Displaying publications 41 - 60 of 108 in total

Abstract:
Sort:
  1. Lay MM, Karsani SA, Malek SN
    Biomed Res Int, 2014;2014:468157.
    PMID: 24579081 DOI: 10.1155/2014/468157
    2,4',6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins.
    Matched MeSH terms: Cell Cycle/drug effects
  2. Al-Salahi OS, Ji D, Majid AM, Kit-Lam C, Abdullah WZ, Zaki A, et al.
    PLoS One, 2014;9(1):e83818.
    PMID: 24409284 DOI: 10.1371/journal.pone.0083818
    Eurycoma longifolia Jack has been widely used in traditional medicine for its antimalarial, aphrodisiac, anti-diabetic, antimicrobial and anti-pyretic activities. Its anticancer activity has also been recently reported on different solid tumors, however no anti-leukemic activity of this plant has been reported. Thus the present study assesses the in vitro and in vivo anti-proliferative and apoptotic potentials of E. longifolia on K-562 leukemic cell line. The K-562 cells (purchased from ATCC) were isolated from patients with chronic myelocytic leukemia (CML) were treated with the various fractions (TAF273, F3 and F4) of E. longifolia root methanolic extract at various concentrations and time intervals and the anti-proliferative activity assessed by MTS assay. Flow cytometry was used to assess the apoptosis and cell cycle arrest. Nude mice injected subcutaneously with 10(7) K-562 cells were used to study the anti-leukemic activity of TAF273 in vivo. TAF273, F3 and F4 showed various degrees of growth inhibition with IC50 values of 19, 55 and 62 µg/ml, respectively. TAF273 induced apoptosis in a dose and time dependent manner. TAF273 arrested cell cycle at G1 and S phases. Intraperitoneal administration of TAF273 (50 mg/kg) resulted in a significant growth inhibition of subcutaneous tumor in TAF273-treated mice compared with the control mice (P = 0.024). TAF273 shows potent anti-proliferative activity in vitro and in vivo models of CML and therefore, justifies further efforts to define more clearly the potential benefits of using TAF273 as a novel therapeutic strategy for CML management.
    Matched MeSH terms: Cell Cycle/drug effects
  3. Ruszymah BH, Chowdhury SR, Manan NA, Fong OS, Adenan MI, Saim AB
    J Ethnopharmacol, 2012 Mar 27;140(2):333-8.
    PMID: 22301444 DOI: 10.1016/j.jep.2012.01.023
    Centella asiatica is a traditional herbal medicine that has been shown to have pharmacological effect on skin wound healing, and could be potential therapeutic agent for corneal epithelial wound healing.
    Matched MeSH terms: Cell Cycle/drug effects
  4. Ismail N, Ismail M, Fathy SF, Musa SN, Imam MU, Foo JB, et al.
    Int J Mol Sci, 2012;13(8):9692-708.
    PMID: 22949825 DOI: 10.3390/ijms13089692
    The neuroprotective and antioxidative effects of germinated brown rice (GBR), brown rice (BR) and commercially available γ-aminobutyric acid (GABA) against cell death induced by hydrogen peroxide (H(2)O(2)) in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H(2)O(2)-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP) and prevented phosphatidylserine (PS) translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis.
    Matched MeSH terms: Cell Cycle/drug effects
  5. Fatimah SS, Tan GC, Chua KH, Tan AE, Hayati AR
    J Biosci Bioeng, 2012 Aug;114(2):220-7.
    PMID: 22578596 DOI: 10.1016/j.jbiosc.2012.03.021
    Human amnion epithelial cells (HAECs) hold great promise in tissue engineering for regenerative medicine. Large numbers of HAECs are required for this purpose. Hence, exogenous growth factor is added to the culture medium to improve epithelial cells proliferation. The aim of the present study was to determine the effects of epidermal growth factor (EGF) on the proliferation and cell cycle regulation of cultured HAECs. HAECs at P1 were cultured for 7 days in medium containing an equal volume mix of HAM's F12: Dulbecco's Modified Eagles Medium (1:1) supplemented with different concentrations of EGF (0, 5, 10, 20, 30 and 50 ng/ml EGF) in reduced serum. Morphology, growth kinetics and cell cycle analysis using flow cytometry were assessed. Quantitative gene expression for cell cycle control genes, pluripotent transcription factors, epithelial genes and neuronal genes were also determined. EGF enhanced HAECs proliferation with optimal concentration at 10 ng/ml EGF. EGF significantly increased the proportion of HAECs at S- and G2/M-phase of the cell cycle compared to the control. At the end of culture, HAECs remained as diploid cells under cell cycle analysis. EGF significantly decreased the mRNA expression of p21, pRb, p53 and GADD45 in cultured HAECs. EGF also significantly decreased the pluripotent genes expression: Oct-3/4, Sox2 and Nanog; epithelial genes expression: CK14, p63, CK1 and Involucrin; and neuronal gene expression: NSE, NF-M and MAP 2. The results suggested that EGF is a strong mitogen that promotes the proliferation of HAECs through cell cycle regulation. EGF did not promote HAECs differentiation or pluripotent genes expression.
