Displaying publications 41 - 60 of 194 in total

Abstract:
Sort:
  1. Ismail A, Rahman F
    Trop Life Sci Res, 2013 Aug;24(1):1-7.
    PMID: 24575237 MyJurnal
    Environmental factors can play important roles in influencing waterbird communities. In particular, weather may have various biological and ecological impacts on the breeding activities of waterbirds, though most studies have investigated the effect of weather on the late stages of waterbird breeding (e.g., hatching rate, chick mortality). Conversely, the present study attempts to highlight the influence of weather on the early nesting activities of waterbirds by evaluating a recently established mixed-species colony in Putrajaya Wetlands, Malaysia. The results show that only rainfall and temperature have a significant influence on the species' nesting activities. Rainfall activity is significantly correlated with the Grey Heron's rate of establishment (rainfall: rs = 0.558, p = 0.03, n = 72) whereas both temperature and rainfall are associated with Painted Stork's nesting density (temperature: rs = 0.573, p = 0.013; rainfall: rs = -0.662, p = 0.03, n = 48). There is a possibility that variations in the rainfall and temperature provide a cue for the birds to initiate their nesting. Regardless, this paper addresses concerns on the limitations faced in the study and suggests long-term studies for confirmation.
    Matched MeSH terms: Wetlands
  2. Ismail A, Rahman F
    Trop Life Sci Res, 2016 Aug;27(2):13-24.
    PMID: 27688848 MyJurnal DOI: 10.21315/tlsr2016.27.2.2
    This review discussed the current status of the Milky Stork Re-introduction Programme in Malaysia and the challenges it faced. Although it has continued for almost seven years, more challenges appeared as time elapsed mainly due to the arising conflicts between the implementation of conservation policy versus the development projects in Kuala Gula. Hence, the released population is struggling to adapt mainly due to the reduction of suitable habitat for nesting and disturbed foraging areas by the continuous anthropogenic activities. Furthermore, the lack of appropriate training among captive storks prior to being released also slows the adaptation of the birds in their new habitat. The increasing pattern of pollution in the area is also highlighted. Several suggestions were given to help improve the current re-introduction programme. These include improvements to the captive training method, improvement of the existing enclosure's condition and environment, protection of remaining mangrove forest, creation of a buffer zone to mitigate the increasing pollution level in the area, close monitoring of the released population, and maintaining continuous support and awareness among the public. Considering the ongoing anthropogenic activities that may impair the status of Kuala Gula as an important bird sanctuary, emphasis should be given to achieve sustainable development throughout the area.
    Matched MeSH terms: Wetlands
  3. Pounsin G, Wahab NS, Roslan A, Zahidin MA, Pesiu E, Tamrin NAM, et al.
    Trop Life Sci Res, 2018 Mar;29(1):51-69.
    PMID: 29644015 MyJurnal DOI: 10.21315/tlsr2018.29.1.4
    A study of the bat diversity was conducted in Hulu Terengganu dipterocarp forest and Setiu Wetland Beach Ridges Interspersed with Swales (BRIS) forest in Terengganu, to study the species diversity, composition and stratification of fruit bats from the understorey to the forest canopy. Mist nets were set up at the understorey, sub-canopy and canopy layer while harp traps were set up at the understorey layer. We recorded 170 individuals from six families' compromised 21 species from Hulu Terengganu dipterocarp forests and four species from Setiu Wetland BRIS forests throughout the sampling period. Megaerops ecaudatus and Cynopterus brachyotis were the most dominant species in Hulu Terengganu dipterocarp forest and Setiu Wetland BRIS forests. Our study also recorded two species with new distributional records for the east coast of Peninsular Malaysia, namely, Rhinolophus chiewkweeae and Chaerephon johorensis in Hulu Terengganu dipterocarp forests. Potential factors that might influence the results were in terms of the canopy covers, the structural complexity of canopy, food availability and spatial characteristics. This study was able to increase the knowledge on the species diversity and composition of bats in Hulu Terengganu dipterocarp forest and Setiu Wetland BRIS forest, thus, further aid in the effort of bat conservation in both areas.
