Displaying publications 41 - 60 of 318 in total

Abstract:
Sort:
  1. Thomas AR, Mani R, Reddy TV, Ravichandran A, Sivakumar M, Krishnakumar S
    J Contemp Dent Pract, 2019 Sep 01;20(9):1090-1094.
    PMID: 31797835
    AIM: The aim of the study was to assess the antibacterial efficiency of a combination of 1% alexidine (ALX) and 5.25% sodium hypochlorite (NaOCl) against E. faecalis biofilm using a confocal scanning electron microscopy.

    MATERIALS AND METHODS: An estimated 120 human root dentin disks were prepared, sterilized, and inoculated with E. faecalis strain (ATCC 29212) to develop a 3-weeks-old biofilm. The dentin discs were exposed to group I-control group: 5.25% sodium hypochlorite (NaOCl) (n = 20); group II-1% ALX + 5.25% NaOCl (n = 40); group III-1% alexidine (ALX) (n = 40) (Sigma-Aldrich, Mumbai, India); group IV-negative control: saline (n = 20). After exposure, the dentin disks were stained with the fluorescent live/dead dye and evaluated with a confocal scanning electron microscope to calculate the proportion of dead cells. Statistical analysis was done using the Kruskal-Wallis and Mann-Whitney U test (p < 0.05).

    RESULTS: The maximum proportion of dead cells were seen in the groups treated with the combination of 1% ALX + 5.25% NaOCl (94.89%) and in the control group 5.25% NaOCl (93.14%). The proportion of dead cells presented in the 1% ALX group (51.79%) and negative control group saline (15.10%) were comparatively less.

    CONCLUSION: The antibacterial efficiency of a combination of 1% ALX and 5.25% NaOCl was more effective when compared with 1% ALX alone.

    CLINICAL SIGNIFICANCE: Alexidine at 1% could be used as an alternative endodontic irrigant to chlorhexidine, as alexidine does not form any toxic precipitates with sodium hypochlorite. The disinfection regimen comprising a combination of 1% ALX and 5.25% NaOCl is effective in eliminating E. faecalis biofilms.

