Displaying publications 41 - 60 of 269 in total

Abstract:
Sort:
  1. Tahir N, Asif M, Ahmad S, Malik MSA, Aljuaid H, Butt MA, et al.
    PeerJ Comput Sci, 2021;7:e389.
    PMID: 33817035 DOI: 10.7717/peerj-cs.389
    Keyword extraction is essential in determining influenced keywords from huge documents as the research repositories are becoming massive in volume day by day. The research community is drowning in data and starving for information. The keywords are the words that describe the theme of the whole document in a precise way by consisting of just a few words. Furthermore, many state-of-the-art approaches are available for keyword extraction from a huge collection of documents and are classified into three types, the statistical approaches, machine learning, and graph-based methods. The machine learning approaches require a large training dataset that needs to be developed manually by domain experts, which sometimes is difficult to produce while determining influenced keywords. However, this research focused on enhancing state-of-the-art graph-based methods to extract keywords when the training dataset is unavailable. This research first converted the handcrafted dataset, collected from impact factor journals into n-grams combinations, ranging from unigram to pentagram and also enhanced traditional graph-based approaches. The experiment was conducted on a handcrafted dataset, and all methods were applied on it. Domain experts performed the user study to evaluate the results. The results were observed from every method and were evaluated with the user study using precision, recall and f-measure as evaluation matrices. The results showed that the proposed method (FNG-IE) performed well and scored near the machine learning approaches score.
    Matched MeSH terms: Machine Learning
  2. T A, G G, P AMD, Assaad M
    PLoS One, 2024;19(3):e0299653.
    PMID: 38478485 DOI: 10.1371/journal.pone.0299653
    Mechanical ventilation techniques are vital for preserving individuals with a serious condition lives in the prolonged hospitalization unit. Nevertheless, an imbalance amid the hospitalized people demands and the respiratory structure could cause to inconsistencies in the patient's inhalation. To tackle this problem, this study presents an Iterative Learning PID Controller (ILC-PID), a unique current cycle feedback type controller that helps in gaining the correct pressure and volume. The paper also offers a clear and complete examination of the primarily efficient neural approach for generating optimal inhalation strategies. Moreover, machine learning-based classifiers are used to evaluate the precision and performance of the ILC-PID controller. These classifiers able to forecast and choose the perfect type for various inhalation modes, eliminating the likelihood that patients will require mechanical ventilation. In pressure control, the suggested accurate neural categorization exhibited an average accuracy rate of 88.2% in continuous positive airway pressure (CPAP) mode and 91.7% in proportional assist ventilation (PAV) mode while comparing with the other classifiers like ensemble classifier has reduced accuracy rate of 69.5% in CPAP mode and also 71.7% in PAV mode. An average accuracy of 78.9% rate in other classifiers compared to neutral network in CPAP. The neural model had an typical range of 81.6% in CPAP mode and 84.59% in PAV mode for 20 cm H2O of volume created by the neural network classifier in the volume investigation. Compared to the other classifiers, an average of 72.17% was in CPAP mode, and 77.83% was in PAV mode in volume control. Different approaches, such as decision trees, optimizable Bayes trees, naive Bayes trees, nearest neighbour trees, and an ensemble of trees, were also evaluated regarding the accuracy by confusion matrix concept, training duration, specificity, sensitivity, and F1 score.
    Matched MeSH terms: Machine Learning
  3. Swift RV, Jusoh SA, Offutt TL, Li ES, Amaro RE
    J Chem Inf Model, 2016 05 23;56(5):830-42.