    Matched MeSH terms: Wetlands
  4. Wongyai N, Jutagate A, Grudpan C, Jutagate T
    Trop Life Sci Res, 2020 Jul;31(2):159-173.
    PMID: 32922673 DOI: 10.21315/tlsr2020.31.2.8
    Condition index, reproduction and feeding of three non-obligatory riverine Mekong cyprinids namely Hampala dispar, Hampala macrolepidota and Osteochilus vittatus were examined. The samples were from the Nam Ngiep (NN) River and Bueng Khong Long (BKL) Swamp, which are the representative of the lotic- and lentic-environments, respectively. These two habitats lay in the same geographical area but on the opposite banks of the Mekong mainstream. The samplings were conducted between May 2017 and April 2018. There were 365 H. dispar, 259 H. macrolepidota and 298 O. vittatus samples in this study. The condition index of all three species were beyond 90% implying they can live well in both lotic and lentic environments. Reproductions of all three species were taken place in both environments with two peaks at the onset and end of rainy season. The samples from BKL showed early maturation than NN samples in all three (3) species. Feeding plasticity, though dominant by insects, was observed in Hampala spp., while O. vittatus can utilise any available detritus in both environments. Results clearly show that all the three selected non-obligatory riverine fish species can live very well in either lotic or lentic environments and imply that they can adjust themselves to reservoir environment.
    Matched MeSH terms: Wetlands
  5. Jong, V. S. W., Tang, F. E.
    MyJurnal
    This paper presents a two-staged, pilot-scale vertical flow engineered wetland-based septage treatment system (VFEWs), which was designed and constructed in Curtin University Sarawak Campus to determine the system efficiency in treatment of septage. The treatment system consists of storage tanks, vertical flow wetlands, and a network of influent and effluent distribution pipes. The first stage of the VFEWs treatment system consists of three vertical flow wetlands placed in parallel to provide pre-treatment to raw septage to reduce solids and organic matters mainly by physical filtration and sedimentation processes. The percolate from the first stage is then further treated in the second stage, with four vertical flow wetlands, each with variation in operational regime and substrate (filter) type. The influences of various system and application-related parameters such as substrate material, presence of plants and plant types, and septage feeding practices (solid loading rate (SLR), batch and intermittent loading, and frequency of daily feeding) on pollutant removal efficiency were studied. Results from the first stage wetlands indicate that the removal of total solids and organic matter (BOD and COD) from the raw septage is promising (> 80%) at both SLR of 100 kg TS/m2 .yr and 250 kg TS/m2 .yr, respectively. However, a higher SLR decreased the average NH3-N removal efficiency. The findings on bed clogging assessment during the study period are also presented in this paper. Validation and expansion of these results are carried out with ongoing assessments on the system performance.
    Matched MeSH terms: Wetlands
  6. Too CC, Ong KS, Ankenbrand MJ, Lee SM, Yule CM, Keller A
    Genome Announc, 2018 Jun 21;6(25).
    PMID: 29930066 DOI: 10.1128/genomeA.00561-18
    We report the draft genome sequence of a bacterial isolate, Paraburkholderia sp. strain C35, which was isolated from a Malaysian tropical peat swamp forest. The putative genes for the biogeochemical processes were annotated and are publicly available in the online databases.
    Matched MeSH terms: Wetlands
  7. Too CC, Ong KS, Ankenbrand MJ, Lee SM, Yule CM, Keller A
    Genome Announc, 2018 Jun 21;6(25).
    PMID: 29930065 DOI: 10.1128/genomeA.00560-18
    We report here the draft genome of Klebsiella sp. strain C31, a bacterial isolate from the North Selangor peat swamp forest in Malaysia. The putative genes for the biogeochemical processes of the genome were annotated and investigated.
    Matched MeSH terms: Wetlands
  8. Too CC, Ong KS, Lee SM, Yule CM, Keller A
    Genome Announc, 2018 Jun 21;6(25).
