Displaying publications 41 - 60 of 123 in total

Abstract:
Sort:
  1. Maimon, A.K., Hamidah, A.L., Zuhaida, A.J.
    MyJurnal
    Infrastructure damage due to land slide, fallen bridge and broken and submerged roads become the main constraint in providing good medical services to the flood victims and isolated places in the remote area. The health care provider has to face a huge challenge at delivering the medical services to the flood victims in Kluang district especially to the remote and isolated areas. This gives us a meaningful and valuable experience in managing such problem. From the true experience of the medical and health team and also the flood victims, few problems and major issues were detected. Other than the environmental factor, human error is another major area of concern of which the failure to interact with the District Flood Operation Centre leading to miscommunication resulting in delay of management of the patient. In smaller proportion, poor inter-agency collaboration and lacking of good equipment was also noted to be affecting the health care services. The issues raised here will hopefully be making better in managing disaster in the future.
    Matched MeSH terms: Floods
  2. Dinesh, S.
    ASM Science Journal, 2010;4(1):62-73.
    MyJurnal
    Studies conducted on the various geometric properties of skeletons of water bodies have shown highly promising results. However, these studies were made under the assumption that water bodies were static objects and that they remained constant over time. Water bodies are actually dynamic objects; they go through significant spatio-temporal changes due to drought and flood. In this study, the characterization of skeletons of simulated drought and flood of water bodies was performed. It was observed that as the drought level increased from 1 to 9, the average length of the skeletons decreased due to reduction in the size of the water bodies and increase in the number of water bodies. As the drought level increased from 9 to 15, the average length of the skeletons increased further due to vanishing of small water bodies. Flood caused an increase in the average length of the skeletons due to merging of adjacent water bodies. Power law relationships were observed between the average length of the skeletons of the simulated drought/flood and the level of drought/flood. The scaling exponent of these power laws which was named as a fractal dimension, indicated the rate of change of the average length of the skeletons of simulated drought/flood of water bodies over varying levels of drought/flood. However, errors observed in the goodness of fit of the plots indicated that monofractals were not sufficient to characterise the skeletons of simulated drought and flood of water bodies. Multifractals and lacunarity analysis were required for more accurate characterisation.
    Matched MeSH terms: Floods
  3. Amin MZM, Shaaban AJ, Ercan A, Ishida K, Kavvas ML, Chen ZQ, et al.
    Sci Total Environ, 2017 Jan 01;575:12-22.
    PMID: 27723460 DOI: 10.1016/j.scitotenv.2016.10.009
    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century.
    Matched MeSH terms: Floods
  4. Menier D, Mathew M, Pubellier M, Sapin F, Delcaillau B, Siddiqui N, et al.
    Sci Rep, 2017 03 28;7(1):457.
    PMID: 28352115 DOI: 10.1038/s41598-017-00620-y
    Empirical models have simulated the consequences of uplift and orographic-precipitation on the evolution of orogens whereas the effects of these forcings on ridgelines and consequent topography of natural landscapes remain equivocal. Here we demonstrate the feedback of a terrestrial landscape in NW Borneo subject to uplift and precipitation gradient owing to orographic effect, and leading to less-predictable flooding and irreversible damages to life and property. Disequilibrium in a large catchment recording the lowest rainfall rates in Borneo, and adjacent drainage basins as determined through χ, a proxy for steady-state channel elevation, is shown to result in dynamic migration of water divide from the windward-side of the orogen towards the leeward-side to attain equilibrium. Loss of drainage area in the leeward-side reduces erosion rates with progressive shortening resulting in an unstable landscape with tectonic uplift, gravity faults and debris flows.14C dating of exhumed cut-and-fill terraces reveal a Mid-Pleistocene age, suggesting tectonic events in the trend of exhumation rates (>7 mm a-1) estimated by thermochronology, and confirmed by morphotectonic and sedimentological analyses. Our study suggests that divide migration leads to lowered erosion rates, channel narrowing, and sediment accretion in intermontane basins on the leeward-side ultimately resulting in enhanced flooding.