    Matched MeSH terms: Biofilms
  2. Teo SP, Bhakta S, Stapleton P, Gibbons S
    Antibiotics (Basel), 2020 Dec 16;9(12).
    PMID: 33339285 DOI: 10.3390/antibiotics9120913
    The present study aimed to screen plants for bioactive compounds with potential antibacterial activities. In our efforts to evaluate plants from Borneo, we isolated and elucidated the structures of four natural products from the bioactive fraction of a chloroform extract of Goniothalamus longistipetes using various chromatographic and spectroscopic techniques. The bioactive compounds were identified as a known styryllactone, (+)-altholactone ((2S,3R,3aS,7aS)-3-hydroxy-2-phenyl-2,3,3a,7a-tetrahydrobenzo-5(4H)-5-one) (1), a new styryllactone, (2S,3R,3aS,7aS)-3-hydroxy-2-phenyl-2,3,3a,7a-tetrahydrobenzo-5(4H)-5-one) (2) as well as a new alkaloid, 2,6-dimethoxyisonicotinaldehyde (3) and a new alkenyl-5-hydroxyl-phenyl benzoic acid (4). 1 and 4 showed broad-spectrum anti-bacterial activities against Gram-positive and Gram-negative bacteria as well as acid-fast model selected for this study. Compound 2 only demonstrated activities against Gram-positive bacteria whilst 3 displayed selective inhibitory activities against Gram-positive bacterial strains. Additionally, their mechanisms of anti-bacterial action were also investigated. Using Mycobacterium smegmatis as a fast-growing model of tubercle bacilli, compounds 1, 2 and 4 demonstrated inhibitory activities against whole-cell drug efflux and biofilm formation; two key intrinsic mechanisms of antibiotic resistance. Interestingly, the amphiphilic compound 4 exhibited inhibitory activity against the conjugation of plasmid pKM101 in Escherichia coli using a plate conjugation assay. Plasmid conjugation is a mechanism by which Gram-positive and Gram-negative-bacteria acquire drug resistance and virulence. These results indicated that bioactive compounds isolated from Goniothalamus longistipetes can be potential candidates as 'hits' for further optimisation.
    Matched MeSH terms: Biofilms
  3. Teh AHT, Lee SM, Dykes GA
    PLoS One, 2019;14(4):e0215275.
    PMID: 30970009 DOI: 10.1371/journal.pone.0215275
    Campylobacter jejuni is a microaerophilic bacterial species which is a major food-borne pathogen worldwide. Attachment and biofilm formation have been suggested to contribute to the survival of this fastidious bacteria in the environment. In this study the attachment of three C. jejuni strains (C. jejuni strains 2868 and 2871 isolated from poultry and ATCC 33291) to different abiotic surfaces (stainless steel, glass and polystyrene) alone or with Pseudomonas aeruginosa biofilms on them, in air at 25°C and under static or flow conditions, were investigated using a modified Robbins Device. Bacteria were enumerated and scanning electron microscopy was carried out. The results indicated that both C. jejuni strains isolated from poultry attached better to Pseudomonas aeruginosa biofilms on abiotic surfaces than to the surfaces alone under the different conditions tested. This suggests that biofilms of other bacterial species may passively protect C. jejuni against shear forces and potentially oxygen stress which then contribute to their persistence in environments which are detrimental to them. By contrast the C. jejuni ATCC 33291 strain did not attach differentially to P. aeruginosa biofilms, suggesting that different C. jejuni strains may have alternative strategies for persistence in the environment. This study supports the hypothesis that C. jejuni do not form biofilms per se under conditions they encounter in the environment but simply attach to surfaces or biofilms of other species.
    Matched MeSH terms: Biofilms/growth & development*
  4. Teh AHT, Lee SM, Dykes GA
    Food Microbiol, 2017 Feb;61:120-125.
    PMID: 27697161 DOI: 10.1016/j.fm.2016.09.008
    Campylobacter jejuni survival in aerobic environments has been suggested to be mediated by biofilm formation. Biofilm formation by eight C. jejuni strains under both aerobic and microaerobic conditions in different broths (Mueller-Hinton (MH), Bolton and Brucella) was quantified. The dissolved oxygen (DO) content of the broths under both incubation atmospheres was determined. Biofilm formation for all strains was highest in MH broth under both incubation atmospheres. Four strains had lower biofilm formation in MH under aerobic as compared to microaerobic incubation, while biofilm formation by the other four strains did not differ under the 2 atm. Two strains had higher biofilm formation under aerobic as compared to microaerobic atmospheres in Bolton broth. Biofilm formation by all other strains in Bolton, and all strains in Brucella broth, did not differ under the 2 atm. Under aerobic incubation DO levels in MH > Brucella > Bolton broth. Under microaerobic conditions levels in MH = Brucella > Bolton broth. Levels of DO in MH and Brucella broth were lower under microaerobic conditions but those of Bolton did not differ under the 2 atm. Experimental conditions and especially the DO of broth media confound previous conclusions drawn about aerobic biofilm formation by C. jejuni.
    Matched MeSH terms: Biofilms/growth & development*
  5. Teh AHT, Lee SM, Dykes GA
    BMC Res Notes, 2017 May 12;10(1):182.
    PMID: 28499399 DOI: 10.1186/s13104-017-2504-1
    BACKGROUND: Biofilm formation has been suggested to play a role in the survival of Campylobacter jejuni in the environment and contribute to the high incidence of human campylobacteriosis. Molecular studies of biofilm formation by Campylobacter are sparse.

    RESULTS: We attempted to identify genes that may be involved in biofilm formation in seven C. jejuni strains through construction of mutants using the EZ-Tn5 Transposome system. Only 14 mutants with reduced biofilm formation were obtained, all from one strain of C. jejuni. Three different genes of interest, namely CmeB (synthesis of multidrug efflux system transporter proteins), NusG (transcription termination and anti-termination protein) and a putative transmembrane protein (involved in membrane protein function) were identified. The efficiency of the EZ::TN5 transposon mutagenesis approach was strain dependent and was unable to generate any mutants from most of the strains used.

    CONCLUSIONS: A diverse range of genes may be involved in biofilm formation by C. jejuni. The application of the EZ::TN5 system for construction of mutants in different Campylobacter strains is limited.

