Displaying publications 41 - 60 of 64 in total

Abstract:
Sort:
  1. Jairoun AA, Shahwan M, Zyoud SH
    PLoS One, 2020;15(12):e0244688.
    PMID: 33382790 DOI: 10.1371/journal.pone.0244688
    BACKGROUND: Fish oil supplements that are rich in omega-3 long-chain polyunsaturated fatty acids (n-3 PUFAs). PUFAs are among the most widely-used dietary supplements globally, and millions of people consume them regularly. There have always been public concerns that these products should be guaranteed to be safe and of good quality, especially as these types of fish oil supplements are extremely susceptible to oxidative degradation.

    OBJECTIVES: The aim of the current study is to investigate and examine the oxidation status of dietary supplements containing fish oils and to identify important factors related to the oxidation status of such supplements available in the United Arab Emirates (UAE).

    METHODS: A total of 44 fish oil supplements were analysed in this study. For each product, the oxidative parameters peroxide value (PV), anisidine value (AV), and total oxidation (TOTOX) were calculated, and comparisons were made with the guidelines supplied by the Global Organization for EPA and DHA Omega-3s (GOED). Median values for each of the above oxidative parameters were tested using the Kruskal-Wallis and Mann-Whitney U tests. P values < 0.05 were chosen as the statistically significant boundary.

    RESULTS: The estimate for the average PV value was 6.4 with a 95% confidence interval (CI) [4.2-8.7] compared to the maximum allowable limit of 5 meq/kg. The estimate for the average P-AV was 11 with a 95% CI [7.8-14.2] compared to the maximum allowable limit of 20. The estimate for the average TOTOX value was 23.8 meq/kg with a 95% CI [17.4-30.3] compared to the maximum allowable limit of 26 according to the GOED standards.

    CONCLUSION: This research shows that most, although not all, of the fish oil supplements tested are compliant with the GOED oxidative quality standards. Nevertheless, it is clear that there should be a high level of inspection and control regarding authenticity, purity, quality, and safety in the processes of production and supply of dietary supplements containing fish oils.

    Matched MeSH terms: Fatty Acids, Omega-3/analysis
  2. Hicks CC, Cohen PJ, Graham NAJ, Nash KL, Allison EH, D'Lima C, et al.
    Nature, 2019 10;574(7776):95-98.
    PMID: 31554969 DOI: 10.1038/s41586-019-1592-6
    Micronutrient deficiencies account for an estimated one million premature deaths annually, and for some nations can reduce gross domestic product1,2 by up to 11%, highlighting the need for food policies that focus on improving nutrition rather than simply increasing the volume of food produced3. People gain nutrients from a varied diet, although fish-which are a rich source of bioavailable micronutrients that are essential to human health4-are often overlooked. A lack of understanding of the nutrient composition of most fish5 and how nutrient yields vary among fisheries has hindered the policy shifts that are needed to effectively harness the potential of fisheries for food and nutrition security6. Here, using the concentration of 7 nutrients in more than 350 species of marine fish, we estimate how environmental and ecological traits predict nutrient content of marine finfish species. We use this predictive model to quantify the global spatial patterns of the concentrations of nutrients in marine fisheries and compare nutrient yields to the prevalence of micronutrient deficiencies in human populations. We find that species from tropical thermal regimes contain higher concentrations of calcium, iron and zinc; smaller species contain higher concentrations of calcium, iron and omega-3 fatty acids; and species from cold thermal regimes or those with a pelagic feeding pathway contain higher concentrations of omega-3 fatty acids. There is no relationship between nutrient concentrations and total fishery yield, highlighting that the nutrient quality of a fishery is determined by the species composition. For a number of countries in which nutrient intakes are inadequate, nutrients available in marine finfish catches exceed the dietary requirements for populations that live within 100 km of the coast, and a fraction of current landings could be particularly impactful for children under 5 years of age. Our analyses suggest that fish-based food strategies have the potential to substantially contribute to global food and nutrition security.