    PMID: 29930031 DOI: 10.1128/genomeA.00459-18
    We report here the draft genome sequences of a bacterial isolate, Dyella sp. strain C11, which was isolated from a Malaysian tropical peat swamp forest. The putative genes for the biogeochemical processes were annotated, and the genome was deposited in an online database.
    Matched MeSH terms: Wetlands
  9. Ahmad Mustapha, Gandaseca, Seca, Ahmad Hanafi, Siti Nurhidayu, Mohammad Roslan, Khan, Waseem, et al.
    MyJurnal
    The objectives of this review are to determine the types of indices to use, to assess the current sediment quality index (SQI) of a mangrove forest and to select the appropriate index to describe the mangrove sediment quality index. Amongst the many indices considered in this review are the enrichment factors (EFs), the geo-accumulation index (Igeo), the pollution load index (PLI), the marine sediment pollution index (MSPI) and sediment quality index (SQI). The different indices give diverse perspectives of the status of mangrove sediment quality. This review also highlights the appropriate parameters that need to be used in assessing sediment quality, such as the physical, chemical and biological properties. As the comparison review, the sediment quality can be utilized for Mangrove quality index (MQI) development like to assess the heavy metal, complete laboratory parameters and a classification following the Interim Sediment Quality Guidelines ISQG, PCA and HACA. For the heavy metal content of sediment, the suggested parameters are Pb, Zn, Cu, Co and Mn. Lastly, for the indices, the enrichment factor (EFs), geo-accumulation index (Igeo), pollution load index (PLI) and marine sediment pollution index (MPSI) are used in develop SQI on mangrove forest.
    Matched MeSH terms: Wetlands
  10. T Ismail TNS, A Kassim NF, A Rahman A, Yahya K, Webb CE
    Trop Med Infect Dis, 2018 Jul 23;3(3).
    PMID: 30274473 DOI: 10.3390/tropicalmed3030077
    Due to conservation and rehabilitation efforts, mangrove forests represent some of the largest environmental niches in Malaysia. However, there is little information on the potential risks posed by mosquitoes that are directly and indirectly associated with mangrove forests. To study the potential health risk to humans active within and in close vicinity of mangrove forests, this research focused on the day biting habits of mosquitoes in mangrove forests of Kedah, Malaysia. The bare leg catch (BLC) method was used to collect adult mosquitoes during a 12-h period from 7:30 a.m. to 7:30 p.m. in both disturbed and less disturbed areas of mangroves. In total, 795 adult mosquitoes from 5 genera and 8 species were collected, and over 65% of the total mosquitoes were collected from the less disturbed area. The predominant species from the less disturbed area was Verrallina butleri; in the disturbed area the dominant species was Culex sitiens. The peak biting hour differed for each species, with Aedes albopictus and Cx. sitiens recorded as having a bimodal biting activity peak during dawn and dusk. For Ve. butleri an erratic pattern of biting activity was recorded in the less disturbed area but it peaked during the early daytime for both collection points. Overall, the distinct pattern of day biting habits of mosquitoes within mangroves peaked during dawn and dusk for the less disturbed area but was irregular for the disturbed area throughout the day. The presence of vectors of pathogens such as Ae. albopictus for both areas raises the need for authorities to consider management of mosquitoes in mangrove forests.
    Matched MeSH terms: Wetlands
  11. Tam CY, Zong Y, Xiong H, Zheng Z
    Data Brief, 2018 Dec;21:1886-1889.
    PMID: 30519612 DOI: 10.1016/j.dib.2018.10.156
    The data presented here are related to the research paper entitled "A below-the-present late Holocene relative sea level and the glacial isostatic adjustment during the Holocene in the Malay Peninsula" (Tam et al., 2018) [1]. The diatoms and pollen data are collected from surface sediments of the Merang wetlands, Kuala Terengganu, Malaysia, and are presented as percentages of total diatoms or total land pollen respectively. Ground elevations of the sampling sites are levelled to the national datum and expressed as elevations above or below mean sea level. These diatom and pollen data can be used for indicative meaning calibration of sea-level index points and for the development of diatom-based or pollen-based tidal level transfer functions. These data have been used for calibrating the indicative meanings for sea-level index points in the reconstruction of Holocene sea-level history of the Peninsular Malaysia.
