Displaying publications 41 - 60 of 191 in total

Abstract:
Sort:
  1. Al-Gumaei YA, Noordin KA, Reza AW, Dimyati K
    PLoS One, 2015;10(8):e0135137.
    PMID: 26258522 DOI: 10.1371/journal.pone.0135137
    Spectrum scarcity is a major challenge in wireless communications systems requiring efficient usage and utilization. Cognitive radio network (CRN) is found as a promising technique to solve this problem of spectrum scarcity. It allows licensed and unlicensed users to share the same licensed spectrum band. Interference resulting from cognitive radios (CRs) has undesirable effects on quality of service (QoS) of both licensed and unlicensed systems where it causes degradation in received signal-to-noise ratio (SIR) of users. Power control is one of the most important techniques that can be used to mitigate interference and guarantee QoS in both systems. In this paper, we develop a new approach of a distributed power control for CRN based on utility and pricing. QoS of CR user is presented as a utility function via pricing and a distributed power control as a non-cooperative game in which users maximize their net utility (utility-price). We define the price as a real function of transmit power to increase pricing charge of the farthest CR users. We prove that the power control game proposed in this study has Nash Equilibrium as well as it is unique. The obtained results show that the proposed power control algorithm based on a new utility function has a significant reduction in transmit power consumption and high improvement in speed of convergence.
    Matched MeSH terms: Signal-To-Noise Ratio
  2. Muhammad Izani Mohd Shiyuti, Irfan Mohamad, Dinsuhaimi Sidek
    MyJurnal
    The effect of loud noise to the army personnel is often identified when hearing loss had already developed. Acoustic trauma during shooting training can also lead to acute changes in the ear which is shown on otoscopic examination. This study was undertaken to determine the effectiveness of hearing protective device (earplug) on the prevalence of external ear changes amongst military personnel during shooting. This is a prospective cross sectional study that was conducted among 76 military personnel, who were divided into two groups: those with and without earplugs during shooting. Each participant underwent 3 otoscopic examinations: (a) pre-shooting, (b) immediate post-shooting (within 48 hours) and (c) 2 weeks after shooting. A total of 78 army personnel who were scheduled to undergo shooting training were otoscopically examined. Eighty three percent of them did not wear earplugs before. The percentage of inflammation of external auditory canal and tympanic membrane dullness increased tremendously among subjects from non–earplug group less than 48 hours post-shooting. Assessment after 2 weeks showed improvement in around 30% of the subjects. Loud noise has become an occupational hazard not only to the inner ear but it also predisposes the external and middle ear structures to some form of injury. Although improvement is seen after some period, a protective device such as an earplug should be recommended and the usage should be reinforced among the army personnel involved in shooting.
    Matched MeSH terms: Hearing Loss, Noise-Induced; Noise
  3. Mukari SZMS, Yusof Y, Ishak WS, Maamor N, Chellapan K, Dzulkifli MA
    Braz J Otorhinolaryngol, 2018 12 10;86(2):149-156.
    PMID: 30558985 DOI: 10.1016/j.bjorl.2018.10.010
    INTRODUCTION: Hearing acuity, central auditory processing and cognition contribute to the speech recognition difficulty experienced by older adults. Therefore, quantifying the contribution of these factors on speech recognition problem is important in order to formulate a holistic and effective rehabilitation.

    OBJECTIVE: To examine the relative contributions of auditory functioning and cognition status to speech recognition in quiet and in noise.

    METHODS: We measured speech recognition in quiet and in composite noise using the Malay Hearing in noise test on 72 native Malay speakers (60-82 years) older adults with normal to mild hearing loss. Auditory function included pure tone audiogram, gaps-in-noise, and dichotic digit tests. Cognitive function was assessed using the Malay Montreal cognitive assessment.

    RESULTS: Linear regression analyses using backward elimination technique revealed that had the better ear four frequency average (0.5-4kHz) (4FA), high frequency average and Malay Montreal cognitive assessment attributed to speech perception in quiet (total r2=0.499). On the other hand, high frequency average, Malay Montreal cognitive assessment and dichotic digit tests contributed significantly to speech recognition in noise (total r2=0.307). Whereas the better ear high frequency average primarily measured the speech recognition in quiet, the speech recognition in noise was mainly measured by cognitive function.

