2018 Apr;17:1245-1252.
    PMID: 29845096 DOI: 10.1016/j.dib.2018.02.053
    The nano-cellulose derived nano-biofilm keeps a magnificent role in medical, biomedical, bioengineering and pharmaceutical industries. Plant biomaterial is naturally organic and biodegradable. This study has been highlighted as one of the strategy introducing biomass based nano-bioplastic (nanobiofilm) to solve dependency on petroleum and environment pollution because of non-degradable plastic. The data study was carried out to investigate the nano-biopolymer (nanocellulose) based nano-biofilm data from corn leaf biomass coming after bioprocess technology without chemicals. Corn leaf biomass was used to produce biodegradable nano-bioplastic for medical and biomedical and other industrial uses. Data on water absorption, odor, pH, cellulose content, shape and firmness, color coating and tensile strength test have been exhibited under standardization of ASTM (American standard for testing and materials). Moreover, the chemical elements of nanobiofilm like K+, CO3--, Cl-, Na+ showed standard data using the EN (166).
    Matched MeSH terms: Tensile Strength
  15. Sharif Hossain ABM, Uddin MM, Veettil VN, Fawzi M
    Data Brief, 2018 Apr;17:162-168.
    PMID: 29877503 DOI: 10.1016/j.dib.2017.12.046
    The nanocellulose derived biodegradable plant biomaterial as nano-coating can be used in the medical, biomedical cosmetics, and bioengineering products. Bio-plastic and some synthetic derived materials are edible and naturally biodegradable. The study was conducted to investigate edible nano-biopolymer based nano-coating of capsules and drugs or other definite biomedical materials from corn leaf biomass. Corn leaf biomass was used as an innovative sample to produce edible nano-coating bioplastic for drug and capsule coating and other industrial uses. The data show the negligible water 0.01% absorbed by bio-plastic nanocoating. Odor represented by burning test was under the completely standard based on ASTM. Moreover, data on color coating, tensile strength, pH, cellulose content have been shown under standard value of ASTM (American standard for testing and materials) standard. In addition to that data on the chemical element test like K+,


