Displaying publications 41 - 60 of 93 in total

Abstract:
Sort:
  1. Abdulaziz Bardi D, Halabi MF, Abdullah NA, Rouhollahi E, Hajrezaie M, Abdulla MA
    Biomed Res Int, 2013;2013:918460.
    PMID: 24396831 DOI: 10.1155/2013/918460
    Zingiber officinale is a traditional medicine against various disorders including liver diseases.The aim of this study was to assess the hepatoprotective activity of the ethanolic extract of rhizomes of Z. officinale (ERZO) against thioacetamide-induced hepatotoxicity in rats. Five groups of male Sprague Dawley have been used. In group 1 rats received intraperitoneal (i.p.) injection of normal saline while groups 2-5 received thioacetamide (TAA, 200 mg/kg; i.p.) for induction of liver cirrhosis, thrice weekly for eight weeks. Group 3 received 50 mg/kg of silymarin. The rats in groups 4 and 5 received 250 and 500 mg/kg of ERZO (dissolved in 10% Tween), respectively. Hepatic damage was assessed grossly and microscopically for all of the groups. Results confirmed the induction of liver cirrhosis in group 2 whilst administration of silymarin or ERZO significantly reduced the impact of thioacetamide toxicity. These groups decreased fibrosis of the liver tissues. Immunohistochemistry assessment against proliferating cell nuclear antigen did not show remarkable proliferation in the ERZO-treated rats when compared with group 2. Moreover, factions of the ERZO extract were tested on Hep-G2 cells and showed antiproliferative activity (IC50 38-60 μ g/mL). This study showed hepatoprotective effect of ERZO.
    Matched MeSH terms: Ginger/chemistry*
  2. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Molecules, 2010 Sep 03;15(9):6231-43.
    PMID: 20877219 DOI: 10.3390/molecules15096231
    Flavonoids make up one of the most pervasive groups of plant phenolics. Due to their importance in plants and human health, it would be useful to have a better understanding of flavonoid concentration and biological activities that could indicate their potentials as therapeutic agents, and also for predicting and controlling the quality of medicinal herbs. Ginger (Zingiber officinale Roscoe) is a famous and widely used herb, especially in Asia, that contains several interesting bioactive constituents and possesses health promoting properties. In this study, total flavonoids and some flavonoid components including quercetin, rutin, catechin, epicatechin, kaempferol and naringenin were extracted from the leaves and rhizomes of two varieties of Zingiber officinale (Halia Bentong and Halia Bara) at three different growth points (8, 12 and 16 weeks after planting), and analyzed by a high performance liquid chromatography (HPLC) method in order to determine the potential of the subterranean part of the young ginger. The results showed that Halia Bara had a higher content of flavonoids in the leaves and rhizomes as compared to Halia Bentong. In both varieties, the concentration of flavonoids in the leaves decreased (Halia Bentong, 42.3%; Halia Bara 36.7%), and in the rhizomes it increased (Halia Bentong 59.6%; Halia Bara 60.1%) as the growth period increased. Quercetin was abundant in both varieties. The antioxidant activity determined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay showed high activities (65.7%) in the leaves of Halia Bara at 8 weeks after planting. Results suggested a good flavonoid content and antioxidant activity potential in ginger leaves at 8 weeks after planting. The leaves of these ginger varieties could be useful for both food flavourings and in traditional medicine.
    Matched MeSH terms: Ginger/growth & development; Ginger/chemistry*
  3. S J, Iqbal SZ, Talib NH, Hasnol ND
    J Food Sci Technol, 2016 Mar;53(3):1411-7.
    PMID: 27570265 DOI: 10.1007/s13197-015-2137-0