    Matched MeSH terms: Wetlands
  12. Rina Sharlinda M, Kamaruzzaman B, Akbar John B, Siti Waznah A
    Sains Malaysiana, 2011;40:1179-1186.
    Bioaccumulation of lead and Copper in Avicennia marina and Rhizophora apiculata was studied. Samples of leaves, barks and roots were collected from Balok mangrove forest, Pahang. Pb and Cu accumulation was higher in Avicennia marina root tissue compared to bark and leaf but lower than surrounding sediment level. The average concentration of Pb in A. marina leaf, bark, root and sediment was observed to be 5.39 ppm, 3.63 ppm, 18.21 ppm and 23.13 ppm, and average Cu concentration was 4.13 ppm, 4.27 ppm, 4.81 ppm and 12.33 ppm, respectively. R. apiculata also showed higher concentration of Pb and Cu in root tissue compared to bark and leaf tissues but lower than surrounding sediment. The average concentration of Pb in R. apiculata leaf, bark, root and sediment was observed to be 4.30 ppm, 2.97 ppm, 22.45 ppm and 31.23 ppm, respectively. The average Cu concentration was 2.93 ppm, 4.71 ppm, 4.81 ppm and 15.52 ppm, respectively. Results of concentration factors (CF) showed that the accumulation of Pb and Cu was higher in A. marina than in R. apiculata.
    Matched MeSH terms: Wetlands
  13. Wei L, Bee MY, Poh SC, Garg A, Lin F, Gao J
    Environ Monit Assess, 2022 Dec 27;195(1):231.
    PMID: 36572829 DOI: 10.1007/s10661-022-10822-1
    The marine aquaculture industry has caused a suite of adverse environmental consequences, including offshore eutrophication. However, little is known about the extent to which aquaculture effluents affect nearby wetland ecosystems. We carried out a field experiment in a mangrove stand located between two effluent-receiving creeks to estimate the extent to which marine aquaculture affects the soil nutrient distribution and plant nutrient status of adjacent mangroves. Carbon (C), nitrogen (N), and phosphorus (P) contents and C isotopic signatures were determined seasonally in creeks, pore water, surface soils, and in the leaves of the dominant mangrove species Kandelia obovata. The creeks exhibited nutrient enrichment (2.44 mg N L-1 and 0.09 mg P L-1 on average). The soils had N (from 1.40 to 2.70 g kg-1) and P (from 0.58 to 2.76 g kg-1) much greater than those of pristine mangrove forests. Combined analyses of the N:P ratio, nutrient resorption efficiency, and proficiency indicated that soil P met plant demands, but plants in most plots showed N limitation, suggesting that soil nutrient accumulation did not fundamentally impact the plant nutrient status. Collectively, this case study shows that marine aquaculture farms can affect adjacent mangrove stands even though their effluents are not directly discharged into the mangrove stands, but mangrove forests may have substantial buffering capabilities for long-term nutrient loading.
    Matched MeSH terms: Wetlands
  14. Alkhadher SAA, Suratman S, Mohd Sallan MIB
    J Environ Manage, 2023 Nov 01;345:118464.
    PMID: 37454570 DOI: 10.1016/j.jenvman.2023.118464
    The spatial and temporal distributions of trace metals in dissolved forms mainly result from anthropogenic and lithogenic contributions. Surface water samples (∼0.5 m) were collected monthly at respective stations from Setiu Wetland. In this study, the behaviour of trace metals in the dissolved phases along the water column from sampling sites in the Setiu Wetland, Malaysia was investigated. In addition, dissolved organic carbon (DOC) and physical parameters such as salinity, temperature, pH and dissolved oxygen (DO) of the surface water were measured in order to evaluate the relationship between trace metals fractionation with different water quality parameters. Size fractionation study of dissolved trace metals using ultrafiltration technique were also carried out and analysed using inductively coupled plasma mass spectrometry (ICP-MS). Correlation of trace metals with other measured parameters was made to furthermore understand the dynamics of trace metals and its fractionated components in this area. The concentration of dissolved trace metals was in the range of 0.001-0.16 μg/L for Cd, 0.12-2.81 μg/L for Cu, 0.01-1.84 μg/L for Pb, 3-17 μg/L for Fe and 1-34 μg/L for Zn, suggesting the input of anthropogenic sources for trace metals such as municipal, industrial, agricultural and domestic discharge. The periodic monitoring and evaluation of trace metals in wetlands and protected tropical areas is highly recommended.