    CO


    3


    -
    -


    , Cl-, Na+ exhibited positive data compared to the synthetic plastic in the laboratory using the EN (166)) standardization. Therefore, it can be concluded that both organic (cellulose and starch) based edible nano-coating bioplastic may be used for drug and capsule coating as biomedical and medical components in the pharmaceutical industries.
    Matched MeSH terms: Tensile Strength
  16. Shahril Anuar Bahari, Kamrie Kamlon, Masitah Abu Kassim
    MyJurnal
    In this study, the rice husk flour-plastic waste composites (RPC) was produced from polypropylene (PP) and high density polyethylene (HDPE) wastes with 30 and 50% rice husk flour (RHF) contents. RPC was made by melt compounding and compression moulding processes. The electrical resistivity, thermal stability and tensile strength of RPC were determined. The RPC was tested in electrical resistivity and tensile strength according to the ASTM D-257 and ASTM D-638 respectively, while thermal stability was tested using thermogravimetric analysis (TGA) method. From the results, high content of RHF reduces all properties, except for tensile modulus of elasticity (TMOE) in tensile strength test. The ability of moisture absorption and the presence of hemicelluloses, cellulose and silica in RHF reduce the electrical resistivity and thermal stability behaviour of RPC from 50% RHF. The good binding elements and filler agglomeration in RPC from 50% RHF improve only TMOE. Insufficient stress transfer and rigid interphase occurred between RHF and plastics during tensile maximum load and elongation at break (Eb) in tensile strength test. In general, RPC from HDPE indicates better thermal stability, tensile modulus of rupture and Eb (in tensile strength test) compared to PP, based on the good behaviour of thermal conductivity, low water absorption, high molecular weight and good elongation properties of HDPE. However, RPC from PP shows good electrical resistance due to the low thermal expansion coefficient of PP.
    Matched MeSH terms: Tensile Strength
  17. Shahar FS, Hameed Sultan MT, Lee SH, Jawaid M, Md Shah AU, Safri SNA, et al.
    J Mech Behav Biomed Mater, 2019 11;99:169-185.
    PMID: 31357064 DOI: 10.1016/j.jmbbm.2019.07.020
    Since ancient Egypt, orthosis was generally made from wood and then later replaced with metal and leather which are either heavy, bulky, or thick decreasing comfort among the wearers. After the age of revolution, the manufacturing of products using plastics and carbon composites started to spread due to its low cost and form-fitting feature whereas carbon composite were due to its high strength/stiffness to weight ratio. Both plastic and carbon composite has been widely applied into medical devices such as the orthosis and prosthesis. However, carbon composite is also quite expensive, making it the less likely material to be used as an Ankle-Foot Orthosis (AFO) material whereas plastics has low strength. Kenaf composite has a high potential in replacing all the current materials due to its flexibility in controlling the strength to weight ratio properties, cost-effectiveness, abundance of raw materials, and biocompatibility. The aim of this review paper is to discuss on the possibility of using kenaf composite as an alternative material to fabricate orthotics and prosthetics. The discussion will be on the development of orthosis since ancient Egypt until current era, the existing AFO materials, the problems caused by these materials, and the possibility of using a Kenaf fiber composite as a replacement of the current materials. The results show that Kenaf composite has the potential to be used for fabricating an AFO due to its tensile strength which is almost similar to polypropylene's (PP) tensile strength, and the cheap raw material compared to other type of materials.
    Matched MeSH terms: Tensile Strength
  18. Shafiq N, Kumar R, Zahid M, Tufail RF
    Materials (Basel), 2019 Jul 17;12(14).
    PMID: 31319615 DOI: 10.3390/ma12142291
    This paper discussed the effects of modified metakaolin (MK) with nano-silica (NS) on the mechanical properties and durability of concrete. In the first phase, trial mixes of concrete were prepared for achieving the desired value of the 28 days compressive strength, and the charge passed in rapid chloride permeability test (RCPT). In the second phase, statistical analysis was performed on the experimental results using the response surface method (RSM). The RSM was applied for optimizing the mix proportions for the required performance by exploiting the relationship between the mix characteristics and the corresponding test results. A blend of 10% MK + 1% NS as part of cement replacement exhibited the highest mechanical properties and durability characteristics of concrete; concrete mix showed that the 28-days compressive strength (CS) was 103 MPa, which was 15% greater than the CS of the control mix without MK or NS. The same mix showed more than 40% higher flexural and split-tensile strength than the control mix; also it resulted in a reduction of 73% in the rapid chloride permeability value. ANOVA technique was used for optimizing the nano-silica and metakaolin content for achieving maximum compressive strength and minimum RCPT value. Statistical analysis using ANOVA technique showed that the maximum compressive strength and lowest RCPT value could be achieved with a blend of 10% MK and 1.55% NS.
    Matched MeSH terms: Tensile Strength
  19. Shafie MH, Yusof R, Samsudin D, Gan CY
    Int J Biol Macromol, 2020 Nov 15;163:1276-1282.
    PMID: 32673725 DOI: 10.1016/j.ijbiomac.2020.07.109
    The potential of Averrhoa bilimbi pectin (ABP) as a source of biopolymer for edible film (EF) production was explored, and deep eutectic solvent (DES) (1% w/w) containing choline chloride-citric acid monohydrate at a molar ratio of 1:1 was used as the plasticizer. The EF-ABP3:1, which was produced from ABP with large branch size, showed a higher value of melting temperature (175.30 °C), tensile stress (7.32 MPa) and modulus (33.64 MPa). The EF-ABP3:1 also showed better barrier properties by obtaining the lowest water vapor transmission rates (1.10-1.18 mg/m2.s) and moisture absorption values (2.61-32.13%) depending on the relative humidity compared to other EF-ABPs (1.39-1.83 mg/m2.s and 3.48-51.50%, respectively) that have linear structure with smaller branch size. From these results, it was suggested that the galacturonic acid content, molecular weight, degree of esterification and pectin structure of ABP significantly influenced the properties of EFs. The interaction of highly branched pectin chains was stronger than the linear chains, thus reduced the effect of plasticizer and produced a mechanically stronger EF with better barrier properties. Hence, it was suggested that these EFs could be used as alternative degradable packaging/coating materials.
    Matched MeSH terms: Tensile Strength/drug effects
  20. Seow LL, Toh CG, Fok AS, Wilson NH
    Am J Dent, 2008 Oct;21(5):331-6.
    PMID: 19024261
    PURPOSE: To investigate the level and distribution of stresses in endodontically treated maxillary premolar teeth restored using various cavity designs of bonded all-ceramic restorations. The hypothesis tested was that the various all-ceramic approaches, including incorporating a pulp chamber extension in the restoration, had no influence on the stresses in the restored tooth unit.
    METHODS: Finite element packages Patran and Abaqus were used for the stress analysis. The cavity designs investigated include: (1) inlay (I); (2) inlay with palatal cusp coverage (IPC); (3) onlay (O); (4) inlay with pulp chamber extension (IPE); (5) inlay with palatal cusp coverage and pulp chamber extension (IPCPE); and (6) onlay with pulp chamber extension (OPE).
    RESULTS: In each case, tensile stresses were found to be concentrated subjacent to the occlusal fossa. Peak tensile stress and peak shear stress values along the tooth/restoration interface for IPC, O IPCPE and OPE cavity designs were found to be associated with the axiogingival line angle. Overall, the order of the various forms of restoration investigated in terms of the maximum principal stress (from greatest to lowest) was as follows: IPE > IPCPE > OPE > I > IPC > O.
    Matched MeSH terms: Tensile Strength
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links