Displaying publications 41 - 60 of 84 in total

Abstract:
Sort:
  1. Alexander JA, Surajudeen A, Aliyu EU, Omeiza AU, Zaini MAA
    Water Sci Technol, 2017 Oct;76(7-8):2232-2241.
    PMID: 29068353 DOI: 10.2166/wst.2017.391
    The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.
    Matched MeSH terms: Manganese/chemistry*
  2. Hariri A, Mohamad Noor N, Paiman NA, Ahmad Zaidi AM, Zainal Bakri SF
    Int J Occup Saf Ergon, 2018 Dec;24(4):646-651.
    PMID: 28849717 DOI: 10.1080/10803548.2017.1368950
    Welding operations are rarely conducted in an air-conditioned room. However, a company would set its welding operations in an air-conditioned room to maintain the humidity level needed to reduce hydrogen cracks in the specimen being welded. This study intended to assess the exposure to metal elements in the welders' breathing zone and toenail samples. Heavy metal concentration was analysed using inductively coupled plasma mass spectrometry. The lung function test was also conducted and analysed using statistical approaches. Chromium and manganese concentrations in the breathing zone exceeded the permissible exposure limit stipulated by Malaysian regulations. A similar trend was obtained in the concentration of heavy metals in the breathing zone air sampling and in the welders' toenails. Although there was no statistically significant decrease in the lung function of welders, it is suggested that exposure control through engineering and administrative approaches should be considered for workplace safety and health improvement.
    Matched MeSH terms: Manganese/analysis
  3. Nasir AM, Goh PS, Ismail AF
    Chemosphere, 2018 Jun;200:504-512.
    PMID: 29501887 DOI: 10.1016/j.chemosphere.2018.02.126
    A novel hydrous iron-nickel-manganese (HINM) trimetal oxide was successfully fabricated using oxidation and coprecipitation method for metalloid arsenite removal. The atomic ratio of Fe:Ni:Mn for this adsorbent is 3:2:1. HINM adsorbent was identified as an amorphous nanosized adsorbent with particle size ranged from 30 nm to 60 nm meanwhile the total active surface area and pore diameter of HINM area of 195.78 m2/g and 2.43 nm, respectively. Experimental data of arsenite adsorption is best fitted into pseudo-second order and Freundlich isotherm model. The maximum adsorption capacity of arsenite onto HINM was 81.9 mg/g. Thermodynamic study showed that the adsorption of arsenite was a spontaneous and endothermic reaction with enthalpy change of 14.04 kJ/mol and Gibbs energy of -12 to -14 kJ/mol. Zeta potential, thermal gravimetric (TGA) and Fourier transform infrared (FTIR) analysis were applied to elucidate the mechanism of arsenite adsorption by HINM. Mechanism of arsenite adsorption by HINM involved both chemisorption and physisorption based on the electrostatic attraction between arsenite ions and surface charge of HINM. It also involved the hydroxyl substitution by arsenite ions through the formation of inner-sphere complex. Reusability of HINM trimetal oxide was up to 89% after three cycles of testing implied that HINM trimetal oxide is a promising and practical adsorbent for arsenite.
    Matched MeSH terms: Manganese Compounds/chemistry*
  4. Nemati K, Abu Bakar NK, Abas MR, Sobhanzadeh E, Low KH
    Environ Monit Assess, 2011 May;176(1-4):313-20.