    Matched MeSH terms: Biofilms*
  6. Teh AH, Wang Y, Dykes GA
    Can J Microbiol, 2014 Feb;60(2):105-11.
    PMID: 24498987 DOI: 10.1139/cjm-2013-0633
    Urinary tract infections (UTI) caused by uropathogenic Escherichia coli are one of the most common forms of human disease. In this study, the effect of the presence of newly acquired antibiotic resistance genes on biofilm formation of UTI-associated E. coli strains was examined. Two clinical UTI-associated E. coli strains (SMC18 and SMC20) carrying different combinations of virulence genes were transformed with pGEM-T, pGEM-T::KmΔAmp, or pGEM-T::Km to construct ampicillin-resistant (Km(S)Amp(R)), kanamycin-resistant (Km(R)Amp(S)), or ampicillin- and kanamycin-resistant (Km(R)Amp(R)) strains. Transformed and wild-type strains were characterized for biofilm formation, bacterial surface hydrophobicity, auto-aggregation, morphology, and attachment to abiotic surfaces. Transformation with a plasmid carrying an ampicillin resistance gene alone decreased (p < 0.05) biofilm formation by SMC18 (8 virulence marker genes) but increased (p < 0.05) biofilm formation by SMC20 (5 virulence marker genes). On the other hand, transformation with a plasmid carrying a kanamycin resistance gene alone or both ampicillin and kanamycin resistance genes resulted in a decrease (p < 0.05) in biofilm formation by SMC18 but did not affect (p > 0.05) the biofilm formation by SMC20. Our results suggest that transformation of UTI-associated E. coli with plasmids carrying different antibiotic resistance gene(s) had a significant impact on biofilm formation and that these effects were both strain dependent and varied between different antibiotics.
    Matched MeSH terms: Biofilms*
  7. Teh AH, Lee SM, Dykes GA
    Appl Environ Microbiol, 2014 Sep;80(17):5154-60.
    PMID: 24928882 DOI: 10.1128/AEM.01493-14
    Campylobacter jejuni is one of the most frequent causes of bacterial gastrointestinal food-borne infection worldwide. This species is part of the normal flora of the gastrointestinal tracts of animals used for food production, including poultry, which is regarded as the primary source of human Campylobacter infections. The survival and persistence of C. jejuni in food processing environments, especially in poultry processing plants, represent significant risk factors that contribute to the spread of this pathogen through the food chain. Compared to other food-borne pathogens, C. jejuni is more fastidious in its growth requirements and is very susceptible to various environmental stressors. Biofilm formation is suggested to play a significant role in the survival of C. jejuni in the food production and processing environment. The aims of this minireview were (i) to examine the evidence that C. jejuni forms biofilms and (ii) to establish the extent to which reported and largely laboratory-based studies of C. jejuni biofilms provide evidence for biofilm formation by this pathogen in food processing environments. Overall existing studies do not provide strong evidence for biofilm formation (as usually defined) by most C. jejuni strains in food-related environments under the combined conditions of atmosphere, temperature, and shear that they are likely to encounter. Simple attachment to and survival on surfaces and in existing biofilms of other species are far more likely to contribute to C. jejuni survival in food-related environments based on our current understanding of this species.
    Matched MeSH terms: Biofilms/growth & development*
  8. Tayyeb JZ, Priya M, Guru A, Kishore Kumar MS, Giri J, Garg A, et al.
    Mol Biol Rep, 2024 Mar 15;51(1):423.
    PMID: 38489102 DOI: 10.1007/s11033-024-09407-7
    BACKGROUND: Oral health remains a significant global concern with the prevalence of oral pathogens and the increasing incidence of oral cancer posing formidable challenges. Additionally, the emergence of antibiotic-resistant strains has complicated treatment strategies, emphasizing the urgent need for alternative therapeutic approaches. Recent research has explored the application of plant compounds mediated with nanotechnology in oral health, focusing on the antimicrobial and anticancer properties.

    METHODS: In this study, curcumin (Cu)-mediated zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using SEM, EDAX, UV spectroscopy, FTIR, and XRD to validate their composition and structural features. The antioxidant and antimicrobial activity of ZnO-CU NPs was investigated through DPPH, ABTS, and zone of inhibition assays. Apoptotic assays and gene expression analysis were performed in KB oral squamous carcinoma cells to identify their anticancer activity.

