Displaying publications 41 - 60 of 70 in total

Abstract:
Sort:
  1. Guest JR, Tun K, Low J, Vergés A, Marzinelli EM, Campbell AH, et al.
    Sci Rep, 2016 11 08;6:36260.
    PMID: 27824083 DOI: 10.1038/srep36260
    Coral cover on reefs is declining globally due to coastal development, overfishing and climate change. Reefs isolated from direct human influence can recover from natural acute disturbances, but little is known about long term recovery of reefs experiencing chronic human disturbances. Here we investigate responses to acute bleaching disturbances on turbid reefs off Singapore, at two depths over a period of 27 years. Coral cover declined and there were marked changes in coral and benthic community structure during the first decade of monitoring at both depths. At shallower reef crest sites (3-4 m), benthic community structure recovered towards pre-disturbance states within a decade. In contrast, there was a net decline in coral cover and continuing shifts in community structure at deeper reef slope sites (6-7 m). There was no evidence of phase shifts to macroalgal dominance but coral habitats at deeper sites were replaced by unstable substrata such as fine sediments and rubble. The persistence of coral dominance at chronically disturbed shallow sites is likely due to an abundance of coral taxa which are tolerant to environmental stress. In addition, high turbidity may interact antagonistically with other disturbances to reduce the impact of thermal stress and limit macroalgal growth rates.
    Matched MeSH terms: Disease Resistance
  2. Azizi A, Mohd Hanafi N, Basiran MN, Teo CH
    3 Biotech, 2018 Aug;8(8):321.
    PMID: 30034985 DOI: 10.1007/s13205-018-1354-4
    Information on the abiotic stress tolerance and ice-ice disease resistance properties of tissue-cultured Kappaphycus alvarezii is scarce and can pose a big hurdle to a wider use of tissue-cultured seaweed in the industry. Here, we reported on a study of seaweed-associated bacteria diversity in farmed and tissue-cultured K. alvarezii, and ice-ice disease resistance and elevated growth temperature tolerance of tissue-cultured K. alvarezii in laboratory conditions. A total of 40 endophytic seaweed-associated bacteria strains were isolated from 4 types of K. alvarezii samples based on their colony morphologies, Gram staining properties and 16S rRNA gene sequences. Bacteria strains isolated were found to belong to Alteromonas sp., Aestuariibacter sp., Idiomarina sp., Jejuia sp., Halomonas sp., Primorskyibacter sp., Pseudoalteromonas sp., Ruegeria sp., Terasakiella sp., Thalassospira sp. and Vibrio sp. Vibrio alginolyticus strain ABI-TU15 isolated in this study showed agar-degrading property when analyzed using agar depression assay. Disease resistance assay was performed by infecting healthy K. alvarezii with 105 cells/mL Vibrio sp. ABI-TU15. Severe ice-ice disease symptoms were detected in farmed seaweeds compared to the tissue-cultured K. alvarezii. Besides disease resistance, tissue-cultured K. alvarezii showed better tolerance to the elevated growth temperatures of 30 and 35 °C. In conclusion, our overall data suggests that tissue-cultured K. alvarezii exhibited better growth performance than farmed seaweeds when exposed to elevated growth temperature and ice-ice disease-causing agent.
    Matched MeSH terms: Disease Resistance
  3. Magaji G. Usman, Tijjani Ahmadu, Adamu Jibrin Nayaya, Aisha M. Dodo
    MyJurnal
    Naturally, plant habitats are exposed to several potential effects of biotic and different abiotic environmental challenges. Several types of micro-organisms namely; bacteria, viruses, fungi, nematodes, mites, insects, mammals and other herbivorous animals are found in large amounts in all ecosystems, which lead to considerable reduction in crop productivity. These organisms are agents carrying different diseases that can damage the plants through the secretion of toxic-microbial poisons that can penetrate in the plant tissues. Toxins are injurious substances that act on plant protoplast to influence disease development. In response to the stress effect, plants defend themselves by bearing some substances such as phytoalexins. Production of phytoalexins is one of the complex mechanisms through which plants exhibit disease resistance. Several findings specifically on phytoalexins have widen the understanding in the fields of plant biochemistry and molecular biology. However, this review reports the interaction of toxins and phytoalexins in plant-pathogen cycle, research progress on the association of phytoalexins with plant disease resistance as well as the role of the phytoalexins in plant disease control.