    Matched MeSH terms: Floods
  5. Amos Danladi, Ho, Chin Siong, Ling, Gabriel Hoh Teck
    MyJurnal
    Interest in Indigenous Knowledge (IK) system has been particularly highlighted in
    flood disasters, due to the likely increase of flood events resulting from
    anthropogenic climate change through heavy precipitation, increased catchment
    wetness, and sea level rise. Therefore, bringing IK of flood risk reduction into focus
    and context to deepen the understanding of how people manage their own changing
    circumstances can bring more pertinent information about flood risk reduction. This
    paper reviews the significance of IK in flood risk reduction. Specifically, the paper
    discusses IK flood forecasting, early warning signs, adaptation and coping strategies
    in flood risk reduction around the world. The Methodological approach employed for
    this paper is the review of existing literature on IK in flood Disaster Risk Reduction
    (DRR), and then a summary of the outcomes of the studies reviewed was discussed.
    However, it was deduced from the review undertaken, the need for an intensive
    empirical study to be conducted to explore how efficient these strategies or
    techniques are, in relation to flood risk reduction, which this paper strongly
    recommends for further investigation. Additionally, the paper concludes by
    emphasizing that although the IK of flood risk reduction is embedded in varied
    regions around the globe, still there is a need for further study to be carried out in
    order to unveil why the similarities and variations in flood risk reduction
    practices/strategies between regions.
    Matched MeSH terms: Floods
  6. Aswadi Mohamad, Zaitul Azma Zainon Hamzah
    MyJurnal
    This article focuses in structure of language within the village society in Manik Urai Kelantan during
    the flood situation. The research was specifically to identify the structure of Speech Act use by the rural
    community to give information about flood. Besides, this research observes the application of
    linguistics methodology during flood situation using Speech Act Theory which is the categorization of
    Speech Act by Searle (1969). This theory was choose for the ability to detail linguistic's differences
    based on the structure of Speech Act categories such as representatives, directives, commissives,
    expresives and declaratives. For the purpose of the research, a video about flood situation was choose
    and transcribe to observe the the structure of speech act within the village society in the flood situation.
    The result of the research shows all Speech Act have their structure. The beneficial of this research is as
    a guideline and reference for the readers and language researchers especially those who were active
    participant of volunteer field.
    Matched MeSH terms: Floods
  7. Azrul Ghazali, Sivadass Thiruchelvam, Kamal Nasharuddin Mustapha, Ahmad Kamal Kadir, Fatin Faiqa Norkhairi, Nora Yahya, et al.
    ASM Science Journal, 2018;11(2):117-123.
    MyJurnal
    Series of catastrophic floods that we have witnessed over the last decade in Malaysia have necessitated the adoption of reliable early warning system. Ultimate concern during any event of natural or manmade disaster would be information dissemination to lessen the disaster impact on lives and property. The Bertam Valley incident in the wee hours of 23rd October 2013 has been considered as the game changer of how we view the role of vulnerable communities in facing dam-related disasters. Empowerment of local communities has been considered as vital in disaster management, as they are often the first responders to disaster. Local Community-Based Early Warning System (CBEWS) is a smart mechanism operated by the communities. This study revolves around the actual implementation of such system in Cameron Highlands in the effort of increasing human resilience towards damrelated disasters. While establishing the system, the Bertam Valley community has received support from different individuals and organisations. It is paramount that the community develops and maintains close coordination and strong links with these stakeholders. The performance of early warning systems can be evaluated via key parameters such as timeliness, accuracy, reliability, user friendliness, flexibility, and costs & benefits.
    Matched MeSH terms: Floods
  8. Mohsen Salarpour, Milad Jajarmizadeh, Zulkifli Yusop, Fadhilah Yusof
    Sains Malaysiana, 2014;43:1865-1871.
    The modeling of rainfall-runoff relationship in a watershed is very important in designing hydraulic structures, controlling flood and managing storm water. Artificial Neural Networks (ANNs) are known as having the ability to model nonlinear mechanisms. This study aimed at developing a Generalized Feed Forward (GFF) network model for predicting annual flood (depth) of Johor River in Peninsular Malaysia. In order to avoid over training, cross-validation technique was performed for optimizing the model. In addition, predictive uncertainty index was used to protect of over parameterization. The governing training algorithm was back propagation with momentum term and tangent hyperbolic types was used as transfer function for hidden and output layers. The results showed that the optimum architecture was derived by linear tangent hyperbolic transfer function for both hidden and output layers. The values of Nash and Sutcliffe (NS) and root mean square error (RMSE) obtained 0.98 and 5.92 for the test period. Cross validation evaluation showed 9 process elements is adequate in hidden layer for optimum generalization by considering the predictive uncertainty index obtained (0.14) for test period which is acceptable.