    RESULTS: ZnO-CU NPs showcased formidable antioxidant prowess in both DPPH and ABTS assays, signifying their potential as robust scavengers of free radicals. The determined minimal inhibitory concentration of 40 µg/mL against dental pathogens underscored the compelling antimicrobial attributes of ZnO-CU NPs. Furthermore, the interaction analysis revealed the superior binding affinity and intricate amino acid interactions of ZnO-CU NPs with receptors on dental pathogens. Moreover, in the realm of anticancer activity, ZnO-CU NPs exhibited a dose-dependent response against Human Oral Epidermal Carcinoma KB cells at concentrations of 10 µg/mL, 20 µg/mL, 40 µg/mL, and 80 µg/mL. Unraveling the intricate mechanism of apoptotic activity, ZnO-CU NPs orchestrated the upregulation of pivotal genes, including BCL2, BAX, and P53, within the KB cells.

    CONCLUSIONS: This multifaceted approach, addressing both antimicrobial and anticancer activity, positions ZnO-CU NPs as a compelling avenue for advancing oral health, offering a comprehensive strategy for tackling both oral infections and cancer.

    Matched MeSH terms: Biofilms
  9. Tay ZH, Ng FL, Thong CH, Lee CW, Gnana Kumar G, Al-Sehemi AG, et al.
    Appl Microbiol Biotechnol, 2024 Dec;108(1):1-14.
    PMID: 38194143 DOI: 10.1007/s00253-023-12951-0
    In this study, the bioelectrical power generation potential of four tropical marine microalgal strains native to Malaysia was investigated using BPV platforms. Chlorella UMACC 258 produced the highest power density (0.108 mW m-2), followed by Halamphora subtropica UMACC 370 (0.090 mW m-2), Synechococcus UMACC 371 (0.065 mW m-2) and Parachlorella UMACC 245 (0.017 mW m-2). The chlorophyll-a (chl-a) content was examined to have a linear positive relationship with the power density (p 
    Matched MeSH terms: Biofilms
  10. Tay ST, Lim SL, Tan HW
    PMID: 25380692 DOI: 10.1186/1472-6882-14-439
    The increasing resistance of Candida yeasts towards antifungal compounds and the limited choice of therapeutic drugs have spurred great interest amongst the scientific community to search for alternative anti-Candida compounds. Mycocins and fungal metabolites have been reported to have the potential for treatment of fungal infections. In this study, the growth inhibition of Candida species by a mycocin produced by Wickerhamomyces anomalus and a lactone compound from Aureobasidium pullulans were investigated.
    Matched MeSH terms: Biofilms/drug effects
  11. Tay ST, Abidin IA, Hassan H, Ng KP
    Med Mycol, 2011 Jul;49(5):556-60.
    PMID: 21254967 DOI: 10.3109/13693786.2010.551424
    This study was conducted to determine the proteinase, phospholipase, and biofilm forming abilities of Candida isolates in blood cultures of specimens from patients at the University Malaya Medical Center, Kuala Lumpur, Malaysia. Proteinase and phospholipase activities were detected in 93.7% and 73.3%, respectively, of 15 Candida albicans isolates. Amongst the 26 non-C. albicans Candida isolates, proteinase and phospholipase activities were detected in 88.5% and 7.7% of the isolates, respectively. There was no significant difference in the expression levels of proteinase amongst the Candida isolates studied (P = 0.272), but the phospholipase activity of C. albicans was significantly higher than that of the non-C. albicans Candida isolates (P = 0.003). There was no significant difference in the biofilm forming abilities of C. albicans and non-C. albicans Candida isolates on the polystyrene microtiter wells (P = 0.379). In addition, the findings of this study demonstrate increased resistance of Candida isolates in biofilms to amphotericin and fluconazole, as compared to their planktonic counterparts.
    Matched MeSH terms: Biofilms/growth & development*
  12. Tang, P.L., Pui, C.F., Wong, W.C., Noorlis, A., Son, R.
    MyJurnal
    This study aimed to determine the biofilm formation ability by Salmonella Typhi on cucumber, mango and guava surface, as well as to determine the relationship between time contact and biofilm formation. Crystal violet assay was performed to quantify the biofilm formation based on the value of optical density at 570 nm of the destaining crystal violet at the specific interval time. The result showed that the attachment of the bacterial cells on the fresh produce surface increased with the contact time. The readings of OD570at time 12 h for cucumber, mango and guava surfaces were 0.824, 0.683 and 0.598, respectively, indicating that the biofilm formation by Salmonella Typhi on different fresh produce surface varied with time. Since the result showed that Salmonella Typhi formed biofilm on fresh produce surfaces, hygienic practice from farm to fork including handling, processing, distribution and storage of the fresh produce should be of concern.
    Matched MeSH terms: Biofilms
  13. Tang SY, Hara S, Melling L, Goh KJ, Hashidoko Y
    Biosci Biotechnol Biochem, 2010;74(9):1972-5.
    PMID: 20834139
    Root-associating bacteria of the nipa palm (Nypa fruticans), preferring brackish-water affected mud in Sarawak, Malaysia, were investigated. In a comparison of rhizobacterial microbiota between the nipa and the sago (Metroxylon sagu) palm, it was found that the nipa palm possessed a group of Burkholderia vietnamiensis as its main active nitrogen-fixing endophytic bacterium. Acetylene reduction by the various isolates of B. vietnamiensis was constant (44 to 68 nmol h(-1) in ethylene production rate) in soft gel medium containing 0.2% sucrose as sole carbon source, and the bacterium also showed motility and biofilm-forming capacity. This is the first report of endophytic nitrogen-fixing bacteria from nipa palm.
    Matched MeSH terms: Biofilms
  14. Tan PW, Tan WS, Yunos NY, Mohamad NI, Adrian TG, Yin WF, et al.
    Sensors (Basel), 2014;14(7):12958-67.
    PMID: 25046018 DOI: 10.3390/s140712958