    Matched MeSH terms: Disease Resistance
  4. Abdul Rahman SN, Bakar MFA, Singham GV, Othman AS
    3 Biotech, 2019 Nov;9(11):388.
    PMID: 31656726 DOI: 10.1007/s13205-019-1921-3
    In this study, RNA sequencing of several Hevea brasiliensis clones grown in Malaysia with different annual rubber production yields and disease resistance was performed on the Illumina platform. A total of 29,862,548 reads were generated, resulting in 101,269 assembled transcripts that were used as the reference transcripts. A similarity search against the non-redundant (nr) protein databases presented 83,771 (83%) positive BLASTx hits. The transcriptome was annotated using gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Pfam database. A search for putative molecular markers was performed to identify single-nucleotide polymorphisms (SNPs). Overall, 3,210,629 SNPs were detected and a total of 1314 SNPs associated with the genes involved in MVA and MEP pathways were identified. A total of 176 SNP primer pairs were designed from sequences that were related to the MVA and MEP pathways. The transcriptome of RRIM 3001 and RRIM 712 were subjected to pairwise comparison and the results revealed that there were 1262 significantly differentially expressed genes unique to RRIM 3001, 1499 significantly differentially expressed genes unique to RRIM 712 and several genes related to the MVA and MEP pathways such as AACT, HMGS, PMK, MVD, DXS and HDS were included. The results will facilitate the characterization of H. brasiliensis transcriptomes and the development of a new set of molecular markers in the form of SNPs from transcriptome assembly for the genotype identification of various rubber varieties with superior traits in Malaysia.
    Matched MeSH terms: Disease Resistance
  5. Mohd Ghani F, Bhassu S
    PeerJ, 2019;7:e8107.
    PMID: 31875142 DOI: 10.7717/peerj.8107
    The emergence of diseases such as white spot disease has become a threat to Penaeus monodon cultivation. Although there have been a few studies utilizing RNA-Seq, the cellular processes of host-virus interaction in this species remain mostly anonymous. In the present study, P. monodon was challenged with WSSV by intramuscular injection and survived for 12 days. The effect of the host gene expression by WSSV infection in the haemocytes, hepatopancreas and muscle of P. monodon was studied using Illumina HiSeq 2000. The RNA-Seq of cDNA libraries was developed from surviving WSSV-challenged shrimp as well as from normal healthy shrimp as control. A comparison of the transcriptome data of the two groups showed 2,644 host genes to be significantly up-regulated and 2,194 genes significantly down-regulated as a result of the infection with WSSV. Among the differentially expressed genes, our study discovered HMGB, TNFSF and c-Jun in P. monodon as new potential candidate genes for further investigation for the development of potential disease resistance markers. Our study also provided significant data on the differential expression of genes in the survived WSSV infected P. monodon that will help to improve understanding of host-virus interactions in this species.
    Matched MeSH terms: Disease Resistance
  6. Low ET, Rosli R, Jayanthi N, Mohd-Amin AH, Azizi N, Chan KL, et al.
    PLoS One, 2014;9(1):e86728.
    PMID: 24497974 DOI: 10.1371/journal.pone.0086728
    Demand for palm oil has been increasing by an average of ∼8% the past decade and currently accounts for about 59% of the world's vegetable oil market. This drives the need to increase palm oil production. Nevertheless, due to the increasing need for sustainable production, it is imperative to increase productivity rather than the area cultivated. Studies on the oil palm genome are essential to help identify genes or markers that are associated with important processes or traits, such as flowering, yield and disease resistance. To achieve this, 294,115 and 150,744 sequences from the hypomethylated or gene-rich regions of Elaeis guineensis and E. oleifera genome were sequenced and assembled into contigs. An additional 16,427 shot-gun sequences and 176 bacterial artificial chromosomes (BAC) were also generated to check the quality of libraries constructed. Comparison of these sequences revealed that although the methylation-filtered libraries were sequenced at low coverage, they still tagged at least 66% of the RefSeq supported genes in the BAC and had a filtration power of at least 2.0. A total 33,752 microsatellites and 40,820 high-quality single nucleotide polymorphism (SNP) markers were identified. These represent the most comprehensive collection of microsatellites and SNPs to date and would be an important resource for genetic mapping and association studies. The gene models predicted from the assembled contigs were mined for genes of interest, and 242, 65 and 14 oil palm transcription factors, resistance genes and miRNAs were identified respectively. Examples of the transcriptional factors tagged include those associated with floral development and tissue culture, such as homeodomain proteins, MADS, Squamosa and Apetala2. The E. guineensis and E. oleifera hypomethylated sequences provide an important resource to understand the molecular mechanisms associated with important agronomic traits in oil palm.