    Matched MeSH terms: Floods
  9. M.Z. Rasheed, O. Normaniza, M.Z. Rozainah
    Sains Malaysiana, 2013;42:1059-1064.
    Climate change components such as increased in atmospheric carbon dioxide (CO2) and rising sea levels are likely to affect mangrove ecosystems. Healthy mature propagules of A. marina var. acutissima and B. parviflora were subjected to two tidal treatments; shallow and deep; for six months. Shallow treatment mimicked the current tidal fluctuations and deep treatment simulated future tidal conditions under rise in sea level. Deep treatment decreased Amax of both species and significant two way interactions between tidal treatments and species were observed. A400 was significantly reduced in the deep treatment in B. parviflora but not in A. marina. Carbon dioxide compensation point was not affected by the tidal treatments but varied significantly between both species. The ratio A400/Amax was significantly lower in the shallow treatment in B. parviflora indicating higher carbon sink potential at moderate tidal flooding whereas A400/Amax of A. marina was less variable between tidal treatments. Chlorophyll conductance was insensitive to tidal flooding but was significantly higher in B. parviflora than in A. marina. Carbon sequestration of B. parviflora was substantially reduced in the deep treatment while the difference between tidal treatments was much less in A. marina. These results indicated that these two species responded differently under tidal flooding where A. marina was less sensitive to tidal. Thus, A. marina is better adapted to the projected climate change than B. parviflora.
    Matched MeSH terms: Floods
  10. Nather Khan I, Firuza Begham Mustafa
    Sains Malaysiana, 2010;39:189-198.
    Spatial and temporal variations in silica concentration were determined at various rivers and tributaries in the Linggi River Basin, which has been highly polluted due to urban, industrial and agricultural wastes. The silica content measured as reactive silicate in the whole Linggi River Basin ranged from 1.4 to 26.3 mg/L. A clear seasonal variation in silica was noted especially in the major rivers with higher concentration during dry months and lower concentration during the wet months. The concentration was found to decrease as the water flooded downstream. The large drainage area with granite dominated lithology and high denudation especially in the upper catchment is attributed for high silica content in the water of Linggi River Basin.
    Matched MeSH terms: Floods
  11. Mohammed Falalu Hamza, Chandra MS, Zulkifli Merican Aljunid Merican, Hassan Soleimani, D. SK
    Sains Malaysiana, 2017;46:1641-1450.
    Foam flooding technique, commonly known as foam assisted water alternating gas method (FAWAG) has been identified as an effective chemical enhanced oil recovery (CEOR) technique. The ability of EOR-foam to sweep oil in low permeable zones makes it important displacement fluid in the oil industry. However, extreme reservoir conditions such as temperature, pressure and salinity have detrimental effects on the stability and the overall performance of the EOR-foam. Consequently, understanding foam stability and performance under different conditions is crucial for long term oil field application. This paper discusses the current status of the EOR-foam stability, performance and challenges from laboratory studies to field application perspective. The paper also highlights the knowledge gaps which require further research for successful field application.
    Matched MeSH terms: Floods
  12. Haque MA, Rafii MY, Yusoff MM, Ali NS, Yusuff O, Arolu F, et al.
    Mol Biol Rep, 2023 Mar;50(3):2795-2812.
    PMID: 36592290 DOI: 10.1007/s11033-022-07853-9
    Natural and man-made ecosystems worldwide are subjected to flooding, which is a form of environmental stress. Genetic variability in the plant response to flooding involves variations in metabolism, architecture, and elongation development that are related with a low oxygen escape strategy and an opposing quiescence scheme that enables prolonged submergence endurance. Flooding is typically associated with a decrease in O2 in the cells, which is especially severe when photosynthesis is absent or limited, leading to significant annual yield losses globally. Over the past two decades, considerable advancements have been made in understanding of mechanisms of rice adaptation and tolerance to flooding/submergence. The mapping and identification of Sub1 QTL have led to the development of marker-assisted selection (MAS) breeding approach to improve flooding-tolerant rice varieties in submergence-prone ecosystems. The Sub1 incorporated in rice varieties showed tolerance during flash flood, but not during stagnant conditions. Hence, gene pyramiding techniques can be applied to combine/stack multiple resistant genes for developing flood-resilient rice varieties for different types of flooding stresses. This review contains an update on the latest advances in understanding the molecular mechanisms, metabolic adaptions, and genetic factors governing rice flooding tolerance. A better understanding of molecular genetics and adaptation mechanisms that enhance flood-tolerant varieties under different flooding regimes was also discussed.