    Matched MeSH terms: Cell Cycle/drug effects*
  6. Zulkepli NA, Rou KV, Sulaiman WN, Salhin A, Saad B, Seeni A
    Asian Pac J Cancer Prev, 2011;12(1):259-63.
    PMID: 21517268
    One of the main aims of cancer chemopreventive studies is to identify ideal apoptotic inducers, especially examples which can induce early apoptotic activity. The present investigation focused on chemopreventive effects of a hydrazone derivative using an in vitro model with tongue cancer cells. Alteration in cell morphology was ascertained, along with stage in the cell cycle and proliferation, while living-dead status of the cells was confirmed under a confocal microscope. In addition, cytotoxicity test was performed using normal mouse skin fibroblast cells. The results showed that the compound inhibited the growth of tongue cancer cells with an inhibitory concentration (IC₅₀) of 0.01 mg/ml in a dose and time-dependent manner, with a two-fold increase in early apoptotic activity and G0G1 phase cell cycle arrest compared to untreated cells. Exposure to the compound also resulted in alterations of cell morphology including vacuolization and cellular shrinkage. Confocal microscope analysis using calcein and ethidium staining confirmed that the compound caused cell death, whereas no cytotoxic effects on normal mouse skin fibroblast cells were observed. In conclusion, the findings in this study suggested that the hydrazone derivative acts as an apoptotic inducer with anti-proliferative chemopreventive activity in tongue cancer cells.
    Matched MeSH terms: Cell Cycle/drug effects
  7. Ramasamy S, Abdul Wahab N, Zainal Abidin N, Manickam S
    Exp. Toxicol. Pathol., 2013 Mar;65(3):341-9.
    PMID: 22217449 DOI: 10.1016/j.etp.2011.11.005
    Species of Phyllanthus have traditionally been used for hundreds of years for treating many ailments including diabetes, anemia, bronchitis and hepatitis. The present study aims to investigate the cytotoxic and apoptotic effects of methanol (PWM), hexane (PWH) and ethyl acetate (PWE) extracts from the leaves of the endemic plant Phyllanthus watsonii Airy Shaw (Phyllanthaceae) on MCF-7 human breast cancer cells. We observed that the PWM, PWH and PWE extracts were cytotoxic and selectively inhibited the growth and proliferation of MCF-7 cells compared to untreated control in a dose dependent manner with an IC(50) of 12.7 ± 4.65, 7.9 ± 0.60 and 7.7 ± 0.29 μg/ml, respectively. However, the extracts were not toxic at these concentrations to normal human lung fibroblast MRC-5 cells. Cell death induced by PWM, PWH and PWE extracts were mainly due to apoptosis which was characterized by apoptotic morphological changes and a nuclear DNA fragmentation. Caspase-3 activation following P. watsonii extracts treatment was also evident for apoptotic cell death which was preceded by an S phase cell cycle perturbation. The results suggested that the cytotoxic activity of P. watsonii extracts was related to an early event of cell cycle perturbation and a later event of apoptosis. Hence, P. watsonii displays potential to be further exploited in the discovery and development of new anticancer agents.
    Matched MeSH terms: Cell Cycle/drug effects
  8. Awang K, Azmi MN, Aun LI, Aziz AN, Ibrahim H, Nagoor NH
    Molecules, 2010 Nov;15(11):8048-59.
    PMID: 21063268 DOI: 10.3390/molecules15118048