    PMID: 27097522 DOI: 10.1021/acs.jcim.5b00684
    Ensemble docking can be a successful virtual screening technique that addresses the innate conformational heterogeneity of macromolecular drug targets. Yet, lacking a method to identify a subset of conformational states that effectively segregates active and inactive small molecules, ensemble docking may result in the recommendation of a large number of false positives. Here, three knowledge-based methods that construct structural ensembles for virtual screening are presented. Each method selects ensembles by optimizing an objective function calculated using the receiver operating characteristic (ROC) curve: either the area under the ROC curve (AUC) or a ROC enrichment factor (EF). As the number of receptor conformations, N, becomes large, the methods differ in their asymptotic scaling. Given a set of small molecules with known activities and a collection of target conformations, the most resource intense method is guaranteed to find the optimal ensemble but scales as O(2(N)). A recursive approximation to the optimal solution scales as O(N(2)), and a more severe approximation leads to a faster method that scales linearly, O(N). The techniques are generally applicable to any system, and we demonstrate their effectiveness on the androgen nuclear hormone receptor (AR), cyclin-dependent kinase 2 (CDK2), and the peroxisome proliferator-activated receptor δ (PPAR-δ) drug targets. Conformations that consisted of a crystal structure and molecular dynamics simulation cluster centroids were used to form AR and CDK2 ensembles. Multiple available crystal structures were used to form PPAR-δ ensembles. For each target, we show that the three methods perform similarly to one another on both the training and test sets.
    Matched MeSH terms: Machine Learning*
  4. Sutradhar A, Al Rafi M, Shamrat FMJM, Ghosh P, Das S, Islam MA, et al.
    Sci Rep, 2023 Dec 18;13(1):22874.
    PMID: 38129433 DOI: 10.1038/s41598-023-48486-7
    Heart failure (HF) is a leading cause of mortality worldwide. Machine learning (ML) approaches have shown potential as an early detection tool for improving patient outcomes. Enhancing the effectiveness and clinical applicability of the ML model necessitates training an efficient classifier with a diverse set of high-quality datasets. Hence, we proposed two novel hybrid ML methods ((a) consisting of Boosting, SMOTE, and Tomek links (BOO-ST); (b) combining the best-performing conventional classifier with ensemble classifiers (CBCEC)) to serve as an efficient early warning system for HF mortality. The BOO-ST was introduced to tackle the challenge of class imbalance, while CBCEC was responsible for training the processed and selected features derived from the Feature Importance (FI) and Information Gain (IG) feature selection techniques. We also conducted an explicit and intuitive comprehension to explore the impact of potential characteristics correlating with the fatality cases of HF. The experimental results demonstrated the proposed classifier CBCEC showcases a significant accuracy of 93.67% in terms of providing the early forecasting of HF mortality. Therefore, we can reveal that our proposed aspects (BOO-ST and CBCEC) can be able to play a crucial role in preventing the death rate of HF and reducing stress in the healthcare sector.
    Matched MeSH terms: Machine Learning*
  5. Supakar R, Satvaya P, Chakrabarti P
    Comput Biol Med, 2022 Dec;151(Pt A):106225.
    PMID: 36306576 DOI: 10.1016/j.compbiomed.2022.106225
    Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting the significant features and make classifications, the authors proposed a deep learning based model using RNN-LSTM to analyze the EEG signal data to diagnose schizophrenia. The proposed model used three dense layers on top of a 100 dimensional LSTM. EEG signal data of 45 schizophrenic patients and 39 healthy subjects were used in the study. Dimensionality reduction algorithm was used to obtain an optimal feature set and the classifier was run with both sets of data. An accuracy of 98% and 93.67% were obtained with the complete feature set and the reduced feature set respectively. The robustness of the model was evaluated using model performance measure and combined performance measure. Outcomes were compared with the outcome obtained with traditional machine learning classifiers such as Random Forest, SVM, FURIA, and AdaBoost, and the proposed model was found to perform better with the complete dataset. When compared with the result of the researchers who worked with the same set of data using either CNN or RNN, the proposed model's accuracy was either better or comparable to theirs.
    Matched MeSH terms: Machine Learning
  6. Sundaram A, Subramaniam H, Ab Hamid SH, Mohamad Nor A
    PeerJ, 2024;12:e17133.
    PMID: 38563009 DOI: 10.7717/peerj.17133
    BACKGROUND: In the current era of rapid technological innovation, our lives are becoming more closely intertwined with digital systems. Consequently, every human action generates a valuable repository of digital data. In this context, data-driven architectures are pivotal for organizing, manipulating, and presenting data to facilitate positive computing through ensemble machine learning models. Moreover, the COVID-19 pandemic underscored a substantial need for a flexible mental health care architecture. This architecture, inclusive of machine learning predictive models, has the potential to benefit a larger population by identifying individuals at a heightened risk of developing various mental disorders.

