Displaying publications 41 - 60 of 120 in total

Abstract:
Sort:
  1. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2020 Apr 03;124(13):131802.
    PMID: 32302170 DOI: 10.1103/PhysRevLett.124.131802
    A search is presented for a narrow resonance decaying to a pair of oppositely charged muons using sqrt[s]=13  TeV proton-proton collision data recorded at the LHC. In the 45-75 and 110-200 GeV resonance mass ranges, the search is based on conventional triggering and event reconstruction techniques. In the 11.5-45 GeV mass range, the search uses data collected with dimuon triggers with low transverse momentum thresholds, recorded at high rate by storing a reduced amount of trigger-level information. The data correspond to integrated luminosities of 137 and 96.6  fb^{-1} for conventional and high-rate triggering, respectively. No significant resonant peaks are observed in the probed mass ranges. The search sets the most stringent constraints to date on a dark photon in the ∼30-75 and 110-200 GeV mass ranges.
    Matched MeSH terms: Protons
  2. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Dec 13;123(24):241801.
    PMID: 31922872 DOI: 10.1103/PhysRevLett.123.241801
    Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at sqrt[s]=13  TeV, and correspond to an integrated luminosity of 35.9  fb^{-1}. The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.
    Matched MeSH terms: Protons
  3. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(12):845.
    PMID: 31985736 DOI: 10.1140/epjc/s10052-017-5317-4
    A search is presented for an excess of events with heavy-flavor quark pairs (

    t

    t
    ¯


    and

    b

    b
    ¯


    ) and a large imbalance in transverse momentum in data from proton-proton collisions at a center-of-mass energy of 13


    TeV

    . The data correspond to an integrated luminosity of 2.2



    fb

    -
    1



    collected with the CMS detector at the CERN LHC. No deviations are observed with respect to standard model predictions. The results are used in the first interpretation of dark matter production in