    Matched MeSH terms: Fatty Acids, Omega-3/analysis
  3. Hashim RB, Jamil EF, Zulkipli FH, Daud JM
    J Oleo Sci, 2015;64(2):205-9.
    PMID: 25748380 DOI: 10.5650/jos.ess14191
    Pangasius micronemus (Black Pangasius sp.) and Pangasius nasutus (Fruit Pangasius sp.) are two species of silver catfish widely consumed in Malaysia. The present study evaluated fatty acid profiles of fish muscles in these two Pangasius sp. from different farms and locations to determine which species or location is better in term of lipid quality. The results showed MUFAs (Monounsaturated fatty acid) content was highest (35.0-44.4%) followed by SFA (Saturated fatty acid) [32.0-41.5%] and PUFAs (polyunsaturated fatty acids) [9.3-19.3%]. P. micronemus of Sg. Kanchong displayed higher palmitic acid (SFA; 29.0%) than P. nasutus from Peramu (23.5%). In contrast, oleic acid (MUFA) revealed highest in P. nasutus (38.1%) while lowest in P. micronemus of Sg. Kanchong (29.7%). Additionally, utmost PUFAs belonged to P. micronemus of Sg. Kanchong (19.3%) and lower most in P. nasutus from Peramu (9.3%). P. micronemus presented with a higher EPA (eicosapentaenoic acid) [1.0-1.4%], DHA (Docosahexaenoic acid) [1.7-2.8%] and LA (Linoleic acid) [11.8-12.0%] than P. nasutus (EPA; 0.3%, DHA; 1.0%, LA; 4.8%). However, P. nasutus established higher GLA (gamma-linolenic acid) [0.4%] than P. micronemus (0.04-0.06%). Both Pangasius sp. can be regarded as good supplies of omega-3 and omega-6. Overall, P. micronemus from Sg. Kanchong is the best choice among all for reason high in EPA and DHA.
    Matched MeSH terms: Fatty Acids, Omega-3/analysis
  4. Hajjar T, Meng GY, Rajion MA, Vidyadaran S, Othman F, Farjam AS, et al.
    BMC Neurosci, 2012;13:109.
    PMID: 22989138 DOI: 10.1186/1471-2202-13-109
    This study examined the effects of dietary polyunsaturated fatty acids (PUFA) as different n-6: n-3 ratios on spatial learning and gene expression of peroxisome- proliferator-activated receptors (PPARs) in the hippocampus of rats. Thirty male Sprague-Dawley rats were randomly allotted into 3 groups of ten animals each and received experimental diets with different n-6: n-3 PUFA ratios of either 65:1, 22:1 or 4.5:1. After 10 weeks, the spatial memory of the animals was assessed using the Morris Water Maze test. The expression of PPARα and PPARγ genes were determined using real-time PCR.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology*
  5. Hafandi A, Begg DP, Premaratna SD, Sinclair AJ, Jois M, Weisinger RS
    Comp. Med., 2014 Apr;64(2):106-9.
    PMID: 24674584
    Dietary deficiency of ω3 fatty acid during development leads to impaired cognitive function. However, the effects of multiple generations of ω3 fatty-acid deficiency on cognitive impairment remain unclear. In addition, we sought to test the hypothesis that the cognitive impairments of ω3 fatty-acid-deficient mice are mediated through the arachidonic acid-cyclooxygenase (COX) pathway. To address these issues, C57BL/6J mice were bred for 3 generations and fed diets either deficient (DEF) or sufficient (SUF) in ω3 fatty acids. At postnatal day 21, the F3 offspring remained on the dam's diet or were switched to the opposite diet, creating 4 groups. In addition, 2 groups that remained on the dam's diet were treated with a COX inhibitor. At 19 wk of age, spatial-recognition memory was tested on a Y-maze. Results showed that 16 wk of SUF diet reversed the cognitive impairment of F3 DEF mice. However, 16 wk of ω3 fatty-acid-deficient diet impaired the cognitive performance of the F3 SUF mice, which did not differ from that of the F3 DEF mice. These findings suggest that the cognitive deficits after multigenerational maintenance on ω3 fatty-acid-deficient diet are not any greater than are those after deficiency during a single generation. In addition, treatment with a COX inhibitor prevented spatial-recognition deficits in F3 DEF mice. Therefore, cognitive impairment due to dietary ω3 fatty-acid deficiency appears to be mediated by the arachidonic acid-COX pathway and can be prevented by 16 wk of dietary repletion with ω3 fatty acids or COX inhibition.