    1'-(S)-1'-Acetoxychavicol acetate (ACA) isolated from the Malaysian ethno-medicinal plant Alpinia conchigera Griff. was investigated for its potential as an anticancer drug. In this communication, we describe the cytotoxic and apoptotic properties of ACA on five human tumour cell lines. Data from MTT cell viability assays indicated that ACA induced both time- and dose-dependent cytotoxicity on all tumour cell lines tested and had no adverse cytotoxic effects on normal cells. Total mortality of the entire tumour cell population was achieved within 30 hrs when treated with ACA at 40.0 µM concentration. Flow cytometric analysis for annexin-V and PI dual staining demonstrated that cell death occurred via apoptosis, followed by secondary necrosis. The apoptotic effects of ACA were confirmed via the DNA fragmentation assay, in which consistent laddering of genomic DNA was observed for all tumour cell lines after a 24 hrs post-treatment period at the IC(50) concentration of ACA. A cell cycle analysis using PI staining also demonstrated that ACA induced cell cycle arrest at the G(0)/G(1) phase, corresponding to oral tumour cell lines. In conclusion, ACA exhibits enormous potential for future development as a chemotherapeutic drug against various malignancies.
    Matched MeSH terms: Cell Cycle/drug effects*
  9. Hasima N, Aun LI, Azmi MN, Aziz AN, Thirthagiri E, Ibrahim H, et al.
    Phytomedicine, 2010 Oct;17(12):935-9.
    PMID: 20729047 DOI: 10.1016/j.phymed.2010.03.011
    Medicinal plants containing active natural compounds have been used as an alternative treatment for cancer patients in many parts of the world especially in Asia (Itharat et al. 2004). In this report, we describe the cytotoxic and apoptotic properties of 1'S-1'-acetoxyeugenol acetate (AEA), an analogue of 1'S-1'-acetoxychavicol acetate (ACA), isolated from the Malaysian ethno-medicinal plant Alpinia conchigera Griff (Zingiberaceae) on human breast cancer cells. Data from MTT cell viability assays indicated that AEA induced both time- and dose-dependent cytotoxicity with an IC(50) value of 14.0 μM within 36 h of treatment on MCF-7 cells, but not in HMEC normal control cells. Both annexin V-FITC/PI flow cytometric analysis and DNA fragmentation assays confirmed that AEA induced cell death via apoptosis. AEA was also found to induce cell cycle arrest in MCF-7 cells at the G(0)/G(1) phase with no adverse cell cycle arrest effects on HMEC normal control cells. It was concluded that AEA isolated from the Malaysian tropical ginger represents a potential chemotherapeutic agent against human breast cancer cells with higher cytotoxicity potency than its analogue, ACA.
    Matched MeSH terms: Cell Cycle/drug effects*
  10. Ho KL, Chong PP, Yazan LS, Ismail M
    J Med Food, 2012 Dec;15(12):1096-102.
    PMID: 23216109 DOI: 10.1089/jmf.2012.2245
    Vanillin is the substance responsible for the flavor and smell of vanilla, a widely used flavoring agent. Previous studies reported that vanillin is a good antimutagen and anticarcinogen. However, there are also some contradicting findings showing that vanillin was a comutagen and cocarcinogen. This study investigated whether vanillin is an anticarcinogen or a cocarcinogen in rats induced with azoxymethane (AOM). Rats induced with AOM will develop aberrant crypt foci (ACF). AOM-challenged rats were treated with vanillin orally and intraperitoneally at low and high concentrations and ACF density, multiplicity, and distribution were observed. The gene expression of 14 colorectal cancer-related genes was also studied. Results showed that vanillin consumed orally had no effect on ACF. However, high concentrations (300 mg/kg body weight) of vanillin administered through intraperitoneal injection could increase ACF density and ACF multiplicity. ACF were mainly found in the distal colon rather than in the mid-section and proximal colon. The expression of colorectal cancer biomarkers, protooncogenes, recombinational repair, mismatch repair, and cell cycle arrest, and tumor suppressor gene expression were also affected by vanillin. Vanillin was not cocarcinogenic when consumed orally. However, it was cocarcinogenic when being administered intraperitoneally at high concentration. Hence, the use of vanillin in food should be safe but might have cocarcinogenic potential when it is used in high concentration for therapeutic purposes.
    Matched MeSH terms: Cell Cycle/drug effects
  11. Yaacob NS, Nik Mohamed Kamal NN, Wong KK, Norazmi MN
    Asian Pac J Cancer Prev, 2015;16(18):8135-40.
    PMID: 26745050
    BACKGROUND: Cell cycle regulatory proteins are suitable targets for cancer therapeutic development since genetic alterations in many cancers also affect the functions of these molecules. Strobilanthes crispus (S. crispus) is traditionally known for its potential benefits in treating various ailments. We recently reported that an active sub-fraction of S. crispus leaves (SCS) caused caspase-dependent apoptosis of human breast cancer MCF-7 and MDA-MB-231 cells.