    The present study was focused to investigate the effect of selected spices (turmeric, torch ginger, lemongrass and curry leaves) on the formation of heterocyclic amines (HCAs, IQx, MeIQ, MeIQx, DiMeIQx, IQ, harman, norharman, and AαC) in deep fried lamb meat. Meat samples were marinated with optimized levels of turmeric (4 %), 10 % each of torch ginger, lemon grass, curry leaves at medium (70 °C) and well done (80 °C) doneness temperatures. The concentration of HCAs in deep fried meat samples were analysed using LC-MS/MS technique. The results revealed that torch ginger (10 %) has reduced 74.8 % of Me1Qx (1.39 to 0.35 ng/g) at medium doneness, followed by the 64.7 % reduction, using curry leaves and turmeric at medium degree of doneness. Torch ginger has reduced 86.6 % of AαC (2.59 to 0.40 ng/g) at well done doneness. The most prevalence level of HCAs was found in deep fried meat i.e. DiMeIQ (3.69 ng/g) at well done doneness. The sensory evaluation, using a 7 point hedonic test design for colour and texture in deep fried meat samples were resulted in a preferred color of golden brown and slightly tough texture. The use of local spices in marinating of deep fried lamb meat samples will certainly inhibit/reduce the level of these toxic and harmful HCAs.
    Matched MeSH terms: Ginger
  4. Choon S, Ding P
    Sains Malaysiana, 2016;45:507-515.
    Torch ginger (Etlingera elatior) is a herbaceous clumping plant. It is a multifunctional crop that has been used for culinary, medicinal, antibacterial agent, ornamental and floral arrangement purpose. However, from the literature, no work has been carried out to study its growth and development morphological characteristics. It is important to understand the developmental morphology of the torch ginger plant for research purpose, commercial usage and apply proper production practices by growers for higher yields and profits. Therefore, the aim of this study was to determine the time course of morphological changes during the growth and development of torch ginger. Results showed that it took 155 days from leafy shoot emerging from rhizome until senescence of inflorescence. The growth and development of torch ginger plant were divided into vegetative and reproductive phases. The vegetative phase mainly involved the growth activities of leafy shoot. The transition of vegetative to reproductive phase happened when the inflorescence shoot emerged from the rhizome. In the reproductive phase, the growth and development of the inflorescence were categorized into four phenological stages which were peduncle elongation, inflorescence emergence, flowering and senescence. The growth pattern of the leafy shoot and inflorescence demonstrated a monocarpic plant growth habit with the remobilization of photoassimilates from senescing plant parts to developing true flowers that caused whole-plant senescence. Further research is needed to study the mechanisms that regulate flowering and senescence in torch ginger plant.
    Matched MeSH terms: Ginger
  5. Mohd Yusof YA
    Adv Exp Med Biol, 2016;929:177-207.
    PMID: 27771925
    Since antiquity, ginger or Zingiber officinale, has been used by humans for medicinal purposes and as spice condiments to enhance flavor in cooking. Ginger contains many phenolic compounds such as gingerol, shogaol and paradol that exhibit antioxidant, anti-tumor and anti-inflammatory properties. The role of ginger and its constituents in ameliorating diseases has been the focus of study in the past two decades by many researchers who provide strong scientific evidence of its health benefit. This review discusses research findings and works devoted to gingerols, the major pungent constituent of ginger, in modulating and targeting signaling pathways with subsequent changes that ameliorate, reverse or prevent chronic diseases in human studies and animal models. The physical, chemical and biological properties of gingerols are also described. The use of ginger and especially gingerols as medicinal food derivative appears to be safe in treating or preventing chronic diseases which will benefit the common population, clinicians, patients, researchers, students and industrialists.
    Matched MeSH terms: Ginger/chemistry*
  6. Usman AN, Manju B, Ilhamuddin I, Ahmad M, Ab T, Ariyandy A, et al.
    Breast Dis, 2023;42(1):207-212.
    PMID: 37424457 DOI: 10.3233/BD-239003
    BACKGROUND: Cancer is a type of disease caused by the uncontrolled growth of abnormal cells that can destroy body tissues. The use of traditional medicine naturally uses plants from ginger with the maceration method. The ginger plant is a herbaceous flowering plant with the Zingiberaceacea group.