    CONCLUSIONS: These findings highlight the fact that besides hearing sensitivity, cognition plays an important role in speech recognition ability among older adults, especially in noisy environments. Therefore, in addition to hearing aids, rehabilitation, which trains cognition, may have a role in improving speech recognition in noise ability of older adults.

    Matched MeSH terms: Noise*
  4. Bisong SA, Ukoh IE, Nna VU, Ebong PE
    Andrologia, 2018 Sep;50(7):e13050.
    PMID: 29806220 DOI: 10.1111/and.13050
    Previous studies showed that exposure to stress or nicotine induced reproductive impairment in male rats. Here, we assessed the effect of an antioxidant (vitamin E) on nicotine-, stress- and nicotine + stress-induced reproductive impairment in male rats. Forty-eight male albino Wistar rats were divided into eight groups as follows; control, stress (generator noise 90-120 dB, 8 hr/day), nicotine (1.5 mg kg-1 day-1 ), nicotine + stress, vitamin E (100 mg kg-1 day-1 ), stress + vitamin E, nicotine + vitamin E and stress + nicotine + vitamin E. Sperm count, viability, motility and rapid progressive forward movement decreased significantly (p 
    Matched MeSH terms: Noise/adverse effects
  5. Al-Qazzaz NK, Hamid Bin Mohd Ali S, Ahmad SA, Islam MS, Escudero J
    Sensors (Basel), 2017 Jun 08;17(6).
    PMID: 28594352 DOI: 10.3390/s17061326
    Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA-WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA-WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA-WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA-WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA-WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing.
    Matched MeSH terms: Signal-To-Noise Ratio
  6. Abdul Rahim, R., Pang, J.F., Chan, K.S., Leong, L.C., Fazalul Rahiman, M.H.
    ASM Science Journal, 2007;1(1):27-36.
    MyJurnal
    In this study, real-time imaging was monitored for flowing solid particles when various baffles were created to block certain areas of the pipe. The generated flow regimes were full-flow, three-quarter-flow, half-flow and quarter-flow. A vertical pneumatic conveyor was designed to hold a 85 mm inner diameter pipeline. The four projection optical tomography systems used, applied the parallel beam projection approach and use infrared light sources so that the sensor was free of noise from the surrounding visible light source. The two orthogonal and two rectilinear projections were axial, but ideally they should have been in the same layer. The sensor readings could be related to the varying light intensity effects of the dropping particles and were used to provide cross-sectional distribution information for the conveyor. By using computer programming, the information was reconstructed to produce coloured images and concentration was obtained by reference to a colour code. The results obtained from this study showed how imaged flow followed the artificial flow regime. This study could benefit industrial production lines in maintaining the desired flow rates.
    Matched MeSH terms: Noise
  7. Lu TS, Flaherty GT
    J Travel Med, 2018 01 01;25(1).
    PMID: 30346571 DOI: 10.1093/jtm/tay106
    Matched MeSH terms: Hearing Loss, Noise-Induced/prevention & control*
  8. Dewey RS, Hall DA, Plack CJ, Francis ST
    Magn Reson Med, 2021 11;86(5):2577-2588.
    PMID: 34196020 DOI: 10.1002/mrm.28902
    PURPOSE: Detecting sound-related activity using functional MRI requires the auditory stimulus to be more salient than the intense background scanner acoustic noise. Various strategies can reduce the impact of scanner acoustic noise, including "sparse" temporal sampling with single/clustered acquisitions providing intervals without any background scanner acoustic noise, or active noise cancelation (ANC) during "continuous" temporal sampling, which generates an acoustic signal that adds destructively to the scanner acoustic noise, substantially reducing the acoustic energy at the participant's eardrum. Furthermore, multiband functional MRI allows multiple slices to be collected simultaneously, thereby reducing scanner acoustic noise in a given sampling period.

    METHODS: Isotropic multiband functional MRI (1.5 mm) with sparse sampling (effective TR = 9000 ms, acquisition duration = 1962 ms) and continuous sampling (TR = 2000 ms) with ANC were compared in 15 normally hearing participants. A sustained broadband noise stimulus was presented to drive activation of both sustained and transient auditory responses within subcortical and cortical auditory regions.