    OBJECTIVE: Therefore, this research aims to create a flexible mental health care architecture that leverages data-driven methodologies and ensemble machine learning models. The objective is to proficiently structure, process, and present data for positive computing. The adaptive data-driven architecture facilitates customized interventions for diverse mental disorders, fostering positive computing. Consequently, improved mental health care outcomes and enhanced accessibility for individuals with varied mental health conditions are anticipated.

    METHOD: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, the researchers conducted a systematic literature review in databases indexed in Web of Science to identify the existing strengths and limitations of software architecture relevant to our adaptive design. The systematic review was registered in PROSPERO (CRD42023444661). Additionally, a mapping process was employed to derive essential paradigms serving as the foundation for the research architectural design. To validate the architecture based on its features, professional experts utilized a Likert scale.

    RESULTS: Through the review, the authors identified six fundamental paradigms crucial for designing architecture. Leveraging these paradigms, the authors crafted an adaptive data-driven architecture, subsequently validated by professional experts. The validation resulted in a mean score exceeding four for each evaluated feature, confirming the architecture's effectiveness. To further assess the architecture's practical application, a prototype architecture for predicting pandemic anxiety was developed.

    Matched MeSH terms: Machine Learning
  7. Sultan G, Zubair S
    Comput Biol Chem, 2024 Feb;108:107999.
    PMID: 38070457 DOI: 10.1016/j.compbiolchem.2023.107999
    Breast cancer continues to be a prominent cause for substantial loss of life among women globally. Despite established treatment approaches, the rising prevalence of breast cancer is a concerning trend regardless of geographical location. This highlights the need to identify common key genes and explore their biological significance across diverse populations. Our research centered on establishing a correlation between common key genes identified in breast cancer patients. While previous studies have reported many of the genes independently, our study delved into the unexplored realm of their mutual interactions, that may establish a foundational network contributing to breast cancer development. Machine learning algorithms were employed for sample classification and key gene selection. The best performance model further selected the candidate genes through expression pattern recognition. Subsequently, the genes common in all the breast cancer patients from India, China, Czech Republic, Germany, Malaysia and Saudi Arabia were selected for further study. We found that among ten classifiers, Catboost exhibited superior performance with an average accuracy of 92%. Functional enrichment analysis and pathway analysis revealed that calcium signaling pathway, regulation of actin cytoskeleton pathway and other cancer-associated pathways were highly enriched with our identified genes. Notably, we observed that these genes regulate each other, forming a complex network. Additionally, we identified PALMD gene as a novel potential biomarker for breast cancer progression. Our study revealed key gene modules forming a complex network that were consistently expressed in different populations, affirming their critical role and biological significance in breast cancer. The identified genes hold promise as prospective biomarkers of breast cancer prognosis irrespective of country of origin or ethnicity. Future investigations will expand upon these genes in a larger population and validate their biological functions through in vivo analysis.
    Matched MeSH terms: Machine Learning
  8. Sulaiman R, Azeman NH, Abu Bakar MH, Ahmad Nazri NA, Masran AS, Ashrif A Bakar A
    Appl Spectrosc, 2023 Feb;77(2):210-219.
    PMID: 36348500 DOI: 10.1177/00037028221140924
    Nutrient solution plays an essential role in providing macronutrients to hydroponic plants. Determining nitrogen in the form of nitrate is crucial, as either a deficient or excessive supply of nitrate ions may reduce the plant yield or lead to environmental pollution. This work aims to evaluate the performance of feature reduction techniques and conventional machine learning (ML) algorithms in determining nitrate concentration levels. Two features reduction techniques, linear discriminant analysis (LDA) and principal component analysis (PCA), and seven ML algorithms, for example, k-nearest neighbors (KNN), support vector machine, decision trees, naïve bayes, random forest (RF), gradient boosting, and extreme gradient boosting, were evaluated using a high-dimensional spectroscopic dataset containing measured nitrate-nitrite mixed solution absorbance data. Despite the limited and uneven number of samples per class, this study demonstrated that PCA outperformed LDA on the high-dimensional spectroscopic dataset. The classification accuracy of ML algorithms combined with PCA ranged from 92.7% to 99.8%, whereas the classification accuracy of ML algorithms combined with LDA ranged from 80.7% to 87.6%. The PCA with the RF algorithm exhibited the best performance with 99.8% accuracy.