    MATERIALS AND METHODS: Considering the ability of SCS to also promote the activity of the antiestrogen, tamoxifen, we further examined the effect of SCS in modulating cell cycle progression and related proteins in MCF-7 and MDA-MB-231 cells alone and in combination with tamoxifen. Expression of cell cycle- related transcripts was analysed based on a previous microarray dataset.

    RESULTS: SCS significantly caused G1 arrest of both types of cells, similar to tamoxifen and this was associated with modulation of cyclin D1, p21 and p53. In combination with tamoxifen, the anticancer effects involved downregulation of ERα protein in MCF-7 cells but appeared independent of an ER-mediated mechanism in MDA-MB-231 cells. Microarray data analysis confirmed the clinical relevance of the proteins studied.

    CONCLUSIONS: The current data suggest that SCS growth inhibitory effects are similar to that of the antiestrogen, tamoxifen, further supporting the previously demonstrated cytotoxic and apoptotic actions of both agents.

    Matched MeSH terms: Cell Cycle/drug effects*
  12. Lim KH, Raja VJ, Bradshaw TD, Lim SH, Low YY, Kam TS
    J Nat Prod, 2015 May 22;78(5):1129-38.
    PMID: 25919190 DOI: 10.1021/acs.jnatprod.5b00117
    Six new indole alkaloids, viz., cononusine (1, a rare example of an iboga-pyrrolidone conjugate), ervaluteine (2), vincamajicine (3), tacamonidine (4), 6-oxoibogaine (5), and N(4)-chloromethylnorfluorocurarine chloride (6), and two new vobasinyl-iboga bisindole alkaloids, ervatensines A (7) and B (8), in addition to other known alkaloids, were isolated from the stem-bark extract of the Malayan Tabernaemontana corymbosa. The structures of these alkaloids were established on the basis of NMR and MS analyses and, in one instance (7), confirmed by X-ray diffraction analysis. Vincamajicine (3) showed appreciable activity in reversing multidrug resistance in vincristine-resistant KB cells (IC50 2.62 μM), while ervatensines A (7) and B (8) and two other known bisindoles displayed pronounced in vitro growth inhibitory activity against human KB cells (IC50 < 2 μM). Compounds 7 and 8 also showed good growth inhibitory activity against A549, MCF-7, MDA-468, HCT-116, and HT-29 cells (IC50 0.70-4.19 μM). Cell cycle and annexin V-FITC apoptosis assays indicated that compounds 7 and 8 inhibited proliferation of HCT-116 and MDA-468 cells, evoking apoptotic and necrotic cell death.
    Matched MeSH terms: Cell Cycle/drug effects
  13. Naaz F, Ahmad F, Lone BA, Pokharel YR, Fuloria NK, Fuloria S, et al.
    Bioorg Chem, 2020 01;95:103519.
    PMID: 31884140 DOI: 10.1016/j.bioorg.2019.103519