    Matched MeSH terms: Fatty Acids, Omega-3/administration & dosage; Fatty Acids, Omega-3/pharmacology*
  6. Hadjighassem M, Kamalidehghan B, Shekarriz N, Baseerat A, Molavi N, Mehrpour M, et al.
    Nutr J, 2015;14:20.
    PMID: 25889793 DOI: 10.1186/s12937-015-0012-5
    Dietary omega-6 and omega-3 fatty acids have remarkable impacts on the levels of DHA in the brain and retina. Low levels of DHA in plasma and blood hamper visual and neural development in children and cause dementia and cognitive decline in adults. The level of brain-derived neurotrophic factors (BDNF) changes with dietary omega-3 fatty acid intake. BDNF is known for its effects on promoting neurogenesis and neuronal survival.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology
  7. Golkhalkhali B, Rajandram R, Paliany AS, Ho GF, Wan Ishak WZ, Johari CS, et al.
    Asia Pac J Clin Oncol, 2018 Jun;14(3):179-191.
    PMID: 28857425 DOI: 10.1111/ajco.12758
    AIM: Colorectal cancer patients on chemotherapy usually have elevated levels of inflammatory markers and experience numerous side effects from chemotherapy thereby leading to poor quality of life. Omega-3 fatty acid and microbial cell preparation (MCP) have been known to provide significant benefits in patients on chemotherapy. The aim of this study was to determine the effect of supplementation of omega-3 fatty acid and MCP in quality of life, chemotherapy side effects and inflammatory markers in colorectal cancer patients on chemotherapy.

    METHODS: A double-blind randomized study was carried out with 140 colorectal cancer patients on chemotherapy. Subjects were separated into two groups to receive either placebo or MCP [30 billion colony-forming unit (CFUs) per sachet] at a dose of two sachets daily for 4 weeks, and omega-3 fatty acid at a dose of 2 g daily for 8 weeks. Outcomes measured were quality of life, side effects of chemotherapy and levels of inflammatory markers such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and C-reactive protein.

    RESULTS: The supplementation with MCP and omega-3 fatty acid improved the overall quality of life and alleviated certain side effects of chemotherapy. The supplementation with MCP and omega-3 fatty acid also managed to reduce the level of IL-6 (P = 0.002). There was a significant rise in the placebo group's serum TNF-α (P = 0.048) and IL-6 (P = 0.004).

    CONCLUSION: The combined supplementation with MCP and omega-3 fatty acid may improve quality of life, reduce certain inflammatory biomarkers and relieve certain side effects of chemotherapy in colorectal patients on chemotherapy.

    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology; Fatty Acids, Omega-3/therapeutic use*
  8. Golkhalkhali B, Paliany AS, Chin KF, Rajandram R
    Nutr Cancer, 2018 01 11;70(2):184-191.
    PMID: 29324050 DOI: 10.1080/01635581.2018.1412470
    The prevalence of colorectal cancer (CRC) is on a steady rise over the years, with the World Health Organization (WHO) reporting CRC as the fourth leading cause of cancer-related death worldwide. While treatment modalities may differ in accordance to the staging and severity of the disease itself, chemotherapy is almost unavoidable in most cases. Though effective in its mode of action, chemotherapy is commonly associated with undesirable side effects that negatively affects the patient in terms of quality of life, and in some cases may actually interfere with their treatment regimens, thus escalating to poor prognosis. Gastrointestinal disturbances is a major side effect of chemotherapy and in CRC, gastrointestinal disturbances may be further aggravated and grave in nature mainly due to the affected site, being the gastrointestinal tract. The use of complementary therapies as adjuncts to alleviate the side effects of chemotherapy in CRC patients is gaining prominence with dietary supplements being the most commonly employed adjunct. Some of the frequently used dietary supplements for CRC patients are probiotics, omega-3 fatty acid and glutamine. The successful crosstalk between these dietary supplements with important metabolic pathways is crucial in the alleviation of chemotherapy side effects.