    PMID: 20632089 DOI: 10.1007/s10661-010-1584-3
    A study was carried out to investigate the fractionation of Cd, Cr, Cu, Fe, Mn, Pb, and Zn in shrimp aquaculture sludge from Selangor, Malaysia, using original (unmodified) and modified four-steps BCR (European Community Bureau of Reference, now known as the Standards Measurements and Testing Program) sequential extraction scheme. Step 2 of the unmodified BCR procedure (subsequently called Method A) involves treatment with 0.1 M hydroxylammonium chloride at pH 2, whereas 0.5 M hydroxylammonium chloride at pH 1.5 was used in the modified BCR procedure (subsequently called Method B). Metal analyses were carried out by flame atomic absorption spectrometry. A pseudo-total aqua-regia digest of BCR CRM 701 has also been undertaken for quality assurance purposes. The recovery of Method A for all metals studied ranges from 96.14% to 105.26%, while the recovery for Method B ranges from 95.94% to 122.40%. Our results reveal that Method A underestimated the proportion of metals bound to the easily reducible fraction except for copper. Therefore, the potential mobility of these elements is higher than others. Thus, to use this sludge as a fertilizer we have to first find a remediation for reduction of heavy metal contamination.
    Matched MeSH terms: Manganese/isolation & purification; Manganese/chemistry
  5. Shuhaimi-Othman M, Yakub N, Ramle NA, Abas A
    Toxicol Ind Health, 2015 Sep;31(9):773-82.
    PMID: 23302712 DOI: 10.1177/0748233712472519
    Two freshwater fish, Rasbora sumatrana (Cyprinidae) and Poecilia reticulata (guppy; Poeciliidae), were exposed to a range of eight heavy metals (copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn)) at varied concentrations for 96 h in the laboratory. Mortality was assessed and median lethal concentrations (LC50) were calculated. It was observed that the LC50 values increased with a decrease in mean exposure times, for all metals and for both fish types. The 96-h LC50 values for Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.006, 0.10, 0.46, 0.63, 0.83, 1.71, 1.53, and 5.71 mg/L for R. sumatrana and 0.038, 0.17, 1.06, 1.99, 15.62, 1.46, 6.76, and 23.91 mg/L for P. reticulata, respectively. The metal toxicity trend for R. sumatrana and P. reticulata from most to least toxic was Cu > Cd > Zn > Pb > Ni > Al > Fe > Mn and Cu > Cd > Zn > Fe > Pb > Al > Ni > Mn, respectively. Results indicated that Cu was the most toxic metal on both fish, and R. sumatrana was more sensitive than P. reticulata to all the eight metals.
    Matched MeSH terms: Manganese/analysis; Manganese/toxicity
  6. Yajima I
    Nihon Eiseigaku Zasshi, 2017;72(1):49-54.
    PMID: 28154361 DOI: 10.1265/jjh.72.49
    Several experimental studies on hygiene have recently been performed and fieldwork studies are also important and essential tools. However, the implementation of experimental studies is insufficient compared with that of fieldwork studies on hygiene. Here, we show our well-balanced implementation of both fieldwork and experimental studies of toxic-element-mediated diseases including skin cancer and hearing loss. Since the pollution of drinking well water by toxic elements induces various diseases including skin cancer, we performed both fieldwork and experimental studies to determine the levels of toxic elements and the mechanisms behind the development of toxic-element-related diseases and to develop a novel remediation system. Our fieldwork studies in several countries including Bangladesh, Vietnam and Malaysia demonstrated that drinking well water was polluted with high concentrations of several toxic elements including arsenic, barium, iron and manganese. Our experimental studies using the data from our fieldwork studies demonstrated that these toxic elements caused skin cancer and hearing loss. Further experimental studies resulted in the development of a novel remediation system that adsorbs toxic elements from polluted drinking water. A well-balanced implementation of both fieldwork and experimental studies is important for the prediction, prevention and therapy of toxic-element-mediated diseases.
    Matched MeSH terms: Manganese/adverse effects; Manganese/analysis
  7. Kanagesan S, Aziz SB, Hashim M, Ismail I, Tamilselvan S, Alitheen NB, et al.
    Molecules, 2016 Mar 11;21(3):312.