    METHODS: This study uses the literature review method by reviewing 50 articles from journals and databases.

    RESULTS: A review of several articles, namely ginger has bioactive components such as gingerol. Ginger is used as a treatment in complementary therapies using plants. Ginger is a strategy with many benefits and functions as a nutritional complement to the body. This benefit has shown the effect of anti-inflammatory, antioxidant, and anticancer against nausea and vomiting due to chemotherapy in breast cancer.

    CONCLUSION: Anticancer in ginger is shown by polyphenols associated with anti-metastatic, anti-proliferative, antiangiogenic, anti-inflammatory, cell cycle arrest, apoptosis, and autophagy. Therefore, consuming ginger regularly affects natural herbal therapy with the prevention and treatment of breast cancer and serves as a prevention against the effects of chemotherapy.

    Matched MeSH terms: Ginger*
  7. Habib SH, Makpol S, Abdul Hamid NA, Das S, Ngah WZ, Yusof YA
    Clinics (Sao Paulo), 2008 Dec;63(6):807-13.
    PMID: 19061005
    OBJECTIVE: To evaluate the effect of ginger extract on the expression of NFkappaB and TNF-alpha in liver cancer-induced rats.

    METHODS: Male Wistar rats were randomly divided into 5 groups based on diet: i) control (given normal rat chow), ii) olive oil, iii) ginger extract (100mg/kg body weight), iv) choline-deficient diet + 0.1% ethionine to induce liver cancer and v) choline-deficient diet + ginger extract (100mg/kg body weight). Tissue samples obtained at eight weeks were fixed with formalin and embedded in paraffin wax, followed by immunohistochemistry staining for NFkappaB and TNF-alpha.

    RESULTS: The expression of NFkappaB was detected in the choline-deficient diet group, with 88.3 +/- 1.83% of samples showing positive staining, while in the choline-deficient diet supplemented with ginger group, the expression of NFkappaB was significantly reduced, to 32.35 +/- 1.34% (p<0.05). In the choline-deficient diet group, 83.3 +/- 4.52% of samples showed positive staining of TNF-alpha, which was significantly reduced to 7.94 +/- 1.32% (p<0.05) when treated with ginger. There was a significant correlation demonstrated between NFkappaB and TNF-alpha in the choline-deficient diet group but not in the choline-deficient diet treated with ginger extract group.

    CONCLUSION: In conclusion, ginger extract significantly reduced the elevated expression of NFkappaB and TNF-alpha in rats with liver cancer. Ginger may act as an anti-cancer and anti-inflammatory agent by inactivating NFkappaB through the suppression of the pro-inflammatory TNF-alpha.