    Matched MeSH terms: Machine Learning
  9. Suhaimi NS, Mountstephens J, Teo J
    Comput Intell Neurosci, 2020;2020:8875426.
    PMID: 33014031 DOI: 10.1155/2020/8875426
    Emotions are fundamental for human beings and play an important role in human cognition. Emotion is commonly associated with logical decision making, perception, human interaction, and to a certain extent, human intelligence itself. With the growing interest of the research community towards establishing some meaningful "emotional" interactions between humans and computers, the need for reliable and deployable solutions for the identification of human emotional states is required. Recent developments in using electroencephalography (EEG) for emotion recognition have garnered strong interest from the research community as the latest developments in consumer-grade wearable EEG solutions can provide a cheap, portable, and simple solution for identifying emotions. Since the last comprehensive review was conducted back from the years 2009 to 2016, this paper will update on the current progress of emotion recognition using EEG signals from 2016 to 2019. The focus on this state-of-the-art review focuses on the elements of emotion stimuli type and presentation approach, study size, EEG hardware, machine learning classifiers, and classification approach. From this state-of-the-art review, we suggest several future research opportunities including proposing a different approach in presenting the stimuli in the form of virtual reality (VR). To this end, an additional section devoted specifically to reviewing only VR studies within this research domain is presented as the motivation for this proposed new approach using VR as the stimuli presentation device. This review paper is intended to be useful for the research community working on emotion recognition using EEG signals as well as for those who are venturing into this field of research.
    Matched MeSH terms: Machine Learning/trends*
  10. Sudarshan VK, Acharya UR, Oh SL, Adam M, Tan JH, Chua CK, et al.
    Comput Biol Med, 2017 04 01;83:48-58.
    PMID: 28231511 DOI: 10.1016/j.compbiomed.2017.01.019
    Identification of alarming features in the electrocardiogram (ECG) signal is extremely significant for the prediction of congestive heart failure (CHF). ECG signal analysis carried out using computer-aided techniques can speed up the diagnosis process and aid in the proper management of CHF patients. Therefore, in this work, dual tree complex wavelets transform (DTCWT)-based methodology is proposed for an automated identification of ECG signals exhibiting CHF from normal. In the experiment, we have performed a DTCWT on ECG segments of 2s duration up to six levels to obtain the coefficients. From these DTCWT coefficients, statistical features are extracted and ranked using Bhattacharyya, entropy, minimum redundancy maximum relevance (mRMR), receiver-operating characteristics (ROC), Wilcoxon, t-test and reliefF methods. Ranked features are subjected to k-nearest neighbor (KNN) and decision tree (DT) classifiers for automated differentiation of CHF and normal ECG signals. We have achieved 99.86% accuracy, 99.78% sensitivity and 99.94% specificity in the identification of CHF affected ECG signals using 45 features. The proposed method is able to detect CHF patients accurately using only 2s of ECG signal length and hence providing sufficient time for the clinicians to further investigate on the severity of CHF and treatments.
    Matched MeSH terms: Machine Learning*
  11. Su G, Jiang P
    Bioresour Technol, 2024 May;399:130519.
    PMID: 38437964 DOI: 10.1016/j.biortech.2024.130519
    This study developed six machine learning models to predict the biochar properties from the dry torrefaction of lignocellulosic biomass by using biomass characteristics and torrefaction conditions as input variables. After optimization, gradient boosting machines were the optimal model, with the highest coefficient of determination ranging from 0.89 to 0.94. Torrefaction conditions exhibited a higher relative contribution to the yield and higher heating value (HHV) of biochar than biomass characteristics. Temperature was the dominant contributor to the elemental and proximate composition and the yield and HHV of biochar. Feature importance and SHapley Additive exPlanations revealed the effect of each influential factor on the target variables and the interactions between these factors in torrefaction. Software that can accurately predict the element, yield, and HHV of biochar was developed. These findings provide a comprehensive understanding of the key factors and their interactions influencing the torrefaction process and biochar properties.
