Displaying publications 41 - 60 of 170 in total

Abstract:
Sort:
  1. Praveena SM, Aris AZ, Hashim Z, Hashim JH
    J Expo Sci Environ Epidemiol, 2024 Jan;34(1):161-174.
    PMID: 37563210 DOI: 10.1038/s41370-023-00585-3
    BACKGROUND: Like other countries, surface water degradation in Malaysia is linked with common global issues. Although different aspects of drinking water suitability have been examined, the overall understanding of drinking water quality in Malaysia is poor.

    OBJECTIVE: Hence, the present review aims to provide an understanding of drinking water (tap water, groundwater, gravity feed system) quality and its potential implications on policy, human health, and drinking water management law and identification of potential direction of future drinking water research and management needs in Malaysia.

    METHODS: This study utilized a scoping review method. PRISMA Extension for Scoping Reviews was used for search strategy. Relevant studies were screened using the selected keywords and databases.

    RESULTS: A total of 26 drinking water quality studies involving tap water, groundwater, and gravity feed systems have been selected for review. These studies found that the majority of Malaysian Drinking Water and WHO Drinking Water standards have been met. High levels of Cu, Cd, Fe and Pb were attributable to galvanized plumbing and pipe material corrosion. Variation of fluoride in tap water depends on dosage planning and operational processes of the public water supply. Pollutants (nitrate and ammonia) in groundwater and gravity feed system water have been linked to agricultural practices in rural areas. Microbiological quality in tap water is associated with growing biofilms inside the pipelines while in groundwater is caused by shallow surface events. However, only eight studies have reported about the human risks of chemical pollutants in tap water.

    IMPACT STATEMENT: The review discusses the state of drinking water quality in Malaysia and its impact on public health. It suggests that policymakers can use this information to improve the quality of drinking water and enforce restrictions, while also raising public awareness about the importance of safe drinking water. The study can guide future research and initiatives in Malaysia, ultimately contributing to efforts to ensure access to clean and dependable drinking water.