    Matched MeSH terms: Disease Resistance/genetics
  7. Rahim HA, Bhuiyan MA, Lim LS, Sabu KK, Saad A, Azhar M, et al.
    Genet. Mol. Res., 2012;11(3):3277-89.
    PMID: 23079822 DOI: 10.4238/2012.September.12.11
    Advanced backcross families derived from Oryza sativa cv MR219/O. rufipogon IRGC105491 were utilized for identification of quantitative trait loci (QTL) for blast resistance using simple sequence repeat markers. Two hundred and sixty-one BC(2)F(3) families were used to construct a linkage map, using 87 markers, which covered 2375.2 cM of 12 rice chromosomes, with a mean density of 27.3 cM. The families were evaluated in a greenhouse for resistance to blast disease caused by pathotypes P7.2 and P5.0 of Magnaporthe oryzae. Five QTLs (qBL5.1, qBL5.2, qBL6.1, qBL8.1, and qBL10.1) for pathotype P5.0 and four QTLs (qBL5.3, qBL5.4, qBL7.1, and qBL8.2) for pathotype P7.2 were identified using the BC(2)F(3) families. Another linkage map was also constructed based on 31 BC(2)F(5) families, using 63 SSR markers, which covered 474.9 cM of 9 rice chromosomes, with a mean density of 8.01 cM. Five suggestive QTLs (qBL11.2, qBL11.3, qBL12.1, qBL12.2, qBL12.3) and one putative QTL (qBL2.1) were identified for pathotype P7.2. Also, seven suggestive QTLs (qBL1.1, qBL2.2, qBL4.1, qBL4.2, qBL5.3, qBL8.3, and qBL11.1) were detected for pathotype P5.0. We conclude that there is a non-race-specific resistance spectrum of O. rufipogon against M. oryzae pathotypes.
    Matched MeSH terms: Disease Resistance/genetics*
  8. Tohidi R, Idris IB, Malar Panandam J, Hair Bejo M
    Poult Sci, 2013 Apr;92(4):900-9.
    PMID: 23472012 DOI: 10.3382/ps.2012-02797
    Salmonella enterica serovar Enteritidis infection is a common concern in poultry production for its negative effects on growth as well as food safety for humans. Identification of molecular markers that are linked to resistance to Salmonella Enteritidis may lead to appropriate solutions to control Salmonella infection in chickens. This study investigated the association of candidate genes with resistance to Salmonella Enteritidis in young chickens. Two native breeds of Malaysian chickens, namely, Village Chickens and Red Junglefowl, were evaluated for bacterial colonization after Salmonella Enteritidis inoculation. Seven candidate genes were selected on the basis of their physiological role in immune response, as determined by prior studies in other genetic lines: natural resistance-associated protein 1 (NRAMP1), transforming growth factor β3 (TGFβ3), transforming growth factor β4 (TGFβ4), inhibitor of apoptosis protein 1 (IAP1), caspase 1 (CASP1), lipopolysaccharide-induced tumor necrosis factor (TNF) α factor (LITAF), and TNF-related apoptosis-inducing ligand (TRAIL). Polymerase chain reaction-RFLP was used to identify polymorphisms in the candidate genes; all genes exhibited polymorphisms in at least one breed. The NRAMP1-SacI polymorphism correlated with the differences in Salmonella Enteritidis load in the cecum (P = 0.002) and spleen (P = 0.01) of Village Chickens. Polymorphisms in the restriction sites of TGFβ3-BsrI, TGFβ4-MboII, and TRAIL-StyI were associated with Salmonella Enteritidis burden in the cecum, spleen, and liver of Village Chickens and Red Junglefowl (P < 0.05). These results indicate that the NRAMP1, TGFβ3, TGFβ4, and TRAIL genes are potential candidates for use in selection programs for increasing genetic resistance against Salmonella Enteritidis in native Malaysian chickens.