    Matched MeSH terms: Ginger/chemistry*
  8. Mahomoodally MF, Aumeeruddy MZ, Rengasamy KRR, Roshan S, Hammad S, Pandohee J, et al.
    Semin Cancer Biol, 2021 Feb;69:140-149.
    PMID: 31412298 DOI: 10.1016/j.semcancer.2019.08.009
    Ginger is a spice that is renowned for its characteristic aromatic fragrance and pungent taste, with documented healing properties. Field studies conducted in several Asian and African countries revealed that ginger is used traditionally in the management of cancer. The scientific community has probed into the biological validation of its extracts and isolated compounds including the gingerols, shogaols, zingiberene, and zingerone, through in-vitro and in-vivo studies. Nonetheless, an updated compilation of these data together with a deep mechanistic approach is yet to be provided. Accordingly, this review highlights the mechanisms and therapeutics of ginger and its bioactive compounds focused on a cancer context and these evidence are based on the (i) cytotoxic effect against cancer cell lines, (ii) enzyme inhibitory action, (iii) combination therapy with chemotherapeutic and phenolic compounds, (iv) possible links to the microbiome and (v) the use of nano-formulations of ginger bioactive compounds as a more effective drug delivery strategy in cancer therapy.
    Matched MeSH terms: Ginger/chemistry*
  9. Yasmin Anum, M.Y., Shahriza, Z.A., Looi, ML, Shafina Hanim, M.H., Harlianshah, H., Noor Aini, A.H., et al.
    Medicine & Health, 2008;3(2):263-274.
    MyJurnal
    Ginger extract has been reported previously by our group to exhibit anticancer and an-tioxidant effects by reducing tumour burden and lipid peroxidation respectively in he-patocarcinogenesis induced rats. The current study examined the expression of pro-apoptotic protein caspase-8 and anti-apoptotic protein Bcl-2 in hepatocarcinogenesis treated rats. Thirty normal male Wistar rats were divided into 5 groups based on the diet given: i) control (normal rat chow), ii) olive oil, iii) ginger extract (100mg/kg body weight), iv) choline deficient diet + ethionine, CDE (to induce liver cancer) and v) CDE+ ginger extract. Rats were killed at week 8, and liver tissues were excised for immuno-histochemical study to identify pro-apoptotic and anti-apoptotic proteins, caspase-8 and Bcl-2. The observation on H&E staining confirmed the CDE diet induced liver can-cer as indicated by the presence of numerous oval cells. Identification of Bcl-2 expres-sion showed that 91.6% (11/12) of the samples from the CDE group revealed positive staining while treatment with ginger extract however inhibited the expression with only 8.4% (1/12) samples showing positive staining for Bcl-2. As for caspase-8 protein, 41.7% (5/12) of the samples from CDE group showed positive staining, which in-creased to 100% (12/12) with ginger extract treatment. Our findings suggest that gin-ger extract has an anticancer effect by inducing apoptosis in liver cancer cells via up-regulation of the expression of pro-apoptotic protein, caspase-8 and down-regulation of the expression of anti-apoptotic protein Bcl-2.
    Matched MeSH terms: Ginger
  10. Adamu A, Ahmad K, Siddiqui Y, Ismail IS, Asib N, Bashir Kutawa A, et al.
    Molecules, 2021 Jun 25;26(13).
    PMID: 34202405 DOI: 10.3390/molecules26133902
    The bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious rice diseases, causing huge yield losses worldwide. Several technologies and approaches have been opted to reduce the damage; however, these have had limited success. Recently, scientists have been focusing their efforts on developing efficient and environmentally friendly nanobactericides for controlling bacterial diseases in rice fields. In the present study, a scanning electron microscope (SEM), transmission electron microscope (TEM), and a confocal laser scanning microscope (CLSM) were utilized to investigate the mode of actions of ginger EOs on the cell structure of Xoo. The ginger EOs caused the cells to grow abnormally, resulting in an irregular form with hollow layers, whereas the dimethylsulfoxide (DMSO) treatment showed a typical rod shape for the Xoo cell. Ginger EOs restricted the growth and production of biofilms by reducing the number of biofilms generated as indicated by CLSM. Due to the instability, poor solubility, and durability of ginger EOs, a nanoemulsions