    Matched MeSH terms: Fatty Acids, Omega-3/therapeutic use*
  9. Eshak MB, Omar WMW
    Trop Life Sci Res, 2017 Jul;28(2):163-177.
    PMID: 28890768 MyJurnal DOI: 10.21315/tlsr2017.28.2.12
    The importance of polyunsaturated fatty acid (PUFA) in microalgae was widely reported. In this study, six isolated microalgae from Teluk Aling, Penang National Park were screened for PUFA contents. Isochrysis maritima showed the best polyunsaturated fatty acids essential for aquaculture species compared to other microalgal species tested. This species is a good choice as aquaculture feed due to its small size (3-7 μm), which is appropriate size for ingestion. The maximum specific growth rate of this species was also high (0.52-0.82 days(-1)) and comparable with many recognised aquaculture microalgae. On the other hand, this species was also able to be cultivated successfully in big volume (1000 L culture medium) with open hatchery condition, which will optimise the production cost. Low ratio of omega-6 to omega-3 essential fatty acids (EFA) recorded in I. maritima at any growth phases (0.32-0.45) also indicate optimal values for feeding.
    Matched MeSH terms: Fatty Acids, Omega-3
  10. Ellulu MS, Khaza'ai H, Abed Y, Rahmat A, Ismail P, Ranneh Y
    Inflammopharmacology, 2015 Jun;23(2-3):79-89.
    PMID: 25676565 DOI: 10.1007/s10787-015-0228-1
    The roles of Omega-3 FAs are inflammation antagonists, while Omega-6 FAs are precursors for inflammation. The plant form of Omega-3 FAs is the short-chain α-linolenic acid, and the marine forms are the long-chain fatty acids: docosahexaenoic acid and eicosapentaenoic acid. Omega-3 FAs have unlimited usages, and they are considered as omnipotent since they may benefit heart health, improve brain function, reduce cancer risks and improve people's moods. Omega-3 FAs also have several important biological effects on a range of cellular functions that may decrease the onset of heart diseases and reduce mortality among patients with coronary heart disease, possibly by stabilizing the heart's rhythm and by reducing blood clotting. Some review studies have described the beneficial roles of Omega-3 FAs in cardiovascular diseases (CVDs), cancer, diabetes, and other conditions, including inflammation. Studies of the effect of Omega-3 FAs gathered from studies in diseased and healthy population. CVDs including atherosclerosis, coronary heart diseases, hypertension, and metabolic syndrome were the major fields of investigation. In studies of obesity, as the central obesity increased, the level of adipocyte synthesis of pro-inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were increased and the level of anti-inflammatory adiponectin was decreased indicating a state of inflammation. The level of C reactive protein (CRP) synthesized from hepatocyte is increased by the influence of IL-6. CRP can be considered as a marker of systemic inflammation associated with increased risks of CVDs. In molecular studies, Omega-3 FAs have direct effects on reducing the inflammatory state by reducing IL-6, TNF-α, CRP and many other factors. While the appropriate dosage along with the administrative duration is not known, the scientific evidence-based recommendations for daily intake are not modified.
    Matched MeSH terms: Fatty Acids, Omega-3/administration & dosage
  11. Ebrahimi M, Rajion MA, Meng GY, Soleimani Farjam A
    Biomed Res Int, 2014;2014:749341.