    Matched MeSH terms: Wetlands
  15. Ledger MJ, Sowter A, Morrison K, Evans CD, Large DJ, Athab A, et al.
    PLoS One, 2024;19(2):e0298939.
    PMID: 38394278 DOI: 10.1371/journal.pone.0298939
    Tropical peatland across Southeast Asia is drained extensively for production of pulpwood, palm oil and other food crops. Associated increases in peat decomposition have led to widespread subsidence, deterioration of peat condition and CO2 emissions. However, quantification of subsidence and peat condition from these processes is challenging due to the scale and inaccessibility of dense tropical peat swamp forests. The development of satellite interferometric synthetic aperture radar (InSAR) has the potential to solve this problem. The Advanced Pixel System using Intermittent Baseline Subset (APSIS, formerly ISBAS) modelling technique provides improved coverage across almost all land surfaces irrespective of ground cover, enabling derivation of a time series of tropical peatland surface oscillations across whole catchments. This study aimed to establish the extent to which APSIS-InSAR can monitor seasonal patterns of tropical peat surface oscillations at North Selangor Peat Swamp Forest, Peninsular Malaysia. Results showed that C-band SAR could penetrate the forest canopy over tropical peat swamp forests intermittently and was applicable to a range of land covers. Therefore the APSIS technique has the potential for monitoring peat surface oscillations under tropical forest canopy using regularly acquired C-band Sentinel-1 InSAR data, enabling continuous monitoring of tropical peatland surface motion at a spatial resolution of 20 m.
    Matched MeSH terms: Wetlands
  16. Ghobadi Y, Pradhan B, Shafri HZ, bin Ahmad N, Kabiri K
    Environ Monit Assess, 2015 Jan;187(1):4156.
    PMID: 25421858 DOI: 10.1007/s10661-014-4156-0
    Wetlands are regarded as one of the most important ecosystems on Earth due to various ecosystem services provided by them such as habitats for biodiversity, water purification, sequestration, and flood attenuation. The Al Hawizeh wetland in the Iran-Iraq border was selected as a study area to evaluate the changes. Maximum likelihood classification was used on the remote sensing data acquired during the period of 1985 to 2013. In this paper, five types of land use/land cover (LULC) were identified and mapped and accuracy assessment was performed. The overall accuracy and kappa coefficient for years 1985, 1998, 2002, and 2013 were 93% and 0.9, 92% and 0.89, 91% and 0.9, and 92% and 0.9, respectively. The classified images were examined with post-classification comparison (PCC) algorithm, and the LULC alterations were assessed. The results of the PCC analysis revealed that there is a drastic change in the area and size of the studied region during the period of investigation. The wetland lost ~73% of its surface area from 1985 to 2002. Meanwhile, post-2002, the wetland underwent a restoration, as a result of which, the area increased slightly and experienced an ~29% growth. Moreover, a large change was noticed at the same period in the wetland that altered ~62% into bare soil in 2002. The areal coverage of wetland of 3386 km(2) in 1985 was reduced to 925 km(2) by 2002 and restored to 1906 km(2) by the year 2013. Human activities particularly engineering projects were identified as the main reason behind the wetland degradation and LULC alterations. And, lastly, in this study, some mitigation measures and recommendations regarding the reclamation of the wetland are discussed. Based on these mitigate measures, the discharge to the wetland must be kept according to the water requirement of the wetland. Moreover, some anthropogenic activities have to be stopped in and around the wetland to protect the ecology of the wetland.
    Matched MeSH terms: Wetlands*
  17. Watanabe A, Tsutsuki K, Inoue Y, Maie N, Melling L, Jaffé R
    Sci Total Environ, 2014 Sep 15;493:220-8.