    Matched MeSH terms: Water Supply
  2. Choy SY, Prasad KM, Wu TY, Raghunandan ME, Ramanan RN
    J Environ Sci (China), 2014 Nov 1;26(11):2178-89.
    PMID: 25458671 DOI: 10.1016/j.jes.2014.09.024
    Rapid industrial developments coupled with surging population growth have complicated issues dealing with water scarcity as the quest for clean and sanitized water intensifies globally. Existing fresh water supplies could be contaminated with organic, inorganic and biological matters that have potential harm to the society. Turbidity in general is a measure of water cloudiness induced by such colloidal and suspended matters and is also one of the major criteria in raw water monitoring to meet the stipulated water quality guidelines. Turbidity reduction is often accomplished using chemical coagulants such as alum. The use of alum is widely associated with potential development of health issues and generation of voluminous sludge. Natural coagulants that are available in abundance can certainly be considered in addressing the drawbacks associated with the use of chemical coagulants. Twenty one types of plant-based natural coagulants categorized as fruit waste and others are identified and presented collectively with their research summary in this review. The barriers and prospects of commercialization of natural coagulants in near future are also discussed.
    Matched MeSH terms: Water Supply
  3. Theng TL, Mohamed CA
    J Environ Radioact, 2005;80(3):273-86.
    PMID: 15725503
    Natural radionuclides, such as (210)Po and (210)Pb were measured in the water samples collected from six stations at Kuala Selangor, Malaysia. Results for (210)Po and (210)Pb in dissolved and particulate phases have showed the difference in distribution and chemical behavior. The fluctuation activities of (210)Po and (210)Pb depend on wave action, geology and degree of fresh water input occurring at study areas and probably due to different sampling dates. The distribution coefficient, K(d), values of (210)Po and (210)Pb ranged from 2.0 x 10(3)lg(-1) to 265.15 x 10(5)lg(-1), and from 3.0 x 10(3)lg(-1) to 558.16 x 10(5)lg(-1), respectively. High K(d) values of (210)Po and (210)Pb indicated that a strong adsorption of (210)Po and (210)Pb onto suspended particles, and the sinking of both nuclides on the seabed at study locations were controlled by the characteristics of suspended particles.
    Matched MeSH terms: Water Supply
  4. Al-Rabai'ah HA, Koh HL, DeAngelis D, Lee HL
    Water Sci Technol, 2002;46(9):71-8.
    PMID: 12448454
    Temperature variation is an important factor in Everglade wetlands ecology. A temperature fluctuation from 17 degrees C to 32 degrees C recorded in the Everglades may have significant impact on fish dynamics. The short life cycles of some of Everglade fishes has rendered this temperature variation to have even more impacts on the ecosystem. Fish population dynamic models, which do not explicitly consider seasonal oscillations in temperature, may fail to describe the details of such a population. Hence, a model for fish in freshwater marshes of the Florida Everglades that explicitly incorporates seasonal temperature variations is developed. The model's main objective is to assess the temporal pattern of fish population and densities through time subject to temperature variations. Fish population is divided into 2 functional groups (FGs) consisting of small fishes; each group is subdivided into 5-day age classes during their life cycles. Many governing sub-modules are set directly or indirectly to be temperature dependent. Growth, fecundity, prey availability, consumption rates and mortality are examples. Several mortality sub-modules are introduced in the model, of which starvation mortality is set to be proportional to the ratio of prey needed to prey available at that particular time step. As part of the calibration process, the model is run for 50 years to ensure that fish densities do not go to extinction, while the simulation period is about 8 years. The model shows that the temperature dependent starvation mortality is an important factor that influences fish population densities. It also shows high fish population densities at some temperature ranges when this consumption need is minimum. Several sensitivity analyses involving variations in temperature terms, food resources and water levels are conducted to ascertain the relative importance of temperature dependence terms.
    Matched MeSH terms: Water Supply
  5. El-Sheikh MA, Hadibarata T, Yuniarto A, Sathishkumar P, Abdel-Salam EM, Alatar AA
    Chemosphere, 2020 Nov 04.
    PMID: 33220978 DOI: 10.1016/j.chemosphere.2020.128873
    Since a few centuries ago, organochlorine compounds (OCs) become one of the threatened contaminants in the world. Due to the lipophilic and hydrophobic properties, OCs always discover in fat or lipid layers through bioaccumulation and biomagnification. The OCs are able to retain in soil, sediment and water for long time as it is volatile, OCs will evaporate from soil and condense in water easily and frequently, which pollute the shelter of aquatic life and it affects the function of organs and damage system in human body. Photocatalysis that employs the usage of semiconductor nanophotocatalyst and solar energy can be the possible alternative for current conventional water remediation technologies. With the benefits of utilizing renewable energy, no production of harmful by-products and easy operation, degradation of organic pollutants in rural water bodies can be established. Besides, nanophotocatalyst that is synthesized with nanotechnology outnumbered conventional catalyst with larger surface area to volume ratio, thus higher photocatalytic activity is observed. In contrast, disadvantages particularly no residual effect in water distribution network, requirement of post-treatment and easily affected by various factors accompanied with photocatalysis method cannot be ignored. These various factors constrained the photocatalytic efficiency via nanocatalysts which causes the full capacity of solar photocatalysis has yet to be put into practice. Therefore, further modifications and research are still required in nanophotocatalysts' synthesis to overcome limitations such as large band gaps and photodecontamination.
    Matched MeSH terms: Water Supply
  6. Nor NAM, Chadwick BL, Farnell D, Chestnutt IG
    Community Dent Health, 2019 Aug 29;36(3):229-236.
    PMID: 31437389 DOI: 10.1922/CDH_4522Nor08
    OBJECTIVE: To determine the prevalence and severity of dental caries (at dentine and enamel levels of diagnosis) amongst Malaysian children and to investigate determinant factors associated with caries detection at these different thresholds.

    METHODS: This study involved life-long residents aged 12 years-old in fluoridated and non-fluoridated areas in Malaysia (n=595). The survey was carried out in 16 public schools by a calibrated examiner, using ICDAS-II criteria. A questionnaire on socio-demographic and oral hygiene practices was self-administered by parents/guardians. Data were analysed using Mann-Whitney U tests and logistic regression.