    PMID: 24719886 DOI: 10.1155/2014/749341
    In this study, control chevon (goat meat) and omega-3 fatty acid enriched chevon were obtained from goats fed a 50% oil palm frond diet and commercial goat concentrate for 100 days, respectively. Goats fed the 50% oil palm frond diet contained high amounts of α-linolenic acid (ALA) in their meat compared to goats fed the control diet. The chevon was then used to prepare two types of pellets (control or enriched chevon) that were then fed to twenty-male-four-month-old Sprague-Dawley rats (n = 10 in each group) for 12 weeks to evaluate their effects on plasma cholesterol levels, tissue fatty acids, and gene expression. There was a significant increase in ALA and docosahexaenoic acid (DHA) in the muscle tissues and liver of the rats fed the enriched chevon compared with the control group. Plasma cholesterol also decreased (P < 0.05) in rats fed the enriched chevon compared to the control group. The rat pellets containing enriched chevon significantly upregulated the key transcription factor PPAR-γ and downregulated SREBP-1c expression relative to the control group. The results showed that the omega-3 fatty acid enriched chevon increased the omega-3 fatty acids in the rat tissues and altered PPAR-γ and SREBP-1c genes expression.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology*
  12. Ebrahimi M, Rajion MA, Jafari S, Faseleh Jahromi M, Oskoueian E, Qurni Sazili A, et al.
    PLoS One, 2018;13(8):e0188369.
    PMID: 30067750 DOI: 10.1371/journal.pone.0188369
    The present study was conducted to investigate the effects of altering the ratio of n-6 to n-3 fatty acids in the diet on meat quality, fatty acid composition of muscle, and expression of lipogenic genes in the muscle of Boer goats. A total of twenty-one Boer goats (5 months old; 31.66±1.07 kg body weight) were randomly assigned to three dietary treatments with n-6:n-3 fatty acid ratios of 2.27:1 (LR), 5.01:1 (MR) and 10.38:1 (HR), fed at 3.7% of body weight. After 100 days of feeding, all goats were slaughtered and the longissimus dorsi muscle was sampled for analysis of fatty acids and gene expression. The dietary treatments did not affect (P>0.05) the carcass traits, and meat quality of growing goats. The concentrations of cis-9,trans-11 conjugated linoleic acid, trans vaccenic acid, polyunsaturated fatty acids, and unsaturated/saturated fatty acid ratios linearly increased (P<0.01) with decreasing dietary n-6:n-3 fatty acid ratios, especially for LR in the longissimus dorsi muscle of goats. In contrast, the mRNA expression level of the PPARα and PPARγ was down-regulated and stearoyl-CoA desaturase up-regulated in the longissimus dorsi of growing goats with increasing dietary n-6:n-3 fatty acid ratios (P<0.01). In conclusion, the results obtained indicate that the optimal n-6:n-3 fatty acid ratio of 2.27:1 exerted beneficial effects on meat fatty acid profiles, leading towards an enrichment in n-3 polyunsaturated fatty acids and conjugated linoleic acid in goat intramuscular fat.
    Matched MeSH terms: Fatty Acids, Omega-3/chemistry
  13. Crona BI, Wassénius E, Jonell M, Koehn JZ, Short R, Tigchelaar M, et al.
    Nature, 2023 Apr;616(7955):104-112.
    PMID: 36813964 DOI: 10.1038/s41586-023-05737-x
    Blue foods, sourced in aquatic environments, are important for the economies, livelihoods, nutritional security and cultures of people in many nations. They are often nutrient rich1, generate lower emissions and impacts on land and water than many terrestrial meats2, and contribute to the health3, wellbeing and livelihoods of many rural communities4. The Blue Food Assessment recently evaluated nutritional, environmental, economic and justice dimensions of blue foods globally. Here we integrate these findings and translate them into four policy objectives to help realize the contributions that blue foods can make to national food systems around the world: ensuring supplies of critical nutrients, providing healthy alternatives to terrestrial meat, reducing dietary environmental footprints and safeguarding blue food contributions to nutrition, just economies and livelihoods under a changing climate. To account for how context-specific environmental, socio-economic and cultural aspects affect this contribution, we assess the relevance of each policy objective for individual countries, and examine associated co-benefits and trade-offs at national and international scales. We find that in many African and South American nations, facilitating consumption of culturally relevant blue food, especially among nutritionally vulnerable population segments, could address vitamin B12 and omega-3 deficiencies. Meanwhile, in many global North nations, cardiovascular disease rates and large greenhouse gas footprints from ruminant meat intake could be lowered through moderate consumption of seafood with low environmental impact. The analytical framework we provide also identifies countries with high future risk, for whom climate adaptation of blue food systems will be particularly important. Overall the framework helps decision makers to assess the blue food policy objectives most relevant to their geographies, and to compare and contrast the benefits and trade-offs associated with pursuing these objectives.