    RESULTS: Robust broadband noise-related activity was detected throughout the auditory pathways. Continuous sampling with ANC was found to give a statistically significant advantage over sparse sampling for the detection of the transient (onset) stimulus responses, particularly in the auditory cortex (P < .001) and inferior colliculus (P < .001), whereas gains provided by sparse over continuous ANC for detecting offset and sustained responses were marginal (p ~ 0.05 in superior olivary complex, inferior colliculus, medial geniculate body, and auditory cortex).

    CONCLUSIONS: Sparse and continuous ANC multiband functional MRI protocols provide differing advantages for observing the transient (onset and offset) and sustained stimulus responses.

    Matched MeSH terms: Noise*
  9. Gan Chun Chet
    MyJurnal
    The paper writes on the possible origin of off-limit cases found in a noise project conducted internally in a factory in Malaysia. Out of 691 sampled workers’ that attended audiometric test results (some repeated), it was found that the mode of hearing ability is between 20 to 30 dB depending on individual worker’s age ranging from 20 to 55 years. Out of the total results, approximately 100 workers are above a limit defined here in this paper as the off-limit condition. The chance of a worker originating from a good condition to an unhealthy condition is about 1 percent. The data are tabulated to show that a sway pattern could be an explanation of workers’ origin. Although the data is profound, there is no evidence of a trace due to a short test period. Possibilities are highlight here to outline the severity of a cross over to the unhealthy condition (here defined as the off-limit condition). Some advises are mentioned here with individual susceptibility on the matter though there is no data to substantiate. Further findings are required to show a trace. In conclusion, the severity is highlight. A chart, developed to know the limits of hearing ability, is illustrated ased the findings.
    Matched MeSH terms: Noise
  10. Othman E, Yusoff AN, Mohamad M, Abdul Manan H, Abd Hamid AI, Giampietro V
    Exp Brain Res, 2020 Apr;238(4):945-956.
    PMID: 32179941 DOI: 10.1007/s00221-020-05765-3
    The present study examined the impact of white noise on word recall performance and brain activity in 40 healthy adolescents, split in two groups (normal and low) depending on their auditory working memory capacity (AWMC). Using functional magnetic resonance imaging, participants performed a backward recall task under four different signal-to-noise ratio (SNR) conditions: 15, 10, 5, and 0-dB SNR. Behaviorally, normal AWMC individuals scored significantly higher than low AWMC individuals across noise levels. Whole-brain analyses showed brain activation not to be statistically different between groups across noise levels. In the normal group, a significant positive relationship was found between performance and number of activated voxels in the right superior frontal gyrus. In the low group, significant positive correlations were found between performance and number of activated voxels in left superior frontal gyrus, left inferior frontal gyrus, and left anterior cingulate cortex. These findings suggest that the strategic structure involved in the enhancement of AWM performance may differ in normal and low AWMC individuals.
    Matched MeSH terms: Noise
  11. Goh CS
    Family Practitioner, 1984;7:39-43.
    Matched MeSH terms: Noise
  12. Xiangsheng Bao, Quanwen Liu, Haiyan Zhou
    Sains Malaysiana, 2017;46:2169-2177.
    Subei basin is the most promising onshore oil and gas bearing basin in South China. With the deepening of exploration, subtle hydrocarbon reservoirs have gradually become the major target of exploration. Seismic record often shows low signal to noise ratio (SNR), resulting that conventional seismic records have three shortcomings in the identification of subtle reservoirs: difficult to identify small faults; difficult to show the distribution law of sand body; and difficult to find traps. In order to solve this problem, we conducted the research on signal synthesis and decomposition. The research results showed that seismic record of different frequency bands can be restored from original seismic record and both of them contain real stratigraphic information. Based on this, when a certain band or several bands in the original seismic record is affected by noise and result in the reduction of SNR of seismic record, seismic information seriously affected by noise can be abandoned, leaving only less affected seismic information to obtain seismic record with higher SNR. In the collection of actual seismic record, the low and high band seismic information is seriously affected by noise, while medium-band seismic information is less affected. Therefore, based on this, the medium-band seismic information can be restored from the original seismic record to be new record, which is called predominant frequency band seismic record. In this paper, based on the research result, the predominant frequency band seismic record was applied to the two areas of Subei basin and the result showed the research result can be used as a good instruction on well placement and the improvement of drilling success rate.
    Matched MeSH terms: Noise; Signal-To-Noise Ratio
  13. Mohd Zahiruddin Zukfali, Haliza Abdul Rahman
    MyJurnal