    A set of two series of 1,3,4-oxadiazole (11a-n) and 1,2,4-Triazole (12a, c, e, g, h, j-n) based topsentin analogues were prepared by replacing imizadole moiety of topsentin through a multistep synthesis starting from indole. All the compounds synthesized were submitted for single dose (10 µM) screening against a NCI panel of 60-human cancer cell lines. Among all cancer cell lines, colon (HCC-2998) and Breast (MCF-7, T-47D) cancer cell lines were found to be more susceptible for this class of compounds. Among the compounds tested, compounds 11a, 11d, 11f, 12e and 12h, were exhibited good anti-proliferative activity against various cancer cell lines. Compounds 11d, 12e and 12h demonstrated better activity with IC50 2.42 µM, 3.06 µM, and 3.30 µM respectively against MCF-7 human cancer cell line than that of the standard drug doxorubicin IC50 6.31 µM. Furthermore, 11d induced cell cycle arrest at G0/G1 phase and also disrupted mitochondrial membrane potential with reducing cell migration potential of MCF-7 cells in dose dependent manner. In vitro microtubule polymerization assays found that compound 11d disrupt tubulin dynamics by inhibiting tubulin polymerization with IC50 3.89 μM compared with standard nocodazole (IC50 2.49 μM). In silico docking studies represented that 11d was binding at colchicine binding site of β-tubulin. Compound 11d emerged as lead molecule from the library of compounds tested and this may serve as a template for further drug discovery.
    Matched MeSH terms: Cell Cycle/drug effects
  14. Al-Masawa ME, Wan Kamarul Zaman WS, Chua KH
    Sci Rep, 2020 12 09;10(1):21583.
    PMID: 33299022 DOI: 10.1038/s41598-020-78395-y
    The scarcity of chondrocytes is a major challenge for cartilage tissue engineering. Monolayer expansion is necessary to amplify the limited number of chondrocytes needed for clinical application. Growth factors are often added to improve monolayer culture conditions, promoting proliferation, and enhancing chondrogenesis. Limited knowledge on the biosafety of the cell products manipulated with growth factors in culture has driven this study to evaluate the impact of growth factor cocktail supplements in chondrocyte culture medium on chondrocyte genetic stability and tumorigenicity. The growth factors were basic fibroblast growth factor (b-FGF), transforming growth factor β2 (TGF β2), insulin-like growth factor 1 (IGF-1), insulin-transferrin-selenium (ITS), and platelet-derived growth factor (PD-GF). Nasal septal chondrocytes cultured in growth factor cocktail exhibited a significantly high proliferative capacity. Comet assay revealed no significant DNA damage. Flow cytometry showed chondrocytes were mostly at G0-G1 phase, exhibiting normal cell cycle profile with no aneuploidy. We observed a decreased tumour suppressor genes' expression (p53, p21, pRB) and no TP53 mutations or tumour formation after 6 months of implantation in nude mice. Our data suggest growth factor cocktail has a low risk of inducing genotoxic and tumorigenic effects on chondrocytes up to passage 6 with 16.6 population doublings. This preclinical tumorigenicity and genetic instability evaluation is crucial for further clinical works.
    Matched MeSH terms: Cell Cycle/drug effects
  15. Khor CY, Khoo BY
    Biotechnol Lett, 2020 Aug;42(8):1581-1595.
    PMID: 32385743 DOI: 10.1007/s10529-020-02904-2
    OBJECTIVE: This study aimed to examine the metabolising effect of chrysin by investigating the mRNA expression levels of PPARα and its related cellular mechanisms in HCT116 cells.