    Quorum sensing (QS), acts as one of the gene regulatory systems that allow bacteria to regulate their physiological activities by sensing the population density with synchronization of the signaling molecules that they produce. Here, we report a marine isolate, namely strain T47, and its unique AHL profile. Strain T47 was identified using 16S rRNA sequence analysis confirming that it is a member of Vibrio closely clustered to Vibrio sinaloensis. The isolated V. sinaloensis strain T47 was confirmed to produce N-butanoyl-L-homoserine lactone (C4-HSL) by using high resolution liquid chromatography tandem mass spectrometry. V. sinaloensis strain T47 also formed biofilms and its biofilm formation could be affected by anti-QS compound (cathechin) suggesting this is a QS-regulated trait in V. sinaloensis strain T47. To our knowledge, this is the first documentation of AHL and biofilm production in V. sinaloensis strain T47.
    Matched MeSH terms: Biofilms/growth & development
  15. Tan KH, How KY, Tan JY, Yin WF, Chan KG
    Front Microbiol, 2017;8:72.
    PMID: 28197135 DOI: 10.3389/fmicb.2017.00072
    The process of intercellular communication among bacteria, termed quorum sensing (QS), is mediated by small diffusible molecules known as the autoinducers. QS allows the population to react to the change of cell density in unison, in processes such as biofilm formation, plasmid conjugation, virulence, motility and root nodulation. In Gram-negative proteobacteria, N-acyl homoserine lactone (AHL) is the common "language" to coordinate gene expression. This signaling molecule is usually synthesized by LuxI-type proteins. We have previously discovered that a rare bacterium, Cedecea neteri, exhibits AHL-type QS activity. With information generated from genome sequencing, we have identified the luxIR gene pair responsible for AHL-type QS and named it cneIR. In this study, we have cloned and expressed the 636 bp luxI homolog in an Escherichia coli host for further characterization. Our findings show that E. coli harboring cneI produced the same AHL profile as the wild type C. neteri, with the synthesis of AHL known as N-butyryl-homoserine lactone. This 25 kDa LuxI homolog shares high similarity with other AHL synthases from closely related species. This work is the first documentation of molecular cloning and characterization of luxI homolog from C. neteri.
    Matched MeSH terms: Biofilms
  16. Tan HW, Tay ST
    Trop Biomed, 2011 Apr;28(1):175-80.
    PMID: 21602784
    This study describes the killer phenotypes of tropical environmental yeasts and the inhibition effects of the culture filtrates on the biofilm of Candida albicans. A total of 26 (10.5%) of 258 yeast isolates obtained from an environmental sampling study demonstrated killer activity to Candida species. The killer yeasts were identified as species belonging to the genus Aureobasidium, Pseudozyma, Ustilago and Candida based on sequence analysis of the ITS1-5.8S-ITS2 region of the yeasts. Pseudozyma showed the broadest killing effects against sensitive strains of Candida. New species of Ustilago and Pseudozyma demonstrating killer phenotypes were identified in this study. Interestingly, more than 50% reduction in the metabolic activity of Candida albicans biofilm was noted after exposure to the culture filtrates of the nine killer yeasts. Purification and characterization of toxin and metabolites are essential for understanding the yeast killing effects.
    Matched MeSH terms: Biofilms/drug effects*
  17. Tan HW, Tay ST
    Mycoses, 2013 Mar;56(2):150-6.
    PMID: 22882276 DOI: 10.1111/j.1439-0507.2012.02225.x
    Aureobasidin A (AbA) is a cyclic depsipeptide antifungal compound that inhibits a wide range of pathogenic fungi. In this study, the in vitro susceptibility of 92 clinical isolates of various Candida species against AbA was assessed by determining the planktonic and biofilm MICs of the isolates. The MIC(50) and MIC(90) of the planktonic Candida yeast were 1 and 1 μg ml(-1), respectively, whereas the biofilm MIC(50) and MIC(90) of the isolates were 8 and ≥64 μg ml(-1) respectively. This study demonstrates AbA inhibition on filamentation and biofilm development of C. albicans. The production of short hyphae and a lack of filamentation might have impaired biofilm development of AbA-treated cells. The AbA resistance of mature Candidia biofilms (24 h adherent population) was demonstrated in this study.
    Matched MeSH terms: Biofilms/drug effects*
  18. Supardy NA, Ibrahim D, Mat Nor SR, Noordin WNM
    Pol J Microbiol, 2019;68(1):21-33.
    PMID: 31050250 DOI: 10.21307/pjm-2019-003
    Biofouling is a phenomenon that describes the fouling organisms attached to man-made surfaces immersed in water over a period of time. It has emerged as a chronic problem to the oceanic industries, especially the shipping and aquaculture fields. The metal-containing coatings that have been used for many years to prevent and destroy biofouling are damaging to the ocean and many organisms. Therefore, this calls for the critical need of natural product-based antifoulants as a substitute for its toxic counterparts. In this study, the antibacterial and antibiofilm activities of the bioactive compounds of Pseudoalteromonas sp. IBRL PD4.8 have been investigated against selected fouling bacteria. The crude extract has shown strong antibacterial activity against five fouling bacteria, with inhibition zones ranging from 9.8 to 13.7 mm and minimal inhibitory concentrations of 0.13 to 8.0 mg/ml. Meanwhile, the antibiofilm study has indicated that the extract has attenuated the initial and pre-formed biofilms of Vibrio alginolyticus FB3 by 45.37 ± 4.88% and 29.85 ± 2.56%, respectively. Moreover, micrographs from light and scanning electron microscope have revealed extensive structural damages on the treated biofilms. The active fraction was fractionated with chromatographic methods and liquid chromatography-mass spectroscopy analyses has further disclosed the presence of a polyunsaturated fatty acid 4,7,10,13-hexadecatetraenoic acid (C16H24O2). Therefore, this compound was suggested as a potential bioactive compound contributing to the antibacterial property. In conclusion, Pseudoalteromonas sp. IBRL PD4.8 is a promising source as a natural antifouling agent that can suppress the growth of five fouling bacteria and biofilms of V. alginolyticus FB3.