    RESULTS: The overall response rate was 74.4%. Caries prevalence at the dentine level or at the dentine and enamel level was significantly (p⟨0.001) higher among children in the non-fluoridated area (D₁₋₆MFT⟩0 = 82.4%, D₄₋₆MFT⟩0 = 53.5%) than in the fluoridated area (D₁₋₆MFT⟩0 = 68.7%, D₄₋₆MFT⟩0 = 25.5%). Considering only the decayed component of the index, no significant differences were observed between the two areas when the detection threshold was set at enamel caries (D₁₋₃) (p=0.506). However, when the detection criteria were elevated to the level of caries into dentine (D₄₋₆) there were clear differences between the fluoridated and non-fluoridated areas (p=0.006). Exposure to fluoridated water proved a significant predictor for lower caries prevalence in the statistical model. Children whose father and mother had a low monthly income had a significantly higher dentine caries prevalence.

    CONCLUSION: Results confirmed existing evidence of the benefit of water fluoridation in caries prevention. Detection criteria set at caries into dentine shows clear differences between fluoridated and non-fluoridated areas. Exposure to fluoridated water and socio-economic status were associated with caries prevalence.

    Matched MeSH terms: Water Supply
  7. Priya AK, Pachaiappan R, Kumar PS, Jalil AA, Vo DN, Rajendran S
    Environ Pollut, 2021 Apr 15;275:116598.
    PMID: 33581625 DOI: 10.1016/j.envpol.2021.116598
    Anthropogenic activities and population growth have resulted in a reduced availability of drinking water. To ensure consistency in the existence of drinking water, it is inevitable to establish wastewater treatment plants (WWTPs). 70% of India's rural population was found to be without WWTP, waste disposal, and good sanitation. Wastewater has emerged from kitchens, washrooms, etc., with industry activities. This scenario caused severe damage to water resources, leading to degradation of water quality and pathogenic insects. Thus, it is a need of an hour to prompt for better WWTPs for both rural and urban areas. Many parts of the world have started to face severe water shortages in recent years, and wastewater reuse methods need to be updated. Clean water supply is not enough to satisfy the needs of the planet as a whole, and the majority of freshwater in the polar regions takes the form of ice and snow. The increasing population requires clean water for drinks, hygiene, irrigation, and various other applications. Lack of water and contamination of water result from human activities. 90% of wastewater is released to water systems without treatment in developing countries. Studies show that about 730 megatons of waste are annually discharged into water from sewages and other effluents. The sustenance of water resources, applying wastewater treatment technologies, and calling down the percentage of potable water has to be strictly guided by mankind. This review compares the treatment of domestic sewage to its working conditions, energy efficiency, etc. In this review, several treatment methods with different mechanisms involved in waste treatment, industrial effluents, recovery/recycling were discussed. The feasibility of bioaugmentation should eventually be tested through data from field implementation as an important technological challenge, and this analysis identifies many promising areas to be explored in the future.
    Matched MeSH terms: Water Supply
  8. Nor Aziella Mohd Rosli, Khaironizam Md Zain
    Trop Life Sci Res, 2016;27(11):63-69.
    MyJurnal
    Like many other countries, reservoirs in Malaysia are primarily built for various
    functions such as hydroelectric power generation, drinking water supply, flood mitigation
    and irrigation for agricultural purposes. Artisanal fisheries activities were also performed in
    these reservoirs. The freshwater fish are a requisite source of protein for the rural
    population. Consequently, the fish resources in reservoirs should be carefully maintained
    at sustainable level. Present study elucidates the preliminary assessment on autecological
    studies of beardless barb, Cyclocheilichthys apogon as a model of fish biota in Muda
    Reservoir. This research investigates the growth pattern of C. apogon using length-weight
    relationship and their condition factor. A total of 307 specimens were captured using cast
    net for six consecutive months from March 2014 until August 2014. The growth coefficient
    (b) from the length-weight equation (W = aLb
    ) for male and female of C. apogon were
    3.150 and 3.185, respectively, indicating positive allometric growth. The condition factor
    values of male and female of C. apogon were 1.023 ± 0.111 and 1.026 ± 0.100,
    respectively, suggesting that C. apogon is in good condition in Muda Reservoir. The
    paucity of research on the autecological study in the Muda Reservoir contributes to the
    main reason of performing this research. The findings will serve as baseline information of
    this species in Muda Reservoir, as well as for comparative study in the future.
    Matched MeSH terms: Water Supply
  9. Ahmad, M.H., Norzaie, J., Al Qbadi, F., Daniel, B.D.
    ASM Science Journal, 2009;3(1):17-26.
    MyJurnal