    Matched MeSH terms: Machine Learning*
  12. Song J, Shin SD, Jamaluddin SF, Chiang WC, Tanaka H, Song KJ, et al.
    J Neurotrauma, 2023 Jul;40(13-14):1376-1387.
    PMID: 36656672 DOI: 10.1089/neu.2022.0280
    Abstract Traumatic brain injury (TBI) is a significant healthcare concern in several countries, accounting for a major burden of morbidity, mortality, disability, and socioeconomic losses. Although conventional prognostic models for patients with TBI have been validated, their performance has been limited. Therefore, we aimed to construct machine learning (ML) models to predict the clinical outcomes in adult patients with isolated TBI in Asian countries. The Pan-Asian Trauma Outcome Study registry was used in this study, and the data were prospectively collected from January 1, 2015, to December 31, 2020. Among a total of 6540 patients (≥ 15 years) with isolated moderate and severe TBI, 3276 (50.1%) patients were randomly included with stratification by outcomes and subgrouping variables for model evaluation, and 3264 (49.9%) patients were included for model training and validation. Logistic regression was considered as a baseline, and ML models were constructed and evaluated using the area under the precision-recall curve (AUPRC) as the primary outcome metric, area under the receiver operating characteristic curve (AUROC), and precision at fixed levels of recall. The contribution of the variables to the model prediction was measured using the SHapley Additive exPlanations (SHAP) method. The ML models outperformed logistic regression in predicting the in-hospital mortality. Among the tested models, the gradient-boosted decision tree showed the best performance (AUPRC, 0.746 [0.700-0.789]; AUROC, 0.940 [0.929-0.952]). The most powerful contributors to model prediction were the Glasgow Coma Scale, O2 saturation, transfusion, systolic and diastolic blood pressure, body temperature, and age. Our study suggests that ML techniques might perform better than conventional multi-variate models in predicting the outcomes among adult patients with isolated moderate and severe TBI.
    Matched MeSH terms: Machine Learning
  13. Singh OP, Vallejo M, El-Badawy IM, Aysha A, Madhanagopal J, Mohd Faudzi AA
    Comput Biol Med, 2021 Sep;136:104650.
    PMID: 34329865 DOI: 10.1016/j.compbiomed.2021.104650
    Due to the continued evolution of the SARS-CoV-2 pandemic, researchers worldwide are working to mitigate, suppress its spread, and better understand it by deploying digital signal processing (DSP) and machine learning approaches. This study presents an alignment-free approach to classify the SARS-CoV-2 using complementary DNA, which is DNA synthesized from the single-stranded RNA virus. Herein, a total of 1582 samples, with different lengths of genome sequences from different regions, were collected from various data sources and divided into a SARS-CoV-2 and a non-SARS-CoV-2 group. We extracted eight biomarkers based on three-base periodicity, using DSP techniques, and ranked those based on a filter-based feature selection. The ranked biomarkers were fed into k-nearest neighbor, support vector machines, decision trees, and random forest classifiers for the classification of SARS-CoV-2 from other coronaviruses. The training dataset was used to test the performance of the classifiers based on accuracy and F-measure via 10-fold cross-validation. Kappa-scores were estimated to check the influence of unbalanced data. Further, 10 × 10 cross-validation paired t-test was utilized to test the best model with unseen data. Random forest was elected as the best model, differentiating the SARS-CoV-2 coronavirus from other coronaviruses and a control a group with an accuracy of 97.4 %, sensitivity of 96.2 %, and specificity of 98.2 %, when tested with unseen samples. Moreover, the proposed algorithm was computationally efficient, taking only 0.31 s to compute the genome biomarkers, outperforming previous studies.
    Matched MeSH terms: Machine Learning
  14. Singh NK, Yadav M, Singh V, Padhiyar H, Kumar V, Bhatia SK, et al.
    Bioresour Technol, 2023 Feb;369:128486.