    Matched MeSH terms: Disease Resistance*
  9. Yeo FK, Wang Y, Vozabova T, Huneau C, Leroy P, Chalhoub B, et al.
    Theor Appl Genet, 2016 Feb;129(2):289-304.
    PMID: 26542283 DOI: 10.1007/s00122-015-2627-5
    Rphq2, a minor gene for partial resistance to Puccinia hordei , was physically mapped in a 188 kbp introgression with suppressed recombination between haplotypes of rphq2 and Rphq2 barley cultivars.
    Matched MeSH terms: Disease Resistance/genetics*
  10. Ton LB, Neik TX, Batley J
    Genes (Basel), 2020 09 30;11(10).
    PMID: 33008008 DOI: 10.3390/genes11101161
    Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.
    Matched MeSH terms: Disease Resistance/genetics
  11. Sheikhlar A, Meng GY, Alimon R, Romano N, Ebrahimi M
    J Aquat Anim Health, 2017 Dec;29(4):225-235.
    PMID: 28937913 DOI: 10.1080/08997659.2017.1374310
    Aqueous and methanol extracts of lemon Citrus limon peel, Euphorbia hirta (aerial parts), and fenugreek Trigonella foenum-graecum seeds were tested for their in vitro antimicrobial activities against the bacterium Aeromonas hydrophila. A swab paper disk method showed that the methanol extract of E. hirta (EHE) had the largest inhibition zone and the lowest minimal inhibitory concentration compared to all other herbal extracts. Based on these results, EHE was included in the diets of Sharptooth Catfish Clarias gariepinus at 0 (control), 2, 5, or 7 g/kg of diet (experiment 1). Each treatment was conducted in triplicate, with 30 fish (mean weight ± SE = 9.4 ± 0.4 g) in each replicate. After 30 d, the growth, feed intake, hepatosomatic index (HSI), and plasma biochemical parameters were measured. With a separate batch of Sharptooth Catfish, the efficacy of the EHE diets in conferring fish resistance to A. hydrophila over 30 d was compared to that of a diet containing oxytetracycline (OTC; experiment 2). Six treatments were conducted in triplicate groups of 30 fish (mean weight ± SE = 9.0 ± 0.3 g); the Control fish were fed the control diet and were not injected with A. hydrophila, while the Control-AH and OTC-AH groups were infected with A. hydrophila and were fed either the control diet or the diet containing OTC at 1 g/199 g. The other three treatments included fish that were injected with A. hydrophila but fed diets with increasing EHE at 2, 5, or 7 g/kg. Experiment 1 showed no change to growth, feeding efficiency, HSI, or plasma biochemical parameters. In experiment 2, however, fish that were fed dietary EHE at 5 g/kg had significantly lower mortality than the Control-AH group, with further resistance observed for fish fed EHE at 7 g/kg. Dietary OTC was more effective than EHE as a prophylactic to A. hydrophila infection in Sharptooth Catfish. Nevertheless, EHE can potentially be a valuable dietary supplement to improve the resistance of Sharptooth Catfish to A. hydrophila infection. Received May 3, 2017; accepted August 24, 2017.
    Matched MeSH terms: Disease Resistance*
  12. Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, et al.
    Nat Biotechnol, 2016 Jun;34(6):652-5.
    PMID: 27111722 DOI: 10.1038/nbt.3543
    Wild relatives of domesticated crop species harbor multiple, diverse, disease resistance (R) genes that could be used to engineer sustainable disease control. However, breeding R genes into crop lines often requires long breeding timelines of 5-15 years to break linkage between R genes and deleterious alleles (linkage drag). Further, when R genes are bred one at a time into crop lines, the protection that they confer is often overcome within a few seasons by pathogen evolution. If several cloned R genes were available, it would be possible to pyramid R genes in a crop, which might provide more durable resistance. We describe a three-step method (MutRenSeq)-that combines chemical mutagenesis with exome capture and sequencing for rapid R gene cloning. We applied MutRenSeq to clone stem rust resistance genes Sr22 and Sr45 from hexaploid bread wheat. MutRenSeq can be applied to other commercially relevant crops and their relatives, including, for example, pea, bean, barley, oat, rye, rice and maize.