    PMID: 26978339 DOI: 10.3390/molecules21030312
    Manganese ferrite (MnFe2O4) magnetic nanoparticles were successfully prepared by a sol-gel self-combustion technique using iron nitrate and manganese nitrate, followed by calcination at 150 °C for 24 h. Calcined sample was systematically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrational sample magnetometry (VSM) in order to identify the crystalline phase, functional group, morphology, particle size, shape and magnetic behavior. It was observed that the resultant spinal ferrites obtained at low temperature exhibit single phase, nanoparticle size and good magnetic behavior. The study results have revealed the existence of a potent dose dependent cytotoxic effect of MnFe2O4 nanoparticles against 4T1 cell lines at varying concentrations with IC50 values of 210, 198 and 171 μg/mL after 24 h, 48 h and 72 h of incubation, respectively. Cells exposed to higher concentrations of nanoparticles showed a progressive increase of apoptotic and necrotic activity. Below 125 μg/mL concentration the nanoparticles were biocompatible with 4T1 cells.
    Matched MeSH terms: Manganese Compounds/administration & dosage; Manganese Compounds/therapeutic use*; Manganese Compounds/chemistry*
  8. Alkarkhi AFM, Alqaraghuli WAA, Mohamed Zam NR, Manan DMA, Mahmud MN, Huda N
    Data Brief, 2020 Jun;30:105414.
    PMID: 32258278 DOI: 10.1016/j.dib.2020.105414
    Data on the mineral composition and content of one heavy metal measured in three different fruit flours prepared from ripe and unripe fruits (pulp and peel) are presented. The mineral composition (sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), zinc (Zn), copper (Cu), iron (Fe) and manganese (Mn)) and content of one heavy metal (lead (Pb)) of the flours were analyzed by atomic absorption spectrophotometry. The analysis showed that the data can be used for differentiation between different fruits and stages of ripeness, as revealed by discriminant analysis and cluster analysis. The data provided can be used by researchers and scientists in the differentiation of fruits based on major and minor mineral elements.
    Matched MeSH terms: Manganese
  9. Abubakari F, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, van der Ent A
    AoB Plants, 2020 Dec;12(6):plaa058.
    PMID: 33408845 DOI: 10.1093/aobpla/plaa058
    The Malaysian state of Sabah on the Island of Borneo has recently emerged as a global hotspot of nickel hyperaccumulator plants. This study focuses on the tissue-level distribution of nickel and other physiologically relevant elements in hyperaccumulator plants with distinct phylogenetical affinities. The roots, old stems, young stems and leaves of Flacourtia kinabaluensis (Salicaceae), Actephila alanbakeri (Phyllanthaceae), Psychotria sarmentosa (Rubiaceae) and young stems and leaves of Glochidion brunneum (Phyllanthaceae) were studied using nuclear microprobe (micro-PIXE and micro-BS) analysis. The tissue-level distribution of nickel found in these species has the same overall pattern as in most other hyperaccumulator plants studied previously, with substantial enrichment in the epidermal cells and in the phloem. This study also revealed enrichment of potassium in the spongy and palisade mesophyll of the studied species. Calcium, chlorine, manganese and cobalt were found to be enriched in the phloem and also concentrated in the epidermis and cortex of the studied species. Although hyperaccumulation ostensibly evolved numerous times independently, the basic mechanisms inferred from tissue elemental localization are convergent in these tropical woody species from Borneo Island.
    Matched MeSH terms: Manganese
  10. Kasim MF, Darman AKAB, Yaakob MK, Badar N, Kamarulzaman N
    Phys Chem Chem Phys, 2019 Sep 11;21(35):19126-19146.