    PMID: 36528177 DOI: 10.1016/j.biortech.2022.128486
    Artificial intelligence (AI) and machine learning (ML) are currently used in several areas. The applications of AI and ML based models are also reported for monitoring and design of biological wastewater treatment systems (WWTS). The available information is reviewed and presented in terms of bibliometric analysis, model's description, specific applications, and major findings for investigated WWTS. Among the applied models, artificial neural network (ANN), fuzzy logic (FL) algorithms, random forest (RF), and long short-term memory (LSTM) were predominantly used in the biological wastewater treatment. These models are tested by predictive control of effluent parameters such as biological oxygen demand (BOD), chemical oxygen demand (COD), nutrient parameters, solids, and metallic substances. Following model performance indicators were mainly used for the accuracy analysis in most of the studies: root mean squared error (RMSE), mean square error (MSE), and determination coefficient (DC). Besides, outcomes of various models are also summarized in this study.
    Matched MeSH terms: Machine Learning
  15. Silitonga AS, Hassan MH, Ong HC, Kusumo F
    Environ Sci Pollut Res Int, 2017 Nov;24(32):25383-25405.
    PMID: 28932948 DOI: 10.1007/s11356-017-0141-9
    The purpose of this study is to investigate the performance, emission and combustion characteristics of a four-cylinder common-rail turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends. A kernel-based extreme learning machine (KELM) model is developed in this study using MATLAB software in order to predict the performance, combustion and emission characteristics of the engine. To acquire the data for training and testing the KELM model, the engine speed was selected as the input parameter, whereas the performance, exhaust emissions and combustion characteristics were chosen as the output parameters of the KELM model. The performance, emissions and combustion characteristics predicted by the KELM model were validated by comparing the predicted data with the experimental data. The results show that the coefficient of determination of the parameters is within a range of 0.9805-0.9991 for both the KELM model and the experimental data. The mean absolute percentage error is within a range of 0.1259-2.3838. This study shows that KELM modelling is a useful technique in biodiesel production since it facilitates scientists and researchers to predict the performance, exhaust emissions and combustion characteristics of internal combustion engines with high accuracy.
    Matched MeSH terms: Machine Learning*
  16. Shiammala PN, Duraimutharasan NKB, Vaseeharan B, Alothaim AS, Al-Malki ES, Snekaa B, et al.
    Methods, 2023 Nov;219:82-94.
    PMID: 37778659 DOI: 10.1016/j.ymeth.2023.09.010
    Artificial intelligence (AI), particularly deep learning as a subcategory of AI, provides opportunities to accelerate and improve the process of discovering and developing new drugs. The use of AI in drug discovery is still in its early stages, but it has the potential to revolutionize the way new drugs are discovered and developed. As AI technology continues to evolve, it is likely that AI will play an even greater role in the future of drug discovery. AI is used to identify new drug targets, design new molecules, and predict the efficacy and safety of potential drugs. The inclusion of AI in drug discovery can screen millions of compounds in a matter of hours, identifying potential drug candidates that would have taken years to find using traditional methods. AI is highly utilized in the pharmaceutical industry by optimizing processes, reducing waste, and ensuring quality control. This review covers much-needed topics, including the different types of machine-learning techniques, their applications in drug discovery, and the challenges and limitations of using machine learning in this field. The state-of-the-art of AI-assisted pharmaceutical discovery is described, covering applications in structure and ligand-based virtual screening, de novo drug creation, prediction of physicochemical and pharmacokinetic properties, drug repurposing, and related topics. Finally, many obstacles and limits of present approaches are outlined, with an eye on potential future avenues for AI-assisted drug discovery and design.
    Matched MeSH terms: Machine Learning*
  17. Sheikh Khozani Z, Ehteram M, Mohtar WHMW, Achite M, Chau KW
    Environ Sci Pollut Res Int, 2023 Sep;30(44):99362-99379.