    The objective of study is to determine traffic noise level and non-auditory effect among shop lot workers at Kajang Selangor. This cross sectional study was carried to study traffic noise exposure with annoyance and work performance level among shop lot workers in Jalan Mendaling, JalanTukang and Jalan Sulaiman at Kajang town, Selangor. This study involves 120 shop lot workers that exposed to the traffic noise during their working hours where they are randomly selected. Noise exposure was estimated using the Sound Level Meter for environmental noise. The traffic volume was recorded using video recorder and calculated using tally counter. One set questionnaire consist standard questionnaire was used to assess the annoyance level and work performance level among the respondents. Respondents were predominantly by male which are 94 and female, 26 respondents. The mean age of the respondent were ranged between 41 to 60 years old. Only 12.5% of respondent are ranged 21 until 30 years old. In total of 120 respondent, 54.2% of them are Chinese while Malay and India only 30% and 15.8% respectively. The result showed that the traffic noise level at study areas are exceeded the permissible sound limit of commercial and business area during daylight which is 70 dB(A). Regarding work performance, 94 respondents are having low work performance level and 82% of respondent high annoyance level during the exposure of traffic noise from four different sources which are noise from the traffic, speeding vehicle, high traffic volume and exhaust system. There is a significant relationship between traffic noise level with work performance level (p=0.001) and annoyance level (p=0.026). The average traffic noise (Laeq) level at Jalan Mendaling, Jalan Tukang and Jalan Sulaiman is 71.19 dB(A) which were high and exceeds permissible sound level from road traffic, commercial and business place at day time, 70 dB(A). The exposure from the traffic noise effect the annoyance level and work performance level among the shop lot worker. In order to reduce traffic noise exposure towards the shop lot workers, some recommendation are needed to control the traffic noise such as build a noise barrier, plant trees and also enforcement of legal requirement in noise level.
    Matched MeSH terms: Noise
  14. Dewey RS, Francis ST, Guest H, Prendergast G, Millman RE, Plack CJ, et al.
    Neuroimage, 2020 01 01;204:116239.
    PMID: 31586673 DOI: 10.1016/j.neuroimage.2019.116239
    In animal models, exposure to high noise levels can cause permanent damage to hair-cell synapses (cochlear synaptopathy) for high-threshold auditory nerve fibers without affecting sensitivity to quiet sounds. This has been confirmed in several mammalian species, but the hypothesis that lifetime noise exposure affects auditory function in humans with normal audiometric thresholds remains unconfirmed and current evidence from human electrophysiology is contradictory. Here we report the auditory brainstem response (ABR), and both transient (stimulus onset and offset) and sustained functional magnetic resonance imaging (fMRI) responses throughout the human central auditory pathway across lifetime noise exposure. Healthy young individuals aged 25-40 years were recruited into high (n = 32) and low (n = 30) lifetime noise exposure groups, stratified for age, and balanced for audiometric threshold up to 16 kHz fMRI demonstrated robust broadband noise-related activity throughout the auditory pathway (cochlear nucleus, superior olivary complex, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body and auditory cortex). fMRI responses in the auditory pathway to broadband noise onset were significantly enhanced in the high noise exposure group relative to the low exposure group, differences in sustained fMRI responses did not reach significance, and no significant group differences were found in the click-evoked ABR. Exploratory analyses found no significant relationships between the neural responses and self-reported tinnitus or reduced sound-level tolerance (symptoms associated with synaptopathy). In summary, although a small effect, these fMRI results suggest that lifetime noise exposure may be associated with central hyperactivity in young adults with normal hearing thresholds.
    Matched MeSH terms: Noise/adverse effects*
  15. Guest H, Dewey RS, Plack CJ, Couth S, Prendergast G, Bakay W, et al.
    Trends Hear, 2018;22:2331216518803213.
    PMID: 30295145 DOI: 10.1177/2331216518803213
    Lifetime noise exposure is generally quantified by self-report. The accuracy of retrospective self-report is limited by respondent recall but is also bound to be influenced by reporting procedures. Such procedures are of variable quality in current measures of lifetime noise exposure, and off-the-shelf instruments are not readily available. The Noise Exposure Structured Interview (NESI) represents an attempt to draw together some of the stronger elements of existing procedures and to provide solutions to their outstanding limitations. Reporting is not restricted to prespecified exposure activities and instead encompasses all activities that the respondent has experienced as noisy (defined based on sound level estimated from vocal effort). Changing exposure habits over time are reported by dividing the lifespan into discrete periods in which exposure habits were approximately stable, with life milestones used to aid recall. Exposure duration, sound level, and use of hearing protection are reported for each life period separately. Simple-to-follow methods are provided for the estimation of free-field sound level, the sound level emitted by personal listening devices, and the attenuation provided by hearing protective equipment. An energy-based means of combining the resulting data is supplied, along with a primarily energy-based method for incorporating firearm-noise exposure. Finally, the NESI acknowledges the need of some users to tailor the procedures; this flexibility is afforded, and reasonable modifications are described. Competency needs of new users are addressed through detailed interview instructions (including troubleshooting tips) and a demonstration video. Limited evaluation data are available, and future efforts at evaluation are proposed.