    RESULTS: The mRNA expression of PPARα was significantly induced in HCT116 cells following treatment with chrysin for 36 h, but the mRNA expression of PPARα was inhibited, when the cells were treated with a combination of chrysin and MK886 (PPARα inhibitor). This phenomenon proved that the incorporation of MK886 lowers the expression levels of PPARα, thus enabling us to study the function of PPARα. The cell population of the G0/G1 phase significantly increased in chrysin-treated cells, which was accompanied by a decrease in the percentage of S phase cell population after 12 h of treatment. However, treatments of HCT116 cells with chrysin only or a combination of chrysin and MK886 did not show the opposite situation in the G0/G1 and S phase cell populations, indicating that the expression of PPARα may not be associated with the cell cycle in the treated cells. The migration rate in chrysin-treated HCT116 cells was reduced significantly after 24 and 36 h of treatments. However, the activity was revived, when the expression of PPARα was inhibited, indicating that the migration activity of chrysin-treated cells is likely correlated with the expression of PPARα. Comparison of the CYP2S1 and CYP1B1 mRNA expression in chrysin only treated, and a combination of chrysin and MK886-treated HCT116 cells for 24 and 36 h showed a significant difference in the expression levels, indicating that PPARα inhibitor could also modify the expression of CYP2S1 and CYP1B1.

    CONCLUSION: The study indicates that PPARα may play an essential role in regulating the migration activity, and the expression of CYP2S1 and CYP1B1 in chrysin-treated colorectal cancer cells.

    Matched MeSH terms: Cell Cycle/drug effects
  16. Jaganathan SK, Supriyanto E, Mandal M
    World J Gastroenterol, 2013 Nov 21;19(43):7726-34.
    PMID: 24282361 DOI: 10.3748/wjg.v19.i43.7726
    AIM: To investigate the events associated with the apoptotic effect of p-Coumaric acid, one of the phenolic components of honey, in human colorectal carcinoma (HCT-15) cells.

    METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tertazolium-bromide assay was performed to determine the antiproliferative effect of p-Coumaric acid against colon cancer cells. Colony forming assay was conducted to quantify the colony inhibition in HCT 15 and HT 29 colon cancer cells after p-Coumaric acid treatment. Propidium Iodide staining of the HCT 15 cells using flow cytometry was done to study the changes in the cell cycle of treated cells. Identification of apoptosis was done using scanning electron microscope and photomicrograph evaluation of HCT 15 cells after exposing to p-Coumaric acid. Levels of reactive oxygen species (ROS) of HCT 15 cells exposed to p-Coumaric acid was evaluated using 2', 7'-dichlorfluorescein-diacetate. Mitochondrial membrane potential of HCT-15 was assessed using rhodamine-123 with the help of flow cytometry. Lipid layer breaks associated with p-Coumaric acid treatment was quantified using the dye merocyanine 540. Apoptosis was confirmed and quantified using flow cytometric analysis of HCT 15 cells subjected to p-Coumaric acid treatment after staining with YO-PRO-1.