    Matched MeSH terms: Floods
  13. Zhou J, Wu C, Yeh PJ, Ju J, Zhong L, Wang S, et al.
    Sci Total Environ, 2023 Sep 01;889:164274.
    PMID: 37209749 DOI: 10.1016/j.scitotenv.2023.164274
    The successive flood-heat extreme (SFHE) event, which threatens the securities of human health, economy, and building environment, has attracted extensive research attention recently. However, the potential changes in SFHE characteristics and the global population exposure to SFHE under anthropogenic warming remain unclear. Here, we present a global-scale evaluation of the projected changes and uncertainties in SFHE characteristics (frequency, intensity, duration, land exposure) and population exposure under the Representative Concentration Pathway (RCP) 2.6 and 6.0 scenarios, based on the multi-model ensembles (five global water models forced by four global climate models) within the Inter-Sectoral Impact Model Intercomparison Project 2b framework. The results reveal that, relative to the 1970-1999 baseline period, the SFHE frequency is projected to increase nearly globally by the end of this century, especially in the Qinghai-Tibet Plateau (>20 events/30-year) and the tropical regions (e.g., northern South America, central Africa, and southeastern Asia, >15 events/30-year). The projected higher SFHE frequency is generally accompanied by a larger model uncertainty. By the end of this century, the SFHE land exposure is expected to increase by 12 % (20 %) under RCP2.6 (RCP6.0), and the intervals between flood and heatwave in SFHE tend to decrease by up to 3 days under both RCPs, implying the more intermittent SFHE occurrence under future warming. The SFHE events will lead to the higher population exposure in the Indian Peninsula and central Africa (<10 million person-days) and eastern Asia (<5 million person-days) due to the higher population density and the longer SFHE duration. Partial correlation analysis indicates that the contribution of flood to the SFHE frequency is greater than that of heatwave for most global regions, but the SFHE frequency is dominated by the heatwave in northern North America and northern Asia.
    Matched MeSH terms: Floods
  14. Estes JG, Othman N, Ismail S, Ancrenaz M, Goossens B, Ambu LN, et al.
    PLoS One, 2012;7(10):e44601.
    PMID: 23071499 DOI: 10.1371/journal.pone.0044601
    The approximately 300 (298, 95% CI: 152-581) elephants in the Lower Kinabatangan Managed Elephant Range in Sabah, Malaysian Borneo are a priority sub-population for Borneo's total elephant population (2,040, 95% CI: 1,184-3,652). Habitat loss and human-elephant conflict are recognized as the major threats to Bornean elephant survival. In the Kinabatangan region, human settlements and agricultural development for oil palm drive an intense fragmentation process. Electric fences guard against elephant crop raiding but also remove access to suitable habitat patches. We conducted expert opinion-based least-cost analyses, to model the quantity and configuration of available suitable elephant habitat in the Lower Kinabatangan, and called this the Elephant Habitat Linkage. At 184 km(2), our estimate of available habitat is 54% smaller than the estimate used in the State's Elephant Action Plan for the Lower Kinabatangan Managed Elephant Range (400 km(2)). During high flood levels, available habitat is reduced to only 61 km(2). As a consequence, short-term elephant densities are likely to surge during floods to 4.83 km(-2) (95% CI: 2.46-9.41), among the highest estimated for forest-dwelling elephants in Asia or Africa. During severe floods, the configuration of remaining elephant habitat and the surge in elephant density may put two villages at elevated risk of human-elephant conflict. Lower Kinabatangan elephants are vulnerable to the natural disturbance regime of the river due to their limited dispersal options. Twenty bottlenecks less than one km wide throughout the Elephant Habitat Linkage, have the potential to further reduce access to suitable habitat. Rebuilding landscape connectivity to isolated habitat patches and to the North Kinabatangan Managed Elephant Range (less than 35 km inland) are conservation priorities that would increase the quantity of available habitat, and may work as a mechanism to allow population release, lower elephant density, reduce human-elephant conflict, and enable genetic mixing.