    PMID: 37610542 DOI: 10.1007/s11356-023-29406-8
    A wastewater treatment plant (WWTP) is an essential part of the urban water cycle, which reduces concentration of pollutants in the river. For monitoring and control of WWTPs, researchers develop different models and systems. This study introduces a new deep learning model for predicting effluent quality parameters (EQPs) of a WWTP. A method that couples a convolutional neural network (CNN) with a novel version of radial basis function neural network (RBFNN) is proposed to simultaneously predict and estimate uncertainty of data. The multi-kernel RBFNN (MKRBFNN) uses two activation functions to improve the efficiency of the RBFNN model. The salp swarm algorithm is utilized to set the MKRBFNN and CNN parameters. The main advantage of the CNN-MKRBFNN-salp swarm algorithm (SSA) is to automatically extract features from data points. In this study, influent parameters (if) are used as inputs. Biological oxygen demand (BODif), chemical oxygen demand (CODif), total suspended solids (TSSif), volatile suspended solids (VSSif), and sediment (SEDef) are used to predict EQPs, including CODef, BODef, and TSSef. At the testing level, the Nash-Sutcliffe efficiencies of CNN-MKRBFNN-SSA are 0.98, 0.97, and 0.98 for predicting CODef, BODef, and TSSef. Results indicate that the CNN-MKRBFNN-SSA is a robust model for simulating complex phenomena.
    Matched MeSH terms: Machine Learning
  18. Sheikh Abdullah SN, Bohani FA, Nayef BH, Sahran S, Al Akash O, Iqbal Hussain R, et al.
    Comput Math Methods Med, 2016;2016:8603609.
    PMID: 27516807 DOI: 10.1155/2016/8603609
    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.
    Matched MeSH terms: Machine Learning*
  19. Sharma V, Singh A, Chauhan S, Sharma PK, Chaudhary S, Sharma A, et al.
    Curr Drug Deliv, 2024;21(6):870-886.
    PMID: 37670704 DOI: 10.2174/1567201821666230905090621
    Drug discovery and development (DDD) is a highly complex process that necessitates precise monitoring and extensive data analysis at each stage. Furthermore, the DDD process is both timeconsuming and costly. To tackle these concerns, artificial intelligence (AI) technology can be used, which facilitates rapid and precise analysis of extensive datasets within a limited timeframe. The pathophysiology of cancer disease is complicated and requires extensive research for novel drug discovery and development. The first stage in the process of drug discovery and development involves identifying targets. Cell structure and molecular functioning are complex due to the vast number of molecules that function constantly, performing various roles. Furthermore, scientists are continually discovering novel cellular mechanisms and molecules, expanding the range of potential targets. Accurately identifying the correct target is a crucial step in the preparation of a treatment strategy. Various forms of AI, such as machine learning, neural-based learning, deep learning, and network-based learning, are currently being utilised in applications, online services, and databases. These technologies facilitate the identification and validation of targets, ultimately contributing to the success of projects. This review focuses on the different types and subcategories of AI databases utilised in the field of drug discovery and target identification for cancer.
    Matched MeSH terms: Machine Learning
  20. Sharin SN, Sani MSA, Jaafar MA, Yuswan MH, Kassim NK, Manaf YN, et al.
    Food Chem, 2021 Jun 01;346:128654.
    PMID: 33461823 DOI: 10.1016/j.foodchem.2020.128654
    Identification of honey origin based on specific chemical markers is important for honey authentication. This study is aimed to differentiate Malaysian stingless bee honey from different entomological origins (Heterotrigona bakeri, Geniotrigona thoracica and Tetrigona binghami) based on physicochemical properties (pH, moisture content, ash, total soluble solid and electrical conductivity) and volatile compound profiles. The discrimination pattern of 75 honey samples was observed using Principal Component Analysis (PCA), Hierarchical Clustering Analysis (HCA), Partial Least Square-Discriminant Analysis (PLS-DA), and Support Vector Machine (SVM). The profiles of H. bakeri and G. thoracica honey were close to each other, but clearly separated from T. binghami honey, consistent with their phylogenetic relationship. T. binghami honey is marked by significantly higher electrical conductivity, moisture and ash content, and high abundance of 2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl-1-cyclohexene-1-acetaldehyde and ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl carbonate. Copaene was proposed as chemical marker for G. thoracica honey. The potential of different parameters that aid in honey authentication was highlighted.
    Matched MeSH terms: Machine Learning*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links