    RESULTS: Antiproliferative test showed p-Coumaric acid has an inhibitory effect on HCT 15 and HT 29 cells with an IC₅₀ (concentration for 50% inhibition) value of 1400 and 1600 μmol/L respectively. Colony forming assay revealed the time-dependent inhibition of HCT 15 and HT 29 cells subjected to p-Coumaric acid treatment. Propidium iodide staining of treated HCT 15 cells showed increasing accumulation of apoptotic cells (37.45 ± 1.98 vs 1.07 ± 1.01) at sub-G1 phase of the cell cycle after p-Coumaric acid treatment. HCT-15 cells observed with photomicrograph and scanning electron microscope showed the signs of apoptosis like blebbing and shrinkage after p-Coumaric acid exposure. Evaluation of the lipid layer showed increasing lipid layer breaks was associated with the growth inhibition of p-Coumaric acid. A fall in mitochondrial membrane potential and increasing ROS generation was observed in the p-Coumaric acid treated cells. Further apoptosis evaluated by YO-PRO-1 staining also showed the time-dependent increase of apoptotic cells after treatment.

    CONCLUSION: These results depicted that p-Coumaric acid inhibited the growth of colon cancer cells by inducing apoptosis through ROS-mitochondrial pathway.

    Matched MeSH terms: Cell Cycle/drug effects
  17. Latifah SY, Gopalsamy B, Abdul Rahim R, Manaf Ali A, Haji Lajis N
    Molecules, 2021 Mar 12;26(6).
    PMID: 33808969 DOI: 10.3390/molecules26061554
    BACKGROUND: This study reports on the cytotoxic properties of nordamnacanthal and damnacanthal, isolated from roots of Morinda elliptica on T-lymphoblastic leukaemia (CEM-SS) cell lines.

    METHODS: MTT assay, DNA fragmentation, ELISA and cell cycle analysis were carried out.

    RESULTS: Nordamnacanthal and damnacanthal at IC50 values of 1.7 μg/mL and10 μg/mL, respectively. At the molecular level, these compounds caused internucleosomal DNA cleavage producing multiple 180-200 bp fragments that are visible as a "ladder" on the agarose gel. This was due to the activation of the Mg2+/Ca2+-dependent endonuclease. The induction of apoptosis by nordamnacanthal was different from the one induced by damnacanthal, in a way that it occurs independently of ongoing transcription process. Nevertheless, in both cases, the process of dephosphorylation of protein phosphates 1 and 2A, the ongoing protein synthesis and the elevations of the cytosolic Ca2+ concentration were not needed for apoptosis to take place. Nordamnacanthal was found to have a cytotoxic effect by inducing apoptosis, while damnacanthal caused arrest at the G0/G1 phase of the cell cycle.

    CONCLUSION: Damnacanthal and nordamnacanthal have anticancer properties, and could act as potential treatment for T-lymphoblastic leukemia.