approach was used, and a glasshouse trial was performed to assess their efficacy on BLB disease control. The in vitro antibacterial activity of the developed nanobactericides was promising at different concentration (50-125 µL/mL) tested. The efficacy was concentration-dependent. There was significant antibacterial activity recorded at higher concentrations. A glasshouse trial revealed that developed nanobactericides managed to suppress BLB disease severity effectively. Treatment at a concentration of 125 μL/mL was the best based on the suppression of disease severity index, AUDPC value, disease reduction (DR), and protection index (PI). Furthermore, findings on plant growth, physiological features, and yield parameters were significantly enhanced compared to the positive control treatment. In conclusion, the results indicated that ginger essential oils loaded-nanoemulsions are a promising alternative to synthetic antibiotics in suppressing Xoo growth, regulating the BLB disease, and enhancing rice yield under a glasshouse trial.
    Matched MeSH terms: Ginger/chemistry*
  11. Mohd Sahardi NFN, Makpol S
    PMID: 31531114 DOI: 10.1155/2019/5054395
    Currently, the age of the population is increasing as a result of increased life expectancy. Ageing is defined as the progressive loss of physiological integrity, which can be characterized by functional impairment and high vulnerability to various types of diseases, such as diabetes, hypertension, Alzheimer's disease (AD), Parkinson's disease (PD), and atherosclerosis. Numerous studies have reported that the presence of oxidative stress and inflammation contributes to the development of these diseases. In general, oxidative stress could induce proinflammatory cytokines and reduce cellular antioxidant capacity. Increased oxidative stress levels beyond the production of antioxidant agents cause oxidative damage to biological molecules, including DNA, protein, and carbohydrates, which affects normal cell signalling, cell growth, differentiation, and apoptosis and leads to disease pathogenesis. Since oxidative stress and inflammation contribute to these diseases, ginger (Zingiber officinale Roscoe) is one of the potential herbs that can be used to reduce the level of oxidative stress and inflammation. Ginger consists of two major active components, 6-gingerol and 6-shogaol, which are essential for preventing oxidative stress and inflammation. Thus, this paper will review the effects of ginger on ageing and degenerative diseases, including AD, PD, type 2 diabetes mellitus (DM), hypertension, and osteoarthritis.
    Matched MeSH terms: Ginger
  12. Hakim L, Alias E, Makpol S, Ngah WZ, Morad NA, Yusof YA
    Asian Pac J Cancer Prev, 2014;15(11):4651-7.
    PMID: 24969899
    The development of chemopreventive approaches using a concoction of phytochemicals is potentially viable for combating many types of cancer including colon carcinogenesis. This study evaluated the anti-proliferative effects of ginger and Gelam honey and its efficacy in enhancing the anti-cancer effects of 5-FU (5-fluorouracil) against a colorectal cancer cell line, HCT 116. Cell viability was measured via MTS (3-(4,5-dimethylthiazol-2- yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphenyl)-2H-tetrazolium) assay showing ginger inhibiting the growth of HCT 116 cells more potently (IC50 of 3mg/mL) in comparison to Gelam honey (IC50 of 75 mg/mL). Combined treatment of the two compounds (3mg/mL ginger+75 mg/mL Gelam honey) synergistically lowered the IC50 of Gelam honey to 22 mg/mL. Combination with 35 mg/mL Gelam honey markedly enhanced 5-FU inhibiting effects on the growth of HCT 116 cells. Subsequent analysis on the induction of cellular apoptosis suggested that individual treatment of ginger and Gelam honey produced higher apoptosis than 5-FU alone. In addition, treatment with the combination of two natural compounds increased the apoptotic rate of HCT 116 cells dose- dependently while treatment of either ginger or Gelam honey combined with 5-FU only showed modest changes. Combination index analysis showed the combination effect of both natural compounds to be synergistic in their inhibitory action against HCT 116 colon cancer cells (CI 0.96 < 1). In conclusion, combined treatment of Gelam honey and ginger extract could potentially enhance the chemotherapeutic effect of 5-FU against colorectal cancer.