    PMID: 24946034 DOI: 10.1016/j.scitotenv.2014.05.095
    As basic information for assessing reactivity and functionality of wetland-associated dissolved organic matter (DOM) based on their composition and structural properties, chemical characteristics of N in ultrafiltered DOM (UDON; >1 kD) isolated from wetland-associated rivers in three climates (cool-temperate, Hokkaido, Japan; sub-tropical, Florida, USA; tropical, Sarawak, Malaysia) were investigated. The UDON was isolated during dry and wet seasons, or during spring, summer, and autumn. The proportion of UDON present as humic substances, which was estimated as the DAX-8 adsorbed fraction, ranged from 47 to 91%, with larger values in the Sarawak than at the other sites. The yield of hydrolyzable amino acid N ranged 1.24 to 7.01 mg g(-1), which correlated positively to the total N content of UDOM and tended to be larger in the order of Florida>Hokkaido>Sarawak samples. X-ray photoelectron N1s spectra of UDON showed a strong negative correlation between the relative abundances of amide/peptide N and primary amine N. The relative abundances of amide/peptide N and primary amine N in the Sarawak samples were smaller (70-76%) and larger (20-23%) respectively compared to those (80-88% and 4-9%) in the Florida and Hokkaido samples. Assuming terminal amino groups and amide N of peptides as major constituents of primary amine N and amide/peptide N, respectively, the average molecular weight of peptides was smaller in the Sarawak samples than that in the Florida and Hokkaido samples. Seasonal variations in UDON composition were scarce in the Sarawak and Florida samples, whereas the distribution of humic substance-N and nonhumic substance-N and compositions of amino acids and N functional groups showed a clear seasonality in the Hokkaido samples. While aromatic N increased from spring to autumn, contributions from fresh proteinaceous materials were also enhanced during autumn, resulting in the highest N content of UDOM for this season.
    Matched MeSH terms: Wetlands*
  18. Al-Baldawi IA, Sheikh Abdullah SR, Abu Hasan H, Suja F, Anuar N, Mushrifah I
    J Environ Manage, 2014 Jul 1;140:152-9.
    PMID: 24762527 DOI: 10.1016/j.jenvman.2014.03.007
    This study investigated the optimum conditions for total petroleum hydrocarbon (TPH) removal from diesel-contaminated water using phytoremediation treatment with Scirpus grossus. In addition, TPH removal from sand was adopted as a second response. The optimum conditions for maximum TPH removal were determined through a Box-Behnken Design. Three operational variables, i.e. diesel concentration (0.1, 0.175, 0.25% Vdiesel/Vwater), aeration rate (0, 1 and 2 L/min) and retention time (14, 43 and 72 days), were investigated by setting TPH removal and diesel concentration as the maximum, retention time within the given range, and aeration rate as the minimum. The optimum conditions were found to be a diesel concentration of 0.25% (Vdiesel/Vwater), a retention time of 63 days and no aeration with an estimated maximum TPH removal from water and sand of 76.3 and 56.5%, respectively. From a validation test of the optimum conditions, it was found that the maximum TPH removal from contaminated water and sand was 72.5 and 59%, respectively, which was a 5 and 4.4% deviation from the values given by the Box-Behnken Design, providing evidence that S. grossus is a Malaysian native plant that can be used to remediate wastewater containing hydrocarbons.
    Matched MeSH terms: Wetlands*
  19. Al-Baldawi IA, Sheikh Abdullah SR, Anuar N, Suja F, Idris M
    Water Sci Technol, 2013;68(10):2271-8.
    PMID: 24292478 DOI: 10.2166/wst.2013.484
    One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.
    Matched MeSH terms: Wetlands*
  20. Wong CS, Koh CL, Sam CK, Chen JW, Chong YM, Yin WF, et al.
    Sensors (Basel), 2013;13(10):12943-57.
    PMID: 24072030 DOI: 10.3390/s131012943
    Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast.
    Matched MeSH terms: Wetlands*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links