    Matched MeSH terms: Cell Cycle/drug effects
  18. Hassan Z, Mustafa S, Rahim RA, Isa NM
    In Vitro Cell Dev Biol Anim, 2016 Mar;52(3):337-348.
    PMID: 26659392 DOI: 10.1007/s11626-015-9978-8
    Development of tumour that is resistant to chemotherapeutics and synthetic drugs, coupled with their life-threatening side effects and the adverse effects of surgery and hormone therapies, led to increased research on probiotics' anticancer potentials. The current study investigated the potential of live, heat-killed cells (HKC) and the cytoplasmic fractions (CF) of Enterococcus faecalis and Staphylococcus hominis as anti-breast cancer agents. MCF-7 cell line was treated with 25, 50, 100 and 200 μg/mL each of live, HKC and CF of the bacteria; and cytotoxicity was evaluated for 24, 48 and 72 h using MTT assay. The morphological features of the treated cells were examined by fluorescence microscopy. The stage of cell cycle arrest and apoptosis were quantified by flow cytometry. The bacterial effect on non-malignant breast epithelial cell line, MCF-10A, was assessed using MTT assay for 24, 48 and 72 h. All the three forms of the bacteria caused a significant decrease in MCF-7 (up to 33.29%) cell proliferation in concentration- and time-dependent manner. Morphological features of apoptosis like cell death, cell shrinkage and membrane blebbing were observed. Flow cytometry analyses suggested that about 34.60% of treated MCF-7 was undergoing apoptosis. A strong anti-proliferative activity was efficiently induced through sub-G1 accumulation (up to 83.17%) in treated MCF-7 and decreased number in the G0/G1 phase (74.39%). MCF-10A cells treated with both bacteria showed no significant difference with the untreated (>90% viability). These bacteria can be used as good alternative nutraceutical with promising therapeutic indexes for breast cancer because of their non-cytotoxic effects to normal cells.
    Matched MeSH terms: Cell Cycle/drug effects
  19. Arul M, Roslani AC, Cheah SH
    In Vitro Cell Dev Biol Anim, 2017 May;53(5):435-447.
    PMID: 28120247 DOI: 10.1007/s11626-016-0126-x
    Tumor heterogeneity may give rise to differential responses to chemotherapy drugs. Therefore, unraveling tumor heterogeneity has an implication for biomarker discovery and cancer therapeutics. To test this phenomenon, we investigated the differential responses of three secondary colorectal cancer cell lines of different origins (HCT116, HT29, and SW620 cells) and four novel primary cell lines obtained from different colorectal cancer patients to 5-fluorouracil (5-FU) and oxaliplatin (L-OHP) and explored the differences in gene expression among the primary cell lines in response to exposure to cytotoxic drugs. Cells were exposed to different doses of 5-FU and L-OHP separately or in combinations of equitoxic drug or equimolar drug ratios (median effect of Chou-Talalay principle). Cell viability was assessed using MTT assay and the respective IC50values were determined. Changes in gene expression in primary cell lines after exposure to the same drug doses were compared using real-time PCR array. The sensitivities (IC50) of different cell lines, both secondary and primary, to 5-FU and L-OHP were significantly different, whether in monotherapy or combined treatment. Primary cell lines needed higher doses to reach IC50. There were variations in gene expression among the primary cell lines of different chemosensitivities to the challenge of the same combined dose of 5-FU and L-OHP. The results confirm the heterogeneous nature of colorectal cancer cells from different patient tumors. Studies using primary cancer cells established from patient's tumors rather than secondary cell lines will more closely reflect the actual character of the disease.
    Matched MeSH terms: Cell Cycle/drug effects
  20. Halder A, Jethwa M, Mukherjee P, Ghosh S, Das S, Helal Uddin ABM, et al.
    Artif Cells Nanomed Biotechnol, 2020 Nov 17;48(1):1362-1371.
    PMID: 33284038 DOI: 10.1080/21691401.2020.1850465
    Cancer management presents multifarious problems. Triple negative breast cancer (TNBC) is associated with inaccurate prognosis and limited chemotherapeutic options. Betulinic acid (BA) prevents angiogenesis and causes apoptosis of TNBC cells. NIH recommends BA for rapid access in cancer chemotherapy because of its cell-specific toxicity. BA however faces major challenges in therapeutic practices due to its limited solubility and cellular entree. We report lactoferrin (Lf) attached BA nanoparticles (Lf-BAnp) for rapid delivery in triple negative breast (MDA-MB-231) and laryngeal (HEp-2) cancer cell types. Lf association was confirmed by SDS-PAGE and FT-IR analysis. Average hydrodynamic size of Lf-BAnp was 147.7 ± 6.20 nm with ζ potential of -28.51 ± 3.52 mV. BA entrapment efficiency was 75.38 ± 2.70% and the release mechanism followed non-fickian pattern. Impact of Lf-BAnp on cell cycle and cytotoxicity of triple negative breast cancer and its metastatic site laryngeal cancer cell lines were analyzed. Lf-BAnp demonstrated strong anti-proliferative and cytotoxic effects, along with increased sub-G1 population and reduced number of cells in G1 and G2/M phases of the cell cycle, confirming reduced cell proliferation and significant cell death. Speedy intracellular entry of Lf-BAnp occurred within 30 min. Lf-BAnp design was explored for the first time as safer chemotherapeutic arsenals against complex TNBC conditions.
    Matched MeSH terms: Cell Cycle/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links