    The functions of dams are for water supply, flood control and hydroelectric power generation. A concrete faced rockfill dam (CFRD) is preferred by dam consultants due to its many advantages. It is designed to withstand all applied loads, namely gravity load due to its massive weight and hydrostatic load due to water thrust from the reservoir. The structural response of the Bakun CFRD which is the second highest dam in the world after the Shuibuya Dam, was analyzed using finite element method. A two-dimensional plane strain finite element analysis of the non-linear Duncan-Chang hyperbolic model was used in the study of the dam in respect to the deformation and stresses of the main dam of Bakun CFRD project. The Dead-Birth-Ghost element technique was used to simulate sequences of the construction of the dam. The comparison of rigid and flexible foundation on the behaviour of the dam is discussed in this study. In the finite element modeling, the concrete slab on the upstream was represented through a six-noded element, while the interface characteristic between the dam body and the concrete slab was modeled using an interface element. The maximum settlement and stresses of the cross-section were found and their distribution was discussed and tabulated in the form of contours. The effect of reservoir filling loading had a gradual effect on the dam response behaviour. Comparisons with no water impoundment in the dam were also discussed.
    Matched MeSH terms: Water Supply
  10. Zaini Hamzah, Siti Afiqah Abdul Rahman, Ahmad Saat, Siti Shahrina Agos, Zaharudin Ahmad
    MyJurnal
    The presence of 226 Ra in water is a great concern in human life since it can cause health risk to a certain extent. In the state of Kelantan, being known of its granitic area, there is a lack measurement of 226 Ra content in river water, since water is the major source of water supply. According to the INTERIM National Water Quality Standards for Malaysia (INWQS), 226 Ra activity concentration in water cannot exceed 0.1 Bq/L. For this reasons, this research was planned to carry out a systematic measurement of water along Sungai Kelantan. Liquid Scintillation Counting was used for measurement of 226 Ra in water samples from Sungai Kelantan mainly in district of Kuala Krai. In this paper, the results obtained is about 26 water samples, filtered and unfiltered, collected along Sungai Lebir, Sungai Sok and Bukit Sabah. Thus, the assessment activity concentration of 226 Ra in river water was obtained as well as annual effective dose for consumption of drinking water.
    Matched MeSH terms: Water Supply
  11. Nur Hidayu Abu Hassan, Mohamed Azwan Mohamed Zawawi, Nur Sabrina Nor Jaeman
    MyJurnal
    The water shortage in Selangor Northwest Project rice granary areas has been growing
    concern. The increase in plant capacity and the El Nino phenomenon that hit Malaysia
    (1998 & 2016) has cause the main source of irrigation; surface water and rainfall, could
    no longer meet the needs of paddy. As a consequence, paddy productivity has
    becoming serious concern and urge for alternative irrigation water supply. At the same
    time, the use of groundwater as a source of alternative supply of irrigation water has
    started to get attentions. However, to determine the potential groundwater aquifer,
    preliminary study should be made in advance. Thus, the focus of this paper is to
    investigate the geological structure of the Selangor Basin by means analysis of
    borehole information. A total of 56 tube wells data were used to obtain layers of
    subsurface in the study area. By using groundwater modelling software (Visual
    MODFLOW), a model that represents an actual geological conditions has been made.
    A total of 6 subsurface layers have been identified. The result of study showed that,
    the geological formations of the study area mainly consist of three types; alluvium,
    sedimentary and metamorphic rock.
    Matched MeSH terms: Water Supply
  12. Lani NHM, Syafiuddin A, Yusop Z, Adam UB, Amin MZBM
    Sci Total Environ, 2018 Sep 15;636:1171-1179.
    PMID: 29913579 DOI: 10.1016/j.scitotenv.2018.04.418
    A rainwater harvesting system (RWHS) was proposed for small and large commercial buildings in Malaysia as an alternative water supply for non-potable water consumption. The selected small and large commercial buildings are AEON Taman Universiti and AEON Bukit Indah, respectively. Daily rainfall data employed in this work were obtained from the nearest rainfall station at Senai International Airport, which has the longest and reliable rainfall record (29 years). Water consumption at both buildings were monitored daily and combined with the secondary data obtained from the AEON's offices. The mass balance model was adopted as the simulation approach. In addition, the economic benefits of RWHS in terms of percentage of reliability (R), net present value (NPV), return on investment (ROI), benefit-cost ratio (BCR), and payback period (PBP) were examined. Effects of rainwater tank sizes and water tariffs on the economic indicators were also evaluated. The results revealed that the percentages of reliability of the RWHS for the small and large commercial buildings were up to 93 and 100%, respectively, depending on the size of rainwater tank use. The economic benefits of the proposed RWHS were highly influenced by the tank size and water tariff. At different water tariffs between RM3.0/m3 and RM4.7/m3, the optimum PBPs for small system range from 6.5 to 10.0 years whereas for the large system from 3.0 to 4.5 years. Interestingly, the large commercial RWHS offers better NPV, ROI, BCR, and PBP compared to the small system, suggesting more economic benefits for the larger system.
    Matched MeSH terms: Water Supply
  13. Malek, M. A., Heyrani, M., Juneng, Liew
    ASM Science Journal, 2015;9(1):8-19.
    MyJurnal