    Matched MeSH terms: Fatty Acids, Omega-3
  14. Chung, Hung Hui, Azham Zulkharnain
    MyJurnal
    The FADS2 catalyzes the first rate-limiting step in the long chain-polyunsaturated fatty acids
    (LC-PUFAs) biosynthesis pathway by converting -linolenic acid and linoleic acid into
    stearidonic acid and -linolenic acid via the -3 and -6 pathways respectively. In mammals,
    PPAR and SREBP-1c have been implicated in the polyunsaturated fatty acids (PUFAs)
    mediated transcriptional activation of FADS2 promoter. However, in zebrafish, not much is
    known regarding the regulation of fads2 transcriptional regulation. Here, in this study, five
    vectors containing different promoter regions were constructed in order to analyse putative
    promoter activities. Through truncation analysis, it was found that the 1.2 kb promoter was able
    to drive luciferase activity to an approximate 40-fold in HepG2 cells. Upon mutagenesis
    analysis, three sites which are the putative NF-Y, SREBP and PPAR binding sites were found
    to be essential in driving the promoter activity. Lastly, the 1.2 kb fads2 promoter was able to
    direct EGFP expression specifically to the yolk syncytial layer (YSL) when transiently
    expressed in microinjected zebrafish embryos.
    Matched MeSH terms: Fatty Acids, Omega-3
  15. Chua CS, Huang SY, Cheng CW, Bai CH, Hsu CY, Chiu HW, et al.
    Medicine (Baltimore), 2017 Dec;96(49):e9094.
    PMID: 29245334 DOI: 10.1097/MD.0000000000009094
    Abdominal pain is one of the key symptoms of irritable bowel syndrome (IBS). Studies have indicated an increase in the incidence of IBS in Asia. However, yet the pathophysiology of this disease remains unknown. Women are more likely to develop the condition than men, especially the constipation-predominant type. Essential fatty acid (EFA) malnutrition is one of several theories discussing the mechanism of IBS.The authors hypothesized that significant EFA deficiency may cause abdominal pain in patients with IBS. However, because patterns in the oral intake of EFAs differ between cultures, the authors narrowed this study to examine the nutritional status of Asian female patients with IBSThe authors investigated Asian female patients with IBS and compared them with a group of healthy controls. Thirty patients with IBS and 39 healthy individuals were included in this study. The participants' age, height, weight, and waist size were recorded. The 24-item Hamilton Depression Rating Scale was documented. Both erythrocyte and plasma fatty acid content were analyzed through gas-liquid chromatography.The authors found that patients with IBS exhibited significantly higher scores for depression, higher proportions of plasma saturated fatty acids and monounsaturated fatty acids, and lower proportions of docosahexaenoic acid and total omega-3 polyunsaturated fatty acids in plasma are associated with IBS in Asian female patients. Further study is indicated to confirm the causality of this association.
    Matched MeSH terms: Fatty Acids, Omega-3/blood
  16. Chatchatee P, Lee WS, Carrilho E, Kosuwon P, Simakachorn N, Yavuz Y, et al.
    J Pediatr Gastroenterol Nutr, 2014 Apr;58(4):428-37.
    PMID: 24614142 DOI: 10.1097/MPG.0000000000000252
    OBJECTIVE: The aim of this study was to investigate the effect of growing-up milk (GUM) with added short-chain galacto-oligosaccharides (scGOS)/long-chain fructo-oligosaccharides (lcFOS) (9:1) (Immunofortis) and n-3 long-chain polyunsaturated fatty acids (LCPUFAs) on the occurrence of infections in healthy children attending day care centres.