    Matched MeSH terms: Ginger
  13. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 07 05;23(7).
    PMID: 29976903 DOI: 10.3390/molecules23071646
    Gingerols and shogaols are compounds found in ginger (Zingiber officinale Roscoe); shogaols are found in lower concentration than gingerols but exhibit higher biological activities. This work studied the effects of different drying methods including open sun drying (OSD) solar tunnel drying (STD) and hot air drying (HAD) with various temperature on the formation of six main active compounds in ginger rhizomes, namely 6-, 8-, and 10-gingerols and 6-, 8-, and 10-shogaols, as well as essential oil content. Antioxidant and antimicrobial activity of dried ginger was also evaluated. High performance liquid chromatography (HPLC) analysis showed that after HAD with variable temperature (120, 150 and 180 °C), contents of 6-, 8-, and 10-gingerols decreased, while contents of 6-, 8-, and 10-shogaol increased. High formation of 6-, 8-, and 10-shogaol contents were observed in HAD (at 150 °C for 6 h) followed by STD and OSD, respectively. OSD exhibited high content of essential oil followed by STD and HAD method. Ginger-treated with HAD exhibited the highest DPPH (IC50 of 57.8 mg/g DW) and FRAP (493.8 µM of Fe(II)/g DM) activity, compared to STD and OSD method. HAD ginger exhibited potent antimicrobial activity with lower minimum inhibition concentration (MIC) value against bacteria strains followed by STD and OSD, respectively. Ginger extracts showed more potent antimicrobial activity against Gram positive bacteria than Gram negative bacteria strains. Result of this study confirmed that conversion of gingerols to shogaols was significantly affected by different drying temperature and time. HAD at 150 °C for 6 h, provides a method for enhancing shogaols content in ginger rhizomes with improving antioxidant and antimicrobial activities.
    Matched MeSH terms: Ginger/chemistry*
  14. Al-Zubairi AS, Abdul AB, Syam MM
    Toxicol In Vitro, 2010 Apr;24(3):707-12.
    PMID: 20123012 DOI: 10.1016/j.tiv.2010.01.011
    The chromosomal aberrations (CA) assay and micronucleus (MN) test were employed to investigate the effect in vitro of zerumbone (ZER) on human chromosomes. ZER is a sesquiterpene compound isolated from the rhizomes of wild ginger, Zingiber zerumbet Smith. The rhizomes of the plant are employed as a traditional medicine for some ailments and as condiments. ZER has been shown to have anti-cancer and apoptosis-inducing properties against various human tumour cells. It has also been shown to be active in vivo against a number of induced malignancies. Studies on ZER genotoxicity in cultured human peripheral blood lymphocytes (PBL) have not been reported so far. Therefore, the present study was undertaken to investigate the ability of ZER to induce chromosomal aberrations and micronuclei formation in human lymphocytes in vitro. Human blood samples were obtained from four healthy, non-smoking males aged 25-35years. Cultures were exposed to the drug for 48h at four final concentrations: 10, 20, 40 and 80 microM. Mitomycin C (MMC) was used as a positive control. The results of chromosomal aberrations assay showed that ZER was not clastogenic, when compared to untreated control, meanwhile MN test results showed a dose-dependent increase in MN formation. The overall clastogenic effect of ZER on human PBL was statistically not significant. In conclusion, ZER is a cytotoxic but not a clastogenic substance in human PBL.
    Matched MeSH terms: Ginger/chemistry
  15. Liew YJM, Lee YK, Khalid N, Rahman NA, Tan BC
    PeerJ, 2020;8:e9094.
    PMID: 32391211 DOI: 10.7717/peerj.9094