    Matched MeSH terms: Floods
  15. Rupert R, Lie GJCW, John DV, Annammala KV, Jani J, Rodrigues KF
    Data Brief, 2020 Dec;33:106351.
    PMID: 33072827 DOI: 10.1016/j.dib.2020.106351
    The data provided in the article includes the sequence of bacterial 16S rRNA gene from a high conservation value forest, logged forest, rubber plantation and oil palm plantation collected at Kelantan river basin. The logged forest area was previously notified as a flooding region. The total gDNA of bacterial community was amplified via polymerase chain reaction at V3-V4 regions using a pair of specific universal primer. Amplicons were sequenced on Illumina HiSeq paired-end platform to generate 250 bp paired-end raw reads. Several bioinformatics tools such as FLASH, QIIME and UPARSE were used to process the reads generated for OTU analysis. Meanwhile, R&D software was used to construct the taxonomy tree for all samples. Raw data files are available at the Sequence Read Archive (SRA), NCBI and data information can be found at the BioProject and BioSample, NCBI. The data shows the comparison of bacterial community between the natural forest and different land uses.
    Matched MeSH terms: Floods
  16. Seng LY, Al-Shaikh M, Hascakir B
    ACS Omega, 2020 Oct 27;5(42):27383-27392.
    PMID: 33134701 DOI: 10.1021/acsomega.0c00193
    The objective of this study is to investigate the intermolecular interactions between the surfactants and the fractions of heavy crude oils. Two possible interactions were considered; polar and ionic interactions for two heavy crude oil-surfactant systems, and 20 surfactant-steam flooding tests were conducted on these crudes by testing nine surfactants (three anionic, three cationic, and three nonionic) with different tail lengths and charged head groups. The performance differences observed in each core flood were discussed through the additional analyses. To explain polar interactions, the pseudo blends of crude oil fractions (fractionation of saturates, aromatics, resins, and asphaltenes) were exposed to the surfactant solutions under vapor and liquid water conditions and their mutual interactions were visualized under an optical microscope. To explain ionic interactions, the charges on asphaltene surfaces were analyzed by zeta potential measurements before and after core flood tests on both the produced and the residual oil asphaltenes. The addition of surfactants improved the oil recovery when compared to steam injection alone. However, different oil recoveries were obtained with different surfactants. Further analyses showed that asphaltenes are key and the interaction of asphaltenes with other crude oil fractions or surfactants determines the success of surfactant-steam processes. The polar interactions favor the emulsion formation more; hence, if the polar interactions are more dominant than the ion interactions in the overall crude oil-surfactant system, the surfactant flooding process into heavy oil reservoir became more successful.
    Matched MeSH terms: Floods
  17. Upadhya RK
    Sains Malaysiana, 2016;45:879-882.
    he deficiency of oxygen in water during submergence is one of the frequently perceived environmental factors that limits
    or hampers production of the rice cultivation. Rice plants comprise of elongated submerged tissues that help to bear with
    the rise of water level in natural location. This characteristic helps the plant to deal with flooding stress. The mechanism
    on flooding tolerance and adaptation mostly includes the physiological changes, one of which is the shortened growth
    of elongation towards keeping the carbohydrates and energy for production of the antioxidant regulations in rice plants.
    Furthermore, molecular studies and gene cloning might help suggest a better understanding of means and adaptations
    built-up by rice plants in order to stay alive and to remain active during flooding stress, might help to focus on some
    novel approaches to the up gradation as well as improvement on the natural cultivation of rice plants.
    Matched MeSH terms: Floods
  18. Mazumdar P, Lau SE, Singh P, Takhtgahi HM, Harikrishna JA
    Physiol Mol Biol Plants, 2019 May;25(3):713-726.