    Matched MeSH terms: Disease Resistance/genetics*
  13. Stear A, Ali AOA, Brujeni GN, Buitkamp J, Donskow-Łysoniewska K, Fairlie-Clarke K, et al.
    Int J Parasitol, 2019 09;49(10):797-804.
    PMID: 31306661 DOI: 10.1016/j.ijpara.2019.05.003
    Lambs with the Major Histocompatibility Complex DRB1*1101 allele have been shown to produce fewer nematode eggs following natural and deliberate infection. These sheep also possess fewer adult Teladorsagia circumcincta than sheep with alternative alleles at the DRB1 locus. However, it is unclear if this allele is responsible for the reduced egg counts or merely acts as a marker for a linked gene. This study defined the MHC haplotypes in a population of naturally infected Scottish Blackface sheep by PCR amplification and sequencing, and examined the associations between MHC haplotypes and faecal egg counts by generalised linear mixed modelling. The DRB1*1101 allele occurred predominately on one haplotype and a comparison of haplotypes indicated that the causal mutation or mutations occurred in or around this locus. Additional comparisons with another resistant haplotype indicated that mutations in or around the DQB2*GU191460 allele were also responsible for resistance to nematode infections. Further analyses identified six amino acid substitutions in the antigen binding site of DRB1*1101 that were significantly associated with reductions in the numbers of adult T. circumcincta.
    Matched MeSH terms: Disease Resistance/genetics; Disease Resistance/immunology
  14. Hussain A, Khan MI, Albaqami M, Mahpara S, Noorka IR, Ahmed MAA, et al.
    Int J Mol Sci, 2021 Nov 08;22(21).
    PMID: 34769521 DOI: 10.3390/ijms222112091
    The WRKY transcription factors (TFs) network is composed of WRKY TFs' subset, which performs a critical role in immunity regulation of plants. However, functions of WRKY TFs' network remain unclear, particularly in non-model plants such as pepper (Capsicum annuum L.). This study functionally characterized CaWRKY30-a member of group III Pepper WRKY protein-for immunity of pepper against Ralstonia solanacearum infection. The CaWRKY30 was detected in nucleus, and its transcriptional expression levels were significantly upregulated by R. solanacearum inoculation (RSI), and foliar application ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). Virus induced gene silencing (VIGS) of CaWRKY30 amplified pepper's vulnerability to RSI. Additionally, the silencing of CaWRKY30 by VIGS compromised HR-like cell death triggered by RSI and downregulated defense-associated marker genes, like CaPR1, CaNPR1, CaDEF1, CaABR1, CaHIR1, and CaWRKY40. Conversely, transient over-expression of CaWRKY30 in pepper leaves instigated HR-like cell death and upregulated defense-related maker genes. Furthermore, transient over-expression of CaWRKY30 upregulated transcriptional levels of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. On the other hand, transient over-expression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 upregulated transcriptional expression levels of CaWRKY30. The results recommend that newly characterized CaWRKY30 positively regulates pepper's immunity against Ralstonia attack, which is governed by synergistically mediated signaling by phytohormones like ET, ABA, and SA, and transcriptionally assimilating into WRKY TFs networks, consisting of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. Collectively, our data will facilitate to explicate the underlying mechanism of crosstalk between pepper's immunity and response to RSI.
    Matched MeSH terms: Disease Resistance/drug effects; Disease Resistance/immunology*
  15. Maran S, Lee YY, Xu SH, Raj MS, Abdul Majid N, Choo KE, et al.
    J Dig Dis, 2013 Apr;14(4):196-202.
    PMID: 23241512 DOI: 10.1111/1751-2980.12023
    To identify gene polymorphisms that differ between Malays, Han Chinese and South Indians, and to identify candidate genes for the investigation of their role in protecting Malays from Helicobacter pylori (H. pylori) infection.
    Matched MeSH terms: Disease Resistance/genetics
  16. Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, et al.
    BMC Genomics, 2013;14:75.
    PMID: 23375136 DOI: 10.1186/1471-2164-14-75
    Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR). NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876.