    Flavonoids and prenylated flavonoids are active components in medicinal plant extracts which exhibit beneficial effects on human health. Prenylated flavonoids consist of a flavonoid core with a prenyl group attached to it. This prenylation process is catalyzed by prenyltranferases (PTs). At present, only a few flavonoid-related PT genes have been identified. In this study, we aimed to investigate the roles of PT in flavonoid production. We isolated a putative PT gene (designated as BrPT2) from a medicinal ginger, Boesenbergia rotunda. The deduced protein sequence shared highest gene sequence homology (81%) with the predicted homogentisate phytyltransferase 2 chloroplastic isoform X1 from Musa acuminata subsp. Malaccensis. We then cloned the BrPT2 into pRI vector and expressed in B. rotunda cell suspension cultures via Agrobacterium-mediated transformation. The BrPT2-expressing cells were fed with substrate, pinostrobin chalcone, and their products were analyzed by liquid chromatography mass spectrometry. We found that the amount of flavonoids, namely alpinetin, pinostrobin, naringenin and pinocembrin, in BrPT2-expressing cells was higher than those obtained from the wild type cells. However, we were unable to detect any targeted prenylated flavonoids. Further in-vitro assay revealed that the reaction containing the BrPT2 protein produced the highest accumulation of pinostrobin from the substrate pinostrobin chalcone compared to the reaction without BrPT2 protein, suggesting that BrPT2 was able to accelerate the enzymatic reaction. The finding of this study implied that the isolated BrPT2 may not be involved in the prenylation of pinostrobin chalcone but resulted in high yield and production of other flavonoids, which is likely related to enzyme promiscuous activities.
    Matched MeSH terms: Ginger
  16. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Molecules, 2010 Nov 03;15(11):7907-22.
    PMID: 21060298 DOI: 10.3390/molecules15117907
    Zingiber officinale Roscoe. (Family Zingiberaceae) is well known in Asia. The plant is widely cultivated in village gardens in the tropics for its medicinal properties and as a marketable spice in Malaysia. Ginger varieties are rich in physiologically active phenolics and flavonoids with a range of pharmacological activities. Experiments were conducted to determine the feasibility of increasing levels of flavonoids (quercetin, rutin, catechin, epicatechin, kaempferol, naringenin, fisetin and morin) and phenolic acid (gallic acid, vanillic acid, ferulic acid, tannic acid, cinnamic acid and salicylic acid), and antioxidant activities in different parts of Malaysian young ginger varieties (Halia Bentong and Halia Bara) with CO(2) enrichment in a controlled environment system. Both varieties showed an increase in phenolic compounds and flavonoids in response to CO(2) enrichment from 400 to 800 µmol mol-1 CO(2). These increases were greater in rhizomes compared to leaves. High performance liquid chromatography (HPLC) results showed that quercetin and gallic acid were the most abundant flavonoid and phenolic acid in Malaysian young ginger varieties. Under elevated CO(2) conditions, kaempferol and fisetin were among the flavonoid compounds, and gallic acid and vanillic acid were among the phenolic compounds whose levels increased in both varieties. As CO(2) concentration was increased from 400 to 800 µmol mol-1, free radical scavenging power (DPPH) increased about 30% in Halia Bentong and 21.4% in Halia Bara; and the rhizomes exhibited more enhanced free radical scavenging power, with 44.9% in Halia Bentong and 46.2% in Halia Bara. Leaves of both varieties also displayed good levels of flavonoid compounds and antioxidant activities. These results indicate that the yield and pharmaceutical quality of Malaysian young ginger varieties can be enhanced by controlled environment production and CO(2) enrichment.
    Matched MeSH terms: Ginger/metabolism*
  17. Ali A, Hei GK, Keat YW
    J Food Sci Technol, 2016 Mar;53(3):1435-44.
    PMID: 27570268 DOI: 10.1007/s13197-015-2124-5
    Effect of 2.0 % ginger oil (GO) and 1.5 % ginger extract (GE) in combination with 10.0 % gum arabic (GA) was evaluated for the postharvest control of anthracnose and maintaining quality of Eksotika II papaya fruit during storage at 12 ± 1 °C and 80-85 % RH. Antifungal compounds present in GO and GE were analyzed using gas chromatography and GO was found to contain α-pinene, 1, 8-cineole and borneol, while only borneol was present in GE due to different extraction methods applied. The highest antifungal activity was shown in 2.0 % GO combined with 10 % GA, which significantly (P 
    Matched MeSH terms: Ginger
  18. Lua PL, Salihah N, Mazlan N
    Complement Ther Med, 2015 Jun;23(3):396-404.
    PMID: 26051575 DOI: 10.1016/j.ctim.2015.03.009
    OBJECTIVE: To assess the efficacy of inhaled ginger aromatherapy on nausea, vomiting and health-related quality of life (HRQoL) in chemotherapy breast cancer patients.