    METHODS: In a randomised double-blind controlled, parallel, multicountry intervention study, 767 healthy children, ages 11 to 29 months, received GUM with scGOS/lcFOS/LCPUFAs (the active group, n = 388), GUM without scGOS/lcFOS/LCPUFAs (the control group, n = 379), or cow's milk (n = 37) for 52 weeks. The primary outcome measure was the number of episodes of upper respiratory tract infections or gastrointestinal infections based on a combination of subject's illness symptoms reported by the parents during the intervention period.

    RESULTS: Children in the active group compared with the control group had a decreased risk of developing at least 1 infection (299/388 [77%] vs 313/379 [83%], respectively, relative risk 0.93, 95% confidence interval [CI] 0.87-1.00; logistic regression P = 0.03). There was a trend toward a reduction (P = 0.07) in the total number of infections in the active group, which was significant when confirmed by one of the investigators (268/388 [69%] vs 293/379 [77%], respectively, relative risk 0.89, 95% CI 0.82-0.97; P = 0.004, post hoc). More infectious episodes were observed in the cow's milk group, when compared with both GUM groups (34/37 [92%] vs 612/767 [80%], respectively, relative risk 1.15, 95% CI 1.04-1.28).

    CONCLUSIONS: This is the first study in children to show a reduced risk of infection following consumption of GUM supplemented with scGOS/lcFOS/n-3 LCPUFAs. The borderline statistical significance justifies a new study to confirm this finding.

    Matched MeSH terms: Fatty Acids, Omega-3/administration & dosage*
  17. Baker EJ, Yusof MH, Yaqoob P, Miles EA, Calder PC
    Mol Aspects Med, 2018 12;64:169-181.
    PMID: 30102930 DOI: 10.1016/j.mam.2018.08.002
    Endothelial cells (ECs) play a role in the optimal function of blood vessels. When endothelial function becomes dysregulated, the risk of developing atherosclerosis increases. Specifically, upregulation of adhesion molecule expression on ECs promotes the movement of leukocytes, particularly monocytes, into the vessel wall. Here, monocytes differentiate into macrophages and may become foam cells, contributing to the initiation and progression of an atherosclerotic plaque. The ability of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) to influence the expression of adhesion molecules by ECs and to modulate leukocyte-endothelial adhesion has been studied in cell culture using various types of ECs, in animal feeding studies and in human trials; the latter have tended to evaluate soluble forms of adhesion molecules that circulate in the bloodstream. These studies indicate that n-3 PUFAs (both eicosapentaenoic acid and docosahexaenoic acid) can decrease the expression of key adhesion molecules, such as vascular cell adhesion molecule 1, by ECs and that this results in decreased adhesive interactions between leukocytes and ECs. These findings suggest that n-3 PUFAs may lower leukocyte infiltration into the vascular wall, which could contribute to reduced atherosclerosis and lowered risk of cardiovascular disease.
    Matched MeSH terms: Fatty Acids, Omega-3
  18. Bahurmiz, O.M., Adzitey, F., Ng, W.K.
    MyJurnal
    The current study was conducted to evaluate the nutritional characteristics (moisture, protein, lipids, ash and fatty acid composition) of the flesh of oil sardine (Sardinella longiceps) and Indian mackerel (Rastrelliger kanagurta) caught from Hadhramout coast of the Arabian Sea. The protein content was 21.6% and 18.1% (wet weight basis) for mackerel and sardine, respectively. The lipid content was much higher in sardine (10.1%) compared with mackerel (1.7%). The fatty acid composition showed that total saturated fatty acids had the highest relative value (37.5%) among other fatty acid groups in the flesh lipids of sardine, followed by polyunsaturated fatty acids (29.9%) and monounsaturated fatty acids (23.4%). In mackerel, polyunsaturated fatty acids was present at 37.4%, followed by saturated fatty acids (36.7%) and then monounsaturated fatty acids (14.3%). The majority of polyunsaturated fatty acids in both fish were deposited as omega-3 (89.8% in sardine and 87.9% in mackerel), of which docosahexaenoic acid and eicosapentaenoic acid were the most abundant. In conclusion, oil sardine and Indian mackerel which are locally available and affordable fish in Yemen can be considered valuable sources of nutrients particularly protein and health-beneficial omega-3 long chain polyunsaturated fatty acids.