    In this study, the implementation of the Regional Climate Model into the hydrodynamic model has been applied for streamflow projection on a river located at the south of Peninsular Malaysia within the years 2070 till 2099. The data has been obtained from a Regional Climate Model (RCM), named Précis, on a daily basis. It begins by comparing historical rainfall data generated from Précis versus the actual gauged recorded rainfall data from Department of Irrigation and Drainage Malaysia (DID). The bias of the generated rainfall data has been reduced by statistical techniques. The same has been applied to the future generated rainfall data from 2070 to 2099. Using the generated precipitation data as input to the hydrological model, results in the daily output of river discharge identified as the main contributor of flood occurrences. Based on the results of the hydrological model utilised, e.g. HEC-HMS, comparison was made between the future and historical generated discharge data using Précis between the years 1960 till 1998. Dividing a year into three segments, e.g. January-April, May-August, SeptemberDecember, the results show that there would be a significant drop of peak discharge in the third segment and an increase in discharge during the second segment. The first part remains almost with no changes. As an addition, the drop of the peak shows reduction in the probability of flood occurrences. It also indicates the reduction in water storage capacity which coherently affects the water supply scheme
    Matched MeSH terms: Water Supply
  14. Abdul Rahim Samsudin, Umar Hamzah, Zuraidah Ramli
    Sains Malaysiana, 2007;36:159-163.
    An integrated geophysical study was conducted to investigate the subsurface regional structure and the presence of a Quaternary sedimentary basin in the Olak Lempit - Banting area of Selangor, Malaysia. A regional gravity survey and the high resolution reflection seismic were employed to determine the thickness and areal distribution of the alluvial sedimentary basin as well as to investigate the depth and topography of the bedrock in the study area. The sedimentary basin hosts one of the most important coastal alluvial aquifer which was used to cater the shortage of domestic water supply during the worst water crisis that hit the state of Selangor in 1998. The surface geological map shows that in general 70% of the study area is covered by Quaternary deposits of Beruas, Gula and Simpang Formations which overlie the sedimentary bedrock of Kenny Hill Formation. The Beruas Formation consists of mainly clay, sandy clay and peat of Holocene fluviatile-estuarine deposits, whereas the Gula Formation represents Holocene marine to estuarine sediments which mostly consists of clay and minor sand. The Simpang Formation (Pleistocene) is a continental deposit comprising of gravel, sand, clay and silt. The underlying Kenny Hill Formation consists of a monotonous sequence of interbedded shales, mudstones and sandstones. The rock is Carbonaceous in age and it forms an undulating surface topography in the eastern part of the study area. A total of 121 gravity stations were established using a La Coste & Romberg gravity meter and the elevations of most of the stations were determined barometrically using Tiernan-Wallace altimeters. The high resolution seismic reflection using the common mid point (CMP) or roll along technique was carried out using a 24 channel signal enhancement seismograph and high frequency geophones. A total length of about 1.7 km stacked seismic section has been acquired in this survey and a nearby borehole data was used for interpretation. A relative Bouguer anomaly map shows an elongated zone of low gravity anomaly trending approximately NW-SE which is interpreted to be the deposition center of the Quaternary basin. The interpreted gravity profiles running across the central area of the study area show that the basin has thickness varies from tenth to several hundred meters with maximum depth to bedrock of about 275m. A gravity profile which passes through the eastern edge of the basin was modeled with depth to bedrock of about 178m below ground which agrees very well with those obtained from the interpreted seicmic section and borehole data. The stacked seismic section shows several high amplitude parallel to sub-parallel reflection overlying discontinuos and low reflection pattern. Reflections on the eastern part of the section is much shallower than the one observed on the western part which clearly indicates the presence of basinal structure with a total interpreted depth to bedrock of about 200 meters.
    Matched MeSH terms: Water Supply
  15. Noor Halini Baharim, Razali Ismail, Mohamad Hanif Omar
    Sains Malaysiana, 2011;40:1179-1186.
    Thermal stratification in lakes is an important natural process that can have a significant effect on the water resource quality. The potential changes in chemical contents in water resulting from stratification are the production of ammonia, sulphides and algal nutrients and the increasing concentrations of iron and manganese. One of the water supply reservoirs located in Johor, Malaysia facing with high iron and manganese concentrations associated with the period of stratifications. This study showed that the level of thermal stratification in the reservoir varied at different time of the year. During the strongest period of stratification, the dissolved oxygen content was found to diminish significantly with depth and iron and manganese were recorded at the highest concentrations. Although significant period of rainfalls contributed to the natural destratification of reservoir, lower concentrations of iron and manganese only remained for a shorter period before the concentrations continued to increase with the onset of the thermal stratification. A good understanding on the behaviour of the reservoir may help to identify several measures for the improvement of water quality.
    Matched MeSH terms: Water Supply
  16. Jinxiu Zhang, Zhigang Bei, Yi Zhang, Linkui Cao
    Sains Malaysiana, 2014;43:1665-1671.