    DESIGN: Single-blind, controlled, randomized cross-over study. Patients received 5-day aromatherapy treatment using either ginger essential oil or fragrance-matched artificial placebo (ginger fragrance oil) which was instilled in a necklace in an order dictated by the treatment group sequence.

    SETTING: Two oncology clinics in the East Coast of Peninsular Malaysia.

    MAIN OUTCOME MEASURES: VAS nausea score, frequency of vomiting and HRQoL profile (EORTC QLQ-C30 scores).

    RESULTS: Sixty female patients completed the study (age=47.3±9.26 years; Malay=98.3%; on highly emetogenic chemotherapy=86.7%). The VAS nausea score was significantly lower after ginger essential oil inhalation compared to placebo during acute phase (P=0.040) but not sustained for overall treatment effect (treatment effect: F=1.82, P=0.183; time effect: F=43.98, P<0.001; treatment×time effect: F=2.04; P=0.102). Similarly, there was no significant effect of aromatherapy on vomiting [F(1, 58)=0.29, P=0.594]. However, a statistically significant change from baseline for global health status (P<0.001) was detected after ginger essential oil inhalation. A clinically relevant 10 points improvement on role functioning (P=0.002) and appetite loss (P<0.001) were also documented while patients were on ginger essential oil.

    CONCLUSION: At present time, the evidence derived from this study is not sufficiently convincing that inhaled ginger aromatherapy is an effective complementary therapy for CINV. The findings for HRQoL were however encouraging with significant improvement in several domains.

    Matched MeSH terms: Ginger*
  19. Sani NF, Belani LK, Sin CP, Rahman SN, Das S, Chi TZ, et al.
    Biomed Res Int, 2014;2014:160695.
    PMID: 24822178 DOI: 10.1155/2014/160695
    Diabetic complications occur as a result of increased reactive oxygen species (ROS) due to long term hyperglycaemia. Honey and ginger have been shown to exhibit antioxidant activity which can scavenge ROS. The main aim of this study was to evaluate the antioxidant and antidiabetic effects of gelam honey, ginger, and their combination. Sprague-Dawley rats were divided into 2 major groups which consisted of diabetic and nondiabetic rats. Diabetes was induced with streptozotocin intramuscularly (55 mg/kg body weight). Each group was further divided into 4 smaller groups according to the supplements administered: distilled water, honey (2 g/kg body weight), ginger (60 mg/kg body weight), and honey + ginger. Body weight and glucose levels were recorded weekly, while blood from the orbital sinus was obtained after 3 weeks of supplementation for the estimation of metabolic profile: glucose, triglyceride (TG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH): oxidized glutathione (GSSG), and malondialdehyde (MDA). The combination of gelam honey and ginger did not show hypoglycaemic potential; however, the combination treatment reduced significantly (P < 0.05) SOD and CAT activities as well as MDA level, while GSH level and GSH/GSSG ratio were significantly elevated (P < 0.05) in STZ-induced diabetic rats compared to diabetic control rats.
    Matched MeSH terms: Ginger/chemistry*
  20. Ghasemzadeh A, Jaafar HZ, Rahmat A, Wahab PE, Halim MR
    Int J Mol Sci, 2010 Oct 12;11(10):3885-97.
    PMID: 21152306 DOI: 10.3390/ijms11103885
    Nowadays, phytochemicals and antioxidants in plants are raising interest in consumers for their roles in the maintenance of human health. Phenolics and flavonoids are known for their health-promoting properties due to protective effects against cardiovascular disease, cancers and other disease. Ginger (Zingiber officinale) is one of the traditional folk medicinal plants and it is widely used in cooking in Malaysia. In this study, four levels of glasshouse light intensities (310, 460, 630 and 790 μmol m(-2)s(-1)) were used in order to consider the effect of light intensity on the production, accumulation and partitioning of total phenolics (TP), total flavonoids (TF) and antioxidant activities in two varieties of Malaysian young ginger (Zingiber officinale). TF biosynthesis was highest in the Halia Bara variety under 310 μmol m(-2)s(-1) and TP was high in this variety under a light intensity of 790 μmol m(-2)s(-1). The highest amount of these components accumulated in the leaves and after that in the rhizomes. Also, antioxidant activities determined by the 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) assay in both of varieties, increased significantly (p ≤ 0.01) with increasing TF concentration, and high antioxidant activity was observed in the leaves of Halia Bara grown under 310 μmol m(-2)s(-1). The ferric reducing (FRAP) activity of the rhizomes was higher than that of the leaves in 310 μmol m(-2)s(-1) of sun light. This study indicates the ability of different light intensities to enhance the medicinal components and antioxidant activities of the leaves and young rhizomes of Zingiber officinale varieties. Additionally, this study also validated their medicinal potential based on TF and TP contents.
    Matched MeSH terms: Ginger/metabolism; Ginger/radiation effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links