    Biofouling is a phenomenon that describes the fouling organisms attached to man-made surfaces immersed in water over a period of time. It has emerged as a chronic problem to the oceanic industries, especially the shipping and aquaculture fields. The metal-containing coatings that have been used for many years to prevent and destroy biofouling are damaging to the ocean and many organisms. Therefore, this calls for the critical need of natural product-based antifoulants as a substitute for its toxic counterparts. In this study, the antibacterial and antibiofilm activities of the bioactive compounds of Pseudoalteromonas sp. IBRL PD4.8 have been investigated against selected fouling bacteria. The crude extract has shown strong antibacterial activity against five fouling bacteria, with inhibition zones ranging from 9.8 to 13.7 mm and minimal inhibitory concentrations of 0.13 to 8.0 mg/ml. Meanwhile, the antibiofilm study has indicated that the extract has attenuated the initial and pre-formed biofilms of Vibrio alginolyticus FB3 by 45.37 ± 4.88% and 29.85 ± 2.56%, respectively. Moreover, micrographs from light and scanning electron microscope have revealed extensive structural damages on the treated biofilms. The active fraction was fractionated with chromatographic methods and liquid chromatography-mass spectroscopy analyses has further disclosed the presence of a polyunsaturated fatty acid 4,7,10,13-hexadecatetraenoic acid (C16H24O2). Therefore, this compound was suggested as a potential bioactive compound contributing to the antibacterial property. In conclusion, Pseudoalteromonas sp. IBRL PD4.8 is a promising source as a natural antifouling agent that can suppress the growth of five fouling bacteria and biofilms of V. alginolyticus FB3.