    Water deficit and environmental pollution owing to excessive nitrogen use have caused considerable attention. In a field experiment, a combination of three water levels (20, 40 and 60 cm) and nitrogen fertilizer rates (0, 85 and 170 kg ha-1) was applied. The main objectives of this study were to optimize water and nitrogen application and exploit their interactive effects on the growth characteristics, yield and water and nitrogen use efficiency of spinach. The results showed that water and nitrogen significantly influenced average plant height and leaf area. Total aboveground biomass (TB) was affected by nitrogen fertilizer and TB decreased in water deficit. Adding nitrogen fertilizer amount resulted in higher leaf chlorophyll content and chlorophyll content obtained the maximum value in N2 treatment, but chlorophyll content was not affected by water deficit. Spinach yield was higher at N1 compared with N0 and N2 at all water levels. Abundant water supply resulted in the highest spinach yield, but yield reduced at lower water level (W3). The correlation analysis between spinach yield and leaf number was relatively weak (R2=0.58). On the contrast, the correlation analysis between spinach yield and leaf weight showed a correlationship (R2=0.91), indicating that leaf weight was the primary reason for yield increase in all treatments. Nitrogen fertilization significantly decreased NUE in all the treatments. WUE of spinach increased with adding nitrogen application in most conditions.
    Matched MeSH terms: Water Supply
  17. Suratman S, Mohd Sailan M, Hee Y, Bedurus E, Latif M
    Sains Malaysiana, 2015;44:67-73.
    The Malaysian Department of Environment-Water Quality Index (DOE-WQI) was determined for the Terengganu River basin which is located at the coastal water of the southern South China Sea between July and October 2008. Monthly samplings were carried out at ten sampling stations within the basin. Six parameters listed in DOE-WQI were measured based on standard methods: pH, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS) and ammonical nitrogen (AN). The results indicated the impact of various anthropogenic activities which contribute to high values of BOD, COD, TSS and AN at middle and downstream stations, as compared with the upstream of the basin. The reverses were true for the pH and DO values. The DOE-WQI ranged from 71.5-94.6% (mean 86.9%), which corresponded to a classification status range from slightly polluted to clean. With respect to the Malaysia National Water Quality Standards (NWQS), the level of most of the parameters measured remained at Class I which is suitable for the sustainable conservation of the natural environment, for water supply without treatment and as well as for very sensitive aquatic species. It is suggested that monitoring should be carried out continuously for proper management of this river basin.
    Matched MeSH terms: Water Supply
  18. Zulkifli A, Khairul Anuar A, Atiya AS, Yano A
    JUMMEC, 1999;4:99-103.
    A survey of malnutrition and helminth infections among 268 pre-school children living in the Kuala Betis Orang Asli resttlement villages in Kelantan. The prevalence of helminth infections was 47.4% with Ascaris lumbricoides being the most common helminth (43.9%), followed by Trichuris trichiura (29.7%) and hookworm (6.3%). The prevalence of Ascaris lumbricoides and Trichuris trichiura infections increased with age, with the highest prevalence found in the 6-7 years age group. The overall prevalence of stunting, underweight and wasting were 61.7%, 60.4% and 17.5% respectively. Both stunting and underweight were significantly higher among the infected children. Factors associated with helminth infections in the pre-school children were older age group, poor water supply and households with more than 5 members. Rountine regular deworming is recommended based on the World Health Organisation recommendations for school children.
    Matched MeSH terms: Water Supply
  19. Camara M, Jamil NR, Abdullah AFB, Hashim RB, Aliyu AG
    Sci Total Environ, 2020 May 30;737:139800.
    PMID: 32526579 DOI: 10.1016/j.scitotenv.2020.139800
    The evaluation of the importance of having accurate and representative stations in a network for river water quality monitoring is always a matter of concern. The minimal budget and time demands of water quality monitoring programme may appear very attractive, especially when dealing with large-scale river watersheds. This article proposes an improved methodology for optimising water quality monitoring network for present and forthcoming monitoring of water quality under a case study of the Selangor River watershed in Malaysia, where different monitoring networks are being used by water management authorities. Knowing that the lack of financial resources in developing countries like Malaysia is one of the reasons for inadequate monitoring network density, to identify an optimised network for cost-efficiency benefits in this study, a geo-statistical technique coupled Kendall's W was first applied to analyse the performance of each monitoring station in the existing networks under the monitored water quality parameters. Second, the present and future changes in non-point pollution sources were simulated using the integrated Cellular Automata and Markov chain model (CA-Markov). Third, Station Potential Pollution Score (SPPS) determined based on Analytic Hierarchy Process (AHP) was used to weight each station under the changes of non-point pollution sources for 2015, 2024, and 2033 prior to prioritisation. Finally, according to the Kendall's W test on kriging results, the weights of non-point sources from the AHP evaluation and fuzzy membership functions, six most efficient sampling stations were identified to build a robust network for the present and future monitoring of water quality status in the Selangor River watershed. This study proposes a useful approach to the pertinent agencies and management authority concerned to establish appropriate methods for developing an efficient water quality monitoring network for tropical rivers.
    Matched MeSH terms: Water Supply
  20. Mohd Nor NA, Chadwick BL, Farnell DJJ, Chestnutt IG
    J Public Health Dent, 2021 12;81(4):270-279.
    PMID: 33634490 DOI: 10.1111/jphd.12448
    OBJECTIVES: To determine the prevalence of dental fluorosis, and factors associated with its occurrence in two cohorts of children exposed to different fluoride concentrations in the Malaysian water supply.