    Matched MeSH terms: Hearing Loss, Noise-Induced/diagnosis*; Hearing Loss, Noise-Induced/epidemiology*; Noise, Occupational/adverse effects*
  16. Abdul Rahim KA, Jewaratnam J, Che Hassan CR, Hamid MD
    PMID: 33142732 DOI: 10.3390/ijerph17218032
    Occupational noise-induced hearing loss (ONIHL) is the most reported occupational disease in Malaysia. ONIHL is aggravated by the presence of early hearing loss amongst the youth prior to entering a real working environment. At technical and vocational education training (TVET) institutions, students may develop early ONIHL because training workshops are designed imitating the industrial working environment to produce skilled workers. The exceeding noise level at workshops and recent risk of non-occupational noise can cause early ONIHL among these students. Therefore, ONIHL must be addressed at the early stage of producing skilled workers. Octa hearing conservation index (OHCI) system is developed as a management and monitoring tool for hearing conservation program (HCP) in TVET institutions. Six existing and two new HCP components were used to build the index system. A pilot test on the effectiveness of the OHCI system was conducted in a selected TVET institution for six months. The post-HCP shows a 52.6% improvement compared to the pre-HCP. The implementation of HCP has shown improved awareness on the hazards of loud noise exposure and active use of hearing protection devices among participants. The OHCI system has a great potential as a tool to improve HCP implementation in TVET institutions, and eventually, industry.
    Matched MeSH terms: Hearing Loss, Noise-Induced
  17. Yu K, Feng L, Chen Y, Wu M, Zhang Y, Zhu P, et al.
    Comput Biol Med, 2024 Feb;169:107835.
    PMID: 38096762 DOI: 10.1016/j.compbiomed.2023.107835
    Current wavelet thresholding methods for cardiogram signals captured by flexible wearable sensors face a challenge in achieving both accurate thresholding and real-time signal denoising. This paper proposes a real-time accurate thresholding method based on signal estimation, specifically the normalized ACF, as an alternative to traditional noise estimation without the need for parameter fine-tuning and extensive data training. This method is experimentally validated using a variety of electrocardiogram (ECG) signals from different databases, each containing specific types of noise such as additive white Gaussian (AWG) noise, baseline wander noise, electrode motion noise, and muscle artifact noise. Although this method only slightly outperforms other methods in removing AWG noise in ECG signals, it far outperforms conventional methods in removing other real noise. This is attributed to the method's ability to accurately distinguish not only AWG noise that is significantly different spectrum of the ECG signal, but also real noise with similar spectra. In contrast, the conventional methods are effective only for AWG noise. In additional, this method improves the denoising visualization of the measured ECG signals and can be used to optimize other parameters of other wavelet methods to enhancing the denoised periodic signals, thereby improving diagnostic accuracy.
    Matched MeSH terms: Signal-To-Noise Ratio
  18. Dinesh, S., Faudzi, M.M., Rafidah, M., Shakhira, B.N.I., Robiah, A.S., Shalini, S.S., et al.
    ASM Science Journal, 2014;8(1):11-20.
    MyJurnal
    In this study, Global Positioning System (GPS) simulation was employed to study the effect of radio frequency interference (RFI) on two hand-held GPS receivers; Garmin GPSmap 60CSx (evaluated GPS receiver) and Garmin GPSmap 60CS (reference GPS receiver). Both GPS receivers employed the GPS L1 coarse acquisition (C/A) signal. It was observed that the interference signal power levels required to affect the location fixes of the GPS receivers were significantly high compared to the corresponding GPS signal power levels. The noiselike C/A code structure, which modulated the L1 signal over a 2 MHz bandwidth, allowed for the signal to be received at low levels of interferences. The evaluated GPS receiver had better RFI operability as compared to the reference GPS receiver. This is because the evaluated GPS receiver had higher receiver sensitivity, allowing it to have increased carrier-to-noise density (C/N0) levels for GPS satellites tracked by the receiver. The absence of other error parameters, including ionospheric and tropospheric delays, satellite clock, ephemeris and multipath errors, and unintentional signal interferences and obstructions, resulted in the required minimum jamming power levels in this study to be significantly higher as compared to field evaluations. These minimum jamming power levels vary with location and time. This was due to the GPS satellite constellation being dynamic, causing varying GPS satellite geometry over location and time, resulting in the minimum required GPS jamming power levels being location / time dependent. In general, the lowest minimum jamming power levels were observed for readings with the highest position dilution of precision (PDOP) values, and vice versa.
    Matched MeSH terms: Noise
  19. Shaffiq Said Rahmat SM, Abdul Karim MK, Che Isa IN, Abd Rahman MA, Noor NM, Hoong NK
    Comput Biol Med, 2020 08;123:103840.
    PMID: 32658782 DOI: 10.1016/j.compbiomed.2020.103840
    BACKGROUND: Unoptimized protocols, including a miscentered position, might affect the outcome of diagnostic in CT examinations. In this study, we investigate the effects of miscentering position during CT head examination on the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR).