    Matched MeSH terms: Fatty Acids, Omega-3
  19. Asmah, R., Siti Sumaiyah, S.A., Nurul, S.R.
    MyJurnal
    Omega-3 fatty acids have been shown to reduce the risk of chronic diseases like cardiovascular disease and cancer as well as promote brain development among infants and children. This study was carried out to compare total protein, fat and omega-3 fatty acids content of raw and pressurized fish of P. pangasius (yellowtail catfish) and H. macrura (long tail shad). The fish was cooked using pressure cooker for six minute to be pressurized. The protein content was determined by using Kjedahl method while total fat was determined using solvent extraction using chloroform and methanol. Fatty acid methyl esters (FAME) were prepared by a direct transesterification method, and quantified by gas chromatography using external standard. Results showed that marine fish H. macrura (long tail shad) had higher content (p < 0.05) of protein (18.30 ± 0.040 g/100 g), fat (10.965 ± 1.610 g/100 g), EPA (11.83 ± 0.02 g/100 g) and DHA (5.96 ± 0.31 g/100 g) compared to freshwater fish P. pangasius (yellowtail catfish). The protein content of pressurized fish was higher compare to raw fish, but there was no difference in total fat and omega-3 fatty acids content between raw and pressurized of freshwater fish P. pangasius and marine fish, H. macrura. In conclusion, marine fish are better source of protein, fat and omega-3 content, while pressurized fish shown to have comparable amount of protein, fat and omega-3 fatty acids content with raw fish. The result obtained assist the consumers to prepare a healthy menu in order to retain the protein and omega-3 fatty acids content of fish through healthy way of cooking.
    Matched MeSH terms: Fatty Acids, Omega-3
  20. Arbabi L, Baharuldin MT, Moklas MA, Fakurazi S, Muhammad SI
    Behav Brain Res, 2014 Sep 1;271:65-71.
    PMID: 24867329 DOI: 10.1016/j.bbr.2014.05.036
    Postpartum depression (PPD) is a psychiatric disorder that occurs in 10-15% of childbearing women. It is hypothesized that omega-3 fatty acids, which are components of fish oil, may attenuate depression symptoms. In order to examine this hypothesis, the animal model of postpartum depression was established in the present study. Ovariectomized female rats underwent hormone-simulated pregnancy (HSP) regimen and received progesterone and estradiol benzoate or vehicle for 23 days, mimicking the actual rat's pregnancy. The days after hormone termination were considered as the postpartum period. Forced feeding of menhaden fish oil, as a source of omega-3, with three doses of 1, 3, and 9g/kg/d, fluoxetine 15mg/kg/d, and distilled water 2ml/d per rat started in five postpartum-induced and one vehicle group on postpartum day 1 and continued for 15 consecutive days. On postpartum day 15, all groups were tested in the forced swimming test (FST) and open field test (OFT), followed by a biochemical assay. Results showed that the postpartum-induced rats not treated with menhaden fish oil, exhibited an increase in immobility time seen in FST, hippocampal concentration of corticosterone and plasmatic level of corticosterone, and pro-inflammatory cytokines. These depression-related effects were attenuated by supplementation of menhaden fish oil with doses of 3 and 9g/kg. Moreover, results of rats supplemented with menhaden fish oil were comparable to rats treated with the clinically effective antidepressant, fluoxetine. Taken together, these results suggest that menhaden fish oil, rich in omega-3, exerts beneficial effect on postpartum depression and decreases the biomarkers related to depression such as corticosterone and pro-inflammatory cytokines.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links