    METHODS: A cross-sectional study was conducted among lifelong residents (n = 1,155) aged 9 and 12 years old living in fluoridated and nonfluoridated areas. Malaysian children aged 12 years were born when the level of fluoride in the public water supply was 0.7 ppm while those aged 9 years were born after the level was reduced to 0.5 ppm. Fluorosis was blind scored using standardized photographs of maxillary central incisors using Dean's criteria. Fluoride exposures and other factors were assessed by parental questionnaire. Data were analyzed using descriptive statistics, Chi-squared analyses, and logistic regression.

    RESULTS: Fluorosis prevalence was lower (31.9 percent) among the younger children born after the reduction of fluoride concentration in the water, compared to a prevalence of 38.4 percent in the older cohort. Early tooth brushing practices and fluoridated toothpaste were not statistically associated with fluorosis status. However, the prevalence of fluorosis was significantly associated with parents' education level, parents' income, fluoridated water, type of infant feeding method, age breast feeding ceased, use of formula milk, duration of formula milk intake, and type of water used to reconstitute formula milk via simple logistic regression. Fluoridated water remained a significant risk factor for fluorosis in multiple logistic regression.

    CONCLUSIONS: Fluorosis was lower among children born after the adjustment of fluoride concentration in the water. Fluoridated water remained as a strong risk factor for fluorosis after downward adjustment of its fluoride concentration.

    Matched MeSH terms: Water Supply
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links