    PMID: 31168234 DOI: 10.1007/s12298-019-00659-3
    Banana is often grown in coastal-regions, and while known for its sensitivity towards seawater, little is documented on the effect of sea-salt on the growth, physiology and metal homeostasis. Here we report that banana plantlets exposed to sea-salt at extreme (average seawater concentration; 52.7 dS m-1), severe (28.5 dS m-1) or moderate (10.2 dS m-1) salinity levels had reduced root length (2.0-6.0-fold), plant height (1.2-1.6-fold), leaf number (2.0-2.3-fold) and leaf area (3.3-4.0-fold) compared to control plantlets. Degradation of pigments (total chlorophyll: 1.3-12.3-fold, chlorophyll a: 1.3-9.2-fold; chlorophyll b: 1.3-6.9-fold lower and carotenoids: 1.4-3.7-fold lower) reflected vulnerability of photosystems to salt stress. Relative water content showed a maximum decrease of 1.5-fold in salt stress. MDA analysis showed sea-salt exposure triggers 2.3-3.5-fold higher lipid peroxidation. Metal content analysis showed a 73-fold higher Na value from roots exposed to extreme salinity compared to control plantlets. While phenotype was clearly affected, moderate salinity showed no significant alteration of macro (N, P, K and Ca) and micro (Fe, Mn and Cu) metal content. The antioxidant enzymes: SOD (3.2-fold), CAT (1.7-fold) and GR (6-fold) showed higher activity at moderate salinity level compared to control plantlets but lower activity at severe (SOD: 1.3-fold; CAT: 1.5-fold; GR: 2-fold lower) and extreme seawater salinity (SOD: 1.5; CAT: 1.9; GR: 1.3-fold lower). Mild changes in growth and physiology at sea-salt levels equivalent to moderate seawater flooding, indicate that banana will survive such flooding, while extreme seawater inundation will be lethal. This data provides a reference for future salinity-mediated work in banana.
    Matched MeSH terms: Floods
  19. Sabri Abdul Rahman M, Khairani Bejo S, Zakaria Z, Hassan L, Azri Roslan M
    J Vet Res, 2021 Mar;65(1):53-58.
    PMID: 33817395 DOI: 10.2478/jvetres-2021-0003
    Introduction: Leptospirosis is a bacterial disease that affects both humans and animals, the occurrence of which increases markedly during and after heavy rainfall and flooding. The aim of this study was to determine the serological prevalence of leptospiral infection in livestock after a voluminous flood in 10 districts of the Malaysian state of Kelantan.

    Material and Methods: In December 2014, Kelantan was hit by an extensive flood. A total of 1,728 serum samples were collected from livestock from the state, comprised of 1,024 from cattle, 366 from goats and 338 from sheep, and they were tested using the microscopic agglutination test (MAT).

    Results: Altogether, 203 (11.75%; 203/1728; 95% CI: 10.20%-13.30%) of the tested sera were found to be positive serologically. Cattle had the highest prevalence of 14.16% (145/1024), while goats and sheep had 11.20% (41/366) and 5.03% (17/338) respectively. The most frequent serovars detected were Hardjo-bovis (3.70%; 64/1728), Hebdomadis (2.08%; 36/1728) and Pomona (1.04%; 18/1728). There was a statistically significant association (P < 0.05) between livestock that were exposed to the flood and seropositivity.

    Conclusion: This study showed that flood is a risk factor that can play a role in the epidemiology of leptospiral infection in livestock.

    Matched MeSH terms: Floods
  20. Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SAR, Ayal D, et al.
    Sci Total Environ, 2021 Jul 20;779:146414.
    PMID: 33735656 DOI: 10.1016/j.scitotenv.2021.146414
    Climate change is one of the major challenges societies round the world face at present. Apart from efforts to achieve a reduction of emissions of greenhouse gases so as to mitigate the problem, there is a perceived need for adaptation initiatives urgently. Ecosystems are known to play an important role in climate change adaptation processes, since some of the services they provide, may reduce the impacts of extreme events and disturbance, such as wildfires, floods, and droughts. This role is especially important in regions vulnerable to climate change such as the African continent, whose adaptation capacity is limited by many geographic and socio-economic constraints. In Africa, interventions aimed at enhancing ecosystem services may play a key role in supporting climate change adaptation efforts. In order to shed some light on this aspect, this paper reviews the role of ecosystems services and investigates how they are being influenced by climate change in Africa. It contains a set of case studies from a sample of African countries, which serve the purpose to demonstrate the damages incurred, and how such damages disrupt ecosystem services. Based on the data gathered, some measures which may assist in fostering the cause of ecosystems services are listed, so as to cater for a better protection of some of the endangered Africa ecosystems, and the services they provide.
    Matched MeSH terms: Floods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links