    PMID: 31432825 DOI: 10.1039/c9cp01664c
    In this study, nano- and microsized zinc oxide (ZnO) materials were doped with different manganese (Mn) contents (1-5 mol%) via a simple sol-gel method. The structural, morphological, optical and chemical environments of the materials were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), UV-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS). XRD results revealed that all synthesised materials were pure and single phased with a hexagonal wurtzite structure of ZnO. However, at a low annealing temperature, a nanorod-like shape can be obtained for all Zn(1-x)MnxO materials. In addition, EDX spectra confirmed the presence of Mn in the ZnO lattice and the atomic percentage was nearly equal to the calculated stoichiometry. UV-vis spectroscopy further revealed that materials in nano size exhibited band gap widening with an increase of the Mn content in the ZnO lattice. In contrast, micron state materials exhibited band gap narrowing with increasing Mn content up to 3% and then begin to widen when Mn > 3%. This is because the band gaps of these materials are affected by the dimensions of the crystals and the Mn content in the materials. Furthermore, XPS results revealed the existence of multiple states of Mn in all synthesised materials. By combining the information obtained from UV-vis and the XPS valence band, shifting in the valence band maximum (VBM) and conduction band minimum (CBM) was observed. Based on XPS results, the calculation of density functional theory studies revealed that the presence of Mn2+, Mn3+, and Mn4+ ions in the materials influences the band gap changes. It was also revealed that the nanosized Zn0.99Mn0.01O exhibited a higher photocatalytic activity than the other samples for degrading methylene blue (MB) dyes, owing to its smallest crystallite size.
    Matched MeSH terms: Manganese
  11. Janpen C, Kanthawang N, Inkham C, Tsan FY, Sommano SR
    PeerJ, 2019;7:e7751.
    PMID: 31579618 DOI: 10.7717/peerj.7751
    This research aims to determine growth and deficiency patterns as well as antioxidative potentials of Japanese mint (Mentha arvensis) hydroponically grown under limited macronutrients and micronutrients. The experiment was conducted for 60 days after transplanting in an evaporative greenhouse (avg temp = 28-30 °C, 60-65 %RH), using deep water culture technique. Plants were grown in nutrient solution consisting of complete Hoagland's solution (CTRL), and nutrient solutions lacking one of the following macronutrients and micronutrients: nitrogen (-N), phosphorus (-P), potassium (-K), iron (-Fe), manganese (-Mn), and copper (-Cu). The deficiency symptoms, growth patterns, and stress response mechanism were followed. All treatments except for the CTRL induced deficiency symptoms and physiological changes. Macronutrient deprivation reduced growth determined by the morphological parameters while micronutrient omission had no effect except for no iron treatment. The result showed that potassium and iron deficiencies had foremost adversely effect on growth of Japanese mint. Under nutrient stress conditions, plant only gave antioxidative responses to phosphorus and potassium deficiencies. However, the negative plant-stress relationship was found for no iron treatment indicating the detoxification mode of plant for lacking of micronutrient.
    Matched MeSH terms: Manganese
  12. Iqbal F, Ayub Q, Wilson R, Song BK, Talei A, Yeong KY, et al.
    Environ Monit Assess, 2021 Mar 30;193(4):237.
    PMID: 33783594 DOI: 10.1007/s10661-021-08966-7
    A widely distributed urban bird, the house crow (Corvus splendens), was used to assess bioavailable heavy metals in urban and rural environments across Pakistan. Bioaccumulation of arsenic (As), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), iron (Fe), manganese (Mn), chromium (Cr), and copper (Cu) was investigated in wing feathers of 96 crows collected from eight locations and categorized into four groups pertaining to their geographical and environmental similarities. Results revealed that the concentrations of Pb, Ni, Mn, Cu, and Cr were positively correlated and varied significantly among the four groups. Zn, Fe, Cr, and Cu regarded as industrial outputs, were observed in birds both in industrialized cities and in adjoining rural agricultural areas irrigated through the Indus Basin Irrigation System. Birds in both urban regions accrued Pb more than the metal toxicity thresholds for birds. The house crow was ranked in the middle on the metal accumulation levels in feathers between highly accumulating raptor and piscivore and less contaminated insectivore and granivore species in the studied areas,. This study suggests that the house crow is an efficient bioindicator and supports the feasibility of using feathers to discriminate the local pollution differences among terrestrial environments having different levels and kinds of anthropogenic activities.