    Matched MeSH terms: Biofilms/growth & development*
  19. Sulugodu Ramachandra S
    Saudi Dent J, 2014 Apr;26(2):47-9.
    PMID: 25408595 DOI: 10.1016/j.sdentj.2013.12.002
    This article is a traditional literature review on caries levels in aggressive periodontitis. Aggressive periodontitis generally affects systemically healthy individuals aged <30 years (older individuals can also be affected) and is characterized by a young age of onset, rapid rate of disease progression, and familial aggregation of cases. Dental caries is caused by the dissolution of enamel by acid-producing bacteria present in the plaque biofilm, especially when the biofilm reaches critical mass due to improper oral hygiene. The association between caries level and aggressive periodontitis has long been debated. Initial research indicated that caries levels were high in patients with aggressive periodontitis, but high-quality studies have consistently shown that caries and aggressive periodontitis are inversely related. A recent in vitro study showed that Streptococcus mutans was killed more readily in the saliva of patients with aggressive periodontitis and Aggregatibacter actinomycetemcomitans positivity than in patients with A. actinomycetemcomitans negativity. Other mechanisms possibly explaining the inverse relationship between caries and aggressive periodontitis in cases of Down's syndrome are also discussed in this literature review. The usefulness of caries level in the diagnosis of aggressive periodontitis in developing countries such as India, where the disease is diagnosed primarily on the basis of clinical and radiographic features and familial history is also discussed.
    Matched MeSH terms: Biofilms
  20. Suleman Ismail Abdalla S, Katas H, Chan JY, Ganasan P, Azmi F, Fauzi MB
    Mol Pharm, 2021 05 03;18(5):1956-1969.
    PMID: 33822631 DOI: 10.1021/acs.molpharmaceut.0c01033
    Gelatin hydrogels are attractive for wound applications owing to their well-defined structural, physical, and chemical properties as well as good cell adhesion and biocompatibility. This study aimed to develop gelatin hydrogels incorporated with bio-nanosilver functionalized with lactoferrin (Ag-LTF) as a dual-antimicrobial action dressing, to be used in treating infected wounds. The hydrogels were cross-linked using genipin prior to loading with Ag-LTF and characterized for their physical and swelling properties, rheology, polymer and actives interactions, and in vitro release of the actives. The hydrogel's anti-biofilm and antibacterial performances against S. aureus and P. aeruginosa as well as their cytotoxicity effects were assessed in vitro, including primary wound healing gene expression of human dermal fibroblasts (HDFs). The formulated hydrogels showed adequate release of AgNPs and LTF, with promising antimicrobial effects against both bacterial strains. The Ag-LTF-loaded hydrogel did not significantly interfere with the normal cellular functions as no alteration was detected for cell viability, migration rate, and expression of the target genes, suggesting the nontoxicity of Ag-LTF as well as the hydrogels. In conclusion, Ag-LTF-loaded genipin-cross-linked gelatin hydrogel was successfully synthesized as a new approach for fighting biofilms in infected wounds, which may be applied to accelerate healing of chronic wounds.
    Matched MeSH terms: Biofilms/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links