    Matched MeSH terms: Disease Resistance/genetics
  17. Nusaibah SA, Siti Nor Akmar A, Idris AS, Sariah M, Mohamad Pauzi Z
    Plant Physiol Biochem, 2016 Dec;109:156-165.
    PMID: 27694009 DOI: 10.1016/j.plaphy.2016.09.014
    Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring.
    Matched MeSH terms: Disease Resistance*
  18. Habib MA, Yuen GC, Othman F, Zainudin NN, Latiff AA, Ismail MN
    Biochem. Cell Biol., 2017 04;95(2):232-242.
    PMID: 28177774 DOI: 10.1139/bcb-2016-0144
    The natural rubber latex extracted from the bark of Hevea brasiliensis plays various important roles in today's modern society. Following ultracentrifugation, the latex can be separated into 3 layers: C-serum, lutoids, and rubber particles. Previous studies have shown that a large number of proteins are present in these 3 layers. However, a complete proteome for this important plant is still unavailable. Protein sequences have been recently translated from the completed draft genome database of H. brasiliensis, leading to the creation of annotated protein databases of the following H. brasiliensis biosynthetic pathways: photosynthesis, latex allergens, rubberwood formation, latex biosynthesis, and disease resistance. This research was conducted to identify the proteins contained within the latex by way of de novo sequencing from mass spectral data obtained from the 3 layers of the latex. Peptides from these proteins were fragmented using collision-induced dissociation, higher-energy collisional dissociation, and electron-transfer dissociation activation methods. A large percentage of proteins from the biosynthetic pathways (63% to 100%) were successfully identified. In addition, a total of 1839 unique proteins were identified from the whole translated draft genome database (AnnHBM).
    Matched MeSH terms: Disease Resistance/genetics
  19. Liu X, Yunus Y, Lu D, Aghakhanian F, Saw WY, Deng L, et al.
    Hum Genet, 2015 Apr;134(4):375-92.
    PMID: 25634076 DOI: 10.1007/s00439-014-1525-2
    The indigenous populations from Peninsular Malaysia, locally known as Orang Asli, continue to adopt an agro-subsistence nomadic lifestyle, residing primarily within natural jungle habitats. Leading a hunter-gatherer lifestyle in a tropical jungle environment, the Orang Asli are routinely exposed to malaria. Here we surveyed the genetic architecture of individuals from four Orang Asli tribes with high-density genotyping across more than 2.5 million polymorphisms. These tribes reside in different geographical locations in Peninsular Malaysia and belong to three main ethno-linguistic groups, where there is minimal interaction between the tribes. We first dissect the genetic diversity and admixture between the tribes and with neighboring urban populations. Later, by implementing five metrics, we investigated the genome-wide signatures for positive natural selection of these Orang Asli, respectively. Finally, we searched for evidence of genomic adaptation to the pressure of malaria infection. We observed that different evolutionary responses might have emerged in the different Orang Asli communities to mitigate malaria infection.
    Matched MeSH terms: Disease Resistance/genetics*
  20. Ashkani S, Rafii MY, Rahim HA, Latif MA
    Biotechnol Lett, 2013 May;35(5):799-810.
    PMID: 23315158 DOI: 10.1007/s10529-012-1130-1
    Malaysian rice, Pongsu Seribu 2, has wide-spectrum resistance against blast disease. Chromosomal locations conferring quantitative resistance were detected by linkage mapping with SSRs and quantitative trait locus (QTL) analysis. For the mapping population, 188 F3 families were derived from a cross between the susceptible cultivar, Mahsuri, and a resistant variety, Pongsu Seribu 2. Partial resistance to leaf blast in the mapping population was assessed. A linkage map covering ten chromosomes and consisting of 63 SSR markers was constructed. 13 QTLs, including 6 putative and 7 putative QTLs, were detected on chromosomes 1, 2, 3, 5, 6, 10, 11 and 12. The resulting phenotypic variation due to a single QTL ranged from 2 to 13 %. These QTLs accounted for approx. 80 % of the total phenotypic variation within the F3 population. Therefore, partial resistance to blast in Pongsu Seribu 2 is due to combined effects of multiple loci with major and minor effects.
    Matched MeSH terms: Disease Resistance
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links