    Matched MeSH terms: Manganese
  13. Siti Zulfa Zaidon, Yu Bin Ho, Zailina Hashim, Nazamid Saari, Sarva Mangala Praveena
    MyJurnal
    Introduction: Pesticides may influence the physicochemical properties of soil and the water quality parameters, which is vital in maintaining soil fertility and producing high quality crops. Objective: This study aims to determine the relationship between the concentration of pesticides, the physicochemical properties of the paddy soil samples and the water quality parameters of paddy water samples. Methods: A total of 72 soil and 72 water samples were collected in Tanjung Karang, Malaysia. The paddy soil and water were extracted using Quick, Easy, Cheap, Efficient, Rugged and Safe (QuEChERS) and solid phase extraction (SPE) techniques respectively. The concentrations of pesti- cides were analysed in ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). The relationship of the concentration of target pesticides and the paddy soil and water physicochemical properties were studied using Spearman correlation. Results: In paddy soil, the concentration of propiconazole shows moderate positive correlation with manganese (Mn) (r = 0.587) (p 0.01). Meanwhile buprofezin-total organic carbon (TOC) (r = -0.55) (p 0.01), imidacloprid-cation exchange capacity (CEC) (r = -0.519) (p 0.01), pymetrozine-sodium (Na) (r = -0.588) (p 0.01), and trifloxystrobin-calcium (Ca) (r = 0.566) (p 0.01) showed moderate negative correlation. Whereas in water, trifloxystrobin showed significant positive correlation with turbidity (r = 0.718) (p 0.01) and te- buconazole showed negative correlation to dissolved oxygen (DO) (r = 0.634) (p 0.01). Conclusion: The presence of pesticides in paddy field may influence the soil and water quality, thus regular monitoring of pesticides usage and nutrient management in soil is deemed important.
    Matched MeSH terms: Manganese
  14. Iqbal J, Ansari MO, Numan A, Wageh S, Al-Ghamdi A, Alam MG, et al.
    Polymers (Basel), 2020 Dec 05;12(12).
    PMID: 33291451 DOI: 10.3390/polym12122918
    In this study, ternary composites of polyaniline (PANI) with manganese dioxide (MnO2) nanorods and carbon nanotubes (CNTs) were prepared by employing a hydrothermal methodology and in-situ oxidative polymerization of aniline. The morphological analysis by scanning electron microscopy showed that the MnO2 possessed nanorod like structures in its pristine form, while in the ternary PANI@CNT/MnO2 composite, coating of PANI over CNT/MnO2, rods/tubes were evidently seen. The structural analysis by X-ray diffraction and X-ray photoelectron spectroscopy showed peaks corresponding to MnO2, PANI and CNT, which suggested efficacy of the synthesis methodology. The electrochemical performance in contrast to individual components revealed the enhanced performance of PANI@CNT/MnO2 composite due to the synergistic/additional effect of PANI, CNT and MnO2 compared to pure MnO2, PANI and PANI@CNT. The PANI@CNT/MnO2 ternary composite exhibited an excellent specific capacity of 143.26 C g-1 at a scan rate of 3 mV s-1. The cyclic stability of the supercapattery (PANI@CNT/MnO2/activated carbon)-consisting of a battery type electrode-demonstrated a gradual increase in specific capacity with continuous charge-discharge over ~1000 cycles and showed a cyclic stability of 119% compared to its initial value after 3500 cycles.
    Matched MeSH terms: Manganese Compounds
  15. Pak HY, Chuah CJ, Yong EL, Snyder SA
    Sci Total Environ, 2021 Aug 01;780:146661.