    METHOD: We simulate the CT head examination using a water phantom with a standard protocol (120 kVp/180 mAs) and a low dose protocol (100 kVp/142 mAs). The table height was adjusted to simulate miscentering by 5 cm from the isocenter, where the height was miscentered superiorly (MCS) at 109, 114, 119, and 124 cm, and miscentered inferiorly (MCI) at 99, 94, 89, and 84 cm. Seven circular regions of interest were used, with one drawn at the center, four at the peripheral area of the phantom, and two at the background area of the image.

    RESULTS: For the standard protocol, the mean CNR decreased uniformly as table height increased and significantly differed (p 

    Matched MeSH terms: Signal-To-Noise Ratio
  20. Loh SH, Nur Iryani Mohd Yusof, How ML
    A method for the determination of aflatoxins B1 and B2 in peanuts and corn based products is described. The samples were extracted with a mixture of acetonitrile-water (84:16), followed by multifunctional clean-up and liquid chromatography with fluorescence detection. Both calibration curves showed good correlation from 4.0 to 32.0 ppb for aflatoxin B1 (r=0.9999) and 1.2 to 9.6 ppb for aflatoxin B2 (r=0.9997). The detection limit of aflatoxins B1 and B2 were established at 0.1 and 0.03 ppb, respectively, based on signal-to-noise ratio of 3:1. Average recoveries for the determination of aflatoxins B1 and B2 at 10 and 3 ppb spiking levels, respectively ranged from 94.2 to 107.6%. A total of 20 peanut samples and corn based products were obtained from retail shop and local market around Kuala Terengganu and analyzed for aflatoxins B1 and B2 contents, using the proposed method. Aflatoxins B1 and B2 were detected in 5 out of the 9 peanuts samples and 5 out of the 11 corn based products, at levels ranging from 0.2 to 101.8 ppb.
    Matched MeSH terms: Signal-To-Noise Ratio
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links