    PMID: 34030308 DOI: 10.1016/j.scitotenv.2021.146661
    Land use plays a significant role in determining the spatial patterns of water quality in the Johor River Basin (JRB), Malaysia. In the recent years, there have been several occurrences of pollution in these rivers, which has generated concerns over the long-term sustainability of the water resources in the JRB. Specifically, this water resource is a shared commodity between two states, namely, Johor state of Malaysia and Singapore, a neighbouring country adjacent to Malaysia. Prior to this study, few research on the influence of land use configuration on water quality have been conducted in Johor. In addition, it is also unclear how water quality varies under different seasonality in the presence of point sources. In this study, we investigated the influence of land use and point sources from wastewater treatment plants (WWTPs) on the water quality in the JRB. Two statistical techniques - Multivariate Linear Regression (MLR) and Redundancy Analysis (RA) were undertaken to analyse the relationships between river water quality and land use configuration, as well as point sources from WWTPs under different seasonality. Water samples were collected from 49 sites within the JRB from March to December in 2019. Results showed that influence from WWTPs on water quality was greater during the dry season and less significant during the wet season. In particular, point source was highly positively correlated with ammoniacal‑nitrogen (NH3-N). On the other hand, land use influence was greater than point source influence during the wet season. Residential and urban land use were important predictors for nutrients and organic matter (chemical oxygen demand); and forest land use were important sinks for heavy metals but a significant source of manganese.
    Matched MeSH terms: Manganese
  16. Nihayah Mohammad, Yong, Kar Wei, Nur Faizah Abu Bakar
    MyJurnal
    Ficus deltoidea leaves were widely used as a tea beverages in Malaysia with no information of its mineral content. Hence the mineral content of two species of Ficus deltoidea leaves were investigated. The dried leaves of F. deltoidea var. angustifolia and F. deltoidea var. deltoidea were acid digested and mineral elements of Na, Mg, K, Ca, Mn, Cr, Fe and Zn were determined using ICP–MS. Magnesium, potassium, sodium, manganese, iron and zinc were found to be present in the leaves of F. deltoidea var. angustifolia and F. deltoidea var. deltoidea. Concentration of magnesium (1934 mg/L), manganese (58.37 mg/L), iron (6.89 mg/L) and zinc (1.77 mg/L) in F. deltoidea var. deltoidea species were significantly (P < 0.05) higher than in F. deltoidea var. angustifolia species with concentration of 317 mg/L, 29.62 mg/L, 4.55 mg/L and 1.26 mg/L for magnesium, manganese, iron and zinc respectively. Meanwhile, concentration of sodium in F. deltoidea var. deltoidea species (3.13 mg/L) was found to be significantly (P < 0.05) lower than the concentration in F. deltoidea var. angustifolia species (9.11 mg/L). The finding showed that the leaves of F. deltoidea var. deltoidea has higher nutritional value than the leaves of F. deltoidea var. angustifolia. Leaves of Ficus deltoidea especially the F. deltoidea var. deltoidea species contain high amount of magnesium, manganese and potassium. Therefore, tea made of this leaves can be served as a good source of minerals for human consumption.


    Matched MeSH terms: Manganese
  17. Ho, L.H., Noor Aziah, A.A., Rajeev Bhat
    MyJurnal
    The banana pseudo-stem is not currently utilised in the food industry. The aim of this research was to investigate the chemical and pasting profile of banana pseudo-stem flour (BPF). Wheat flour were substituted with BPF (0, 5, 15 and 30%) and the pasting profile were determined. Results from mineral analysis showed that the levels of sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and phosphorus (P) were higher than those of iron (Fe), zinc (Zn) and manganese (Mn). The BPF had a 0.04% total titratable acidity (TTA) and a total soluble solid (TSS) of 1.30⁰ Brix with pH 5.41. BPF contained 28.26% total starch, 12.81% resistant starch and a total digestible starch value of 15.45%. An increased substitution level of BPF into wheat flour significantly (p
    Matched MeSH terms: Manganese
  18. Sugau JB, van der Ent A
    Bot Stud, 2015 Dec;57(1):4.
    PMID: 28510789 DOI: 10.1186/s40529-016-0119-9
    BACKGROUND: Kinabalu Park, in Sabah (Malaysia) on Borneo Island, is renowned for the exceptionally high plant diversity it protects, with at least 5000 plant species enumerated to date. Discoveries of plant novelties continue to be made in Sabah, especially on isolated ultramafic outcrops, including in the genus Pittosporum (Pittosporaceae) with P. linearifolium from Bukit Hampuan on the southern border of the Park, and P. silamense from Bukit Silam in Eastern Sabah, both narrow endemics restricted to ultramafic soils.

    RESULTS: A distinctive new species of Pittosporum (P. peridoticola J.B.Sugau and Ent, sp. nov.) was discovered on Mount Tambuyukon in the north of Kinabalu Park during ecological fieldwork. The diagnostic morphological characters of this taxon are discussed and information about the habitat in which it grows is provided. The soil chemistry in the rooting zone of P. peridoticola has high magnesium to calcium quotients, high extractable nickel and manganese concentrations, but low potassium and phosphorus concentrations, as is typical for ultramafic soils. Analysis of foliar samples of various Pittosporum-species originating from ultramafic and non-ultramafic soils showed a comparable foliar elemental stoichiometry that is suggestive of 'Excluder-type' ecophysiology.

    CONCLUSION: Pittosporum peridoticola is an ultramafic obligate species restricted to Kinabalu Park with only two known populations within the boundaries of the protected area. It is vulnerable to any future stochastic landscape disturbance events, such as forest fires or severe droughts, and therefore its conservation status is 'Near Threatened'.

    Matched MeSH terms: Manganese
  19. Mamat, M., Abdullah, M.A.A., Jaafar, A.M., Soh, S.K.C., Lee, C.E.
    ASM Science Journal, 2018;11(101):105-113.
    MyJurnal
    As textile production flourishes nowadays, the amount of dyed wastewater entering the
    water body has also increased. Dyes could have serious negative impacts to the environment
    and also the human health, hence, they need to be removed from the water body. In this
    study, layered double hydroxide (LDH) of manganese/aluminium (MnAl) was synthesised
    to be used as a potential adsorbent to remove methyl orange (MO) dye due to its unique
    lamellar structure which provides LDH with high anion adsorption and exchange ability.
    MnAl was synthesized by using co-precipitation method and characterized by powder X-ray
    diffraction (PXRD), Fourier-Transform Infrared Spectroscopy (FTIR), Inductively coupled
    plasma atomic emission spectroscopy (ICP-AES) and Carbon, Hydrogen, Nitrogen, Sulphur
    (CHNS) elemental analysers, and Accelerated Surface Area and Porosity Analyzer (ASAP).
    Adsorption studies were conducted at different contact times and dosages of MnAl to evaluate
    the performance of MnAl in removing MO from water. Kinetic and isotherm models were
    tested using pseudo-first order, pseudo-second order, Langmuir isotherm and Freundlich
    isotherm. MnAl LDH was found to be perfectly fitted into pseudo-second order and Langmuir
    isotherm.
    Matched MeSH terms: Manganese
  20. Kulandaivalu S, Suhaimi N, Sulaiman Y
    Sci Rep, 2019 Mar 20;9(1):4884.
    PMID: 30894621 DOI: 10.1038/s41598-019-41203-3
    A novel layer-by-layer (LBL) based electrode material for supercapacitor consists of polypyrrole/graphene oxide and polypyrrole/manganese oxide (PPy/GO|PPy/MnO2) has prepared by electrochemical deposition. The formation of LBL assembled nanocomposite is confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The field emission scanning electron microscopy images clearly showed that PPy/MnO2 was uniformly coated on PPy/GO. The PPy/GO|PPy/MnO2 symmetrical supercapacitor has revealed outstanding supercapacitive performance with a high specific capacitance of 786.6 F/g, an exceptionally high specific energy of 52.3 Wh/kg at a specific power of 1392.9 W/kg and preserve a good cycling stability over 1000 cycles. It is certain that PPy/GO|PPy/MnO2 has an extraordinary perspective as an electrode for future supercapacitor developments. This finding contributes to a significant impact on the evolution of electrochemical supercapacitor.
    Matched MeSH terms: Manganese Compounds
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links