    t

    t
    ¯


    and

    b

    b
    ¯


    final states in a simplified model. This analysis is also the first to perform a statistical combination of searches for dark matter produced with different heavy-flavor final states. The combination provides exclusions that are stronger than those achieved with individual heavy-flavor final states.
    Matched MeSH terms: Protons
  4. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2020 Apr 24;124(16):162002.
    PMID: 32383915 DOI: 10.1103/PhysRevLett.124.162002
    The polarizations of promptly produced χ_{c1} and χ_{c2} mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at sqrt[s]=8  TeV. The χ_{c} states are reconstructed via their radiative decays χ_{c}→J/ψγ, with the photons being measured through conversions to e^{+}e^{-}, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_{c2} to χ_{c1} yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ→μ^{+}μ^{-} decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum.
    Matched MeSH terms: Protons
  5. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2017 Sep 15;119(11):111802.
    PMID: 28949210 DOI: 10.1103/PhysRevLett.119.111802
    A search is reported for a narrow vector resonance decaying to quark-antiquark pairs in proton-proton collisions at sqrt[s]=13  TeV, collected with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.7   fb^{-1}. The vector resonance is produced at large transverse momenta, with its decay products merged into a single jet. The resulting signature is a peak over background in the distribution of the invariant mass of the jet. The results are interpreted in the framework of a leptophobic vector resonance and no evidence is found for such particles in the mass range of 100-300 GeV. Upper limits at 95% confidence level on the production cross section are presented in a region of mass-coupling phase space previously unexplored at the LHC. The region below 140 GeV has not been explored by any previous experiments.
    Matched MeSH terms: Protons
  6. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2017 Oct 13;119(15):151802.
    PMID: 29077436 DOI: 10.1103/PhysRevLett.119.151802
    Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single lepton, multiple jets, including at least one b-tagged jet, and large missing transverse momentum. The search uses a sample of proton-proton collision data at sqrt[s]=13  TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9  fb^{-1}. The observed event yields in the signal regions are consistent with those expected from standard model backgrounds. The results are interpreted in the context of simplified models of supersymmetry involving gluino pair production, with gluino decay into either on- or off-mass-shell top squarks. Assuming that the top squarks decay into a top quark plus a stable, weakly interacting neutralino, scenarios with gluino masses up to about 1.9 TeV are excluded at 95% confidence level for neutralino masses up to about 1 TeV.
    Matched MeSH terms: Protons
  7. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2017 Oct 06;119(14):141802.
    PMID: 29053305 DOI: 10.1103/PhysRevLett.119.141802
    A search for charged Higgs bosons produced via vector boson fusion and decaying into W and Z bosons using proton-proton collisions at sqrt[s]=13  TeV is presented. The data sample corresponds to an integrated luminosity of 15.2  fb^{-1} collected with the CMS detector in 2015 and 2016. The event selection requires three leptons (electrons or muons), two jets with large pseudorapidity separation and high dijet mass, and missing transverse momentum. The observation agrees with the standard model prediction. Limits on the vector boson fusion production cross section times branching fraction for new charged physical states are reported as a function of mass from 200 to 2000 GeV and interpreted in the context of Higgs triplet models.
    Matched MeSH terms: Protons
  8. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2017 Dec 15;119(24):242001.
    PMID: 29286735 DOI: 10.1103/PhysRevLett.119.242001
    The first observation of top quark production in proton-nucleus collisions is reported using proton-lead data collected by the CMS experiment at the CERN LHC at a nucleon-nucleon center-of-mass energy of sqrt[s_{NN}]=8.16  TeV. The measurement is performed using events with exactly one isolated electron or muon candidate and at least four jets. The data sample corresponds to an integrated luminosity of 174  nb^{-1}. The significance of the tt[over ¯] signal against the background-only hypothesis is above 5 standard deviations. The measured cross section is σ_{tt[over ¯]}=45±8  nb, consistent with predictions from perturbative quantum chromodynamics.
    Matched MeSH terms: Protons
  9. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2017 Dec 01;119(22):221802.
    PMID: 29286783 DOI: 10.1103/PhysRevLett.119.221802
    A search for a signal consistent with the type-III seesaw mechanism in events with three or more electrons or muons is presented. The data sample consists of proton-proton collisions at sqrt[s]=13  TeV collected by the CMS experiment at the LHC in 2016 and corresponds to an integrated luminosity of 35.9  fb^{-1}. Selection criteria based on the number of leptons and the invariant mass of oppositely charged lepton pairs are used to distinguish the signal from the standard model background. The observations are consistent with the expectations from standard model processes. The results are used to place limits on the production of heavy fermions of the type-III seesaw model as a function of the branching ratio to each lepton flavor. In the scenario of equal branching fractions to each lepton flavor, heavy fermions with masses below 840 GeV are excluded. This is the most sensitive probe to date of the type-III seesaw mechanism.
    Matched MeSH terms: Protons
  10. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Feb 23;120(8):081801.
    PMID: 29542998 DOI: 10.1103/PhysRevLett.120.081801
    The first observation of electroweak production of same-sign W boson pairs in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 35.9    fb^{-1} collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. Events are selected by requiring exactly two leptons (electrons or muons) of the same charge, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. The observed significance of the signal is 5.5 standard deviations, where a significance of 5.7 standard deviations is expected based on the standard model. The ratio of measured event yields to that expected from the standard model at leading order is 0.90±0.22. A cross section measurement in a fiducial region is reported. Bounds are given on the structure of quartic vector boson interactions in the framework of dimension-8 effective field theory operators and on the production of doubly charged Higgs bosons.
    Matched MeSH terms: Protons
  11. Shamsiah A. Rahman, Mohd Suhaimi Hamzah, Abdul Khalik Wood, Md Suhaimi Elias, Nazaratul Ashifa Abdullah Salim, Ezwiza Sanuri
    MyJurnal
    Chemical composition of fine (PM2.5) aerosol samples collected for the 5 years period (2001- 2005) using Gent Stacked filter unit sampler at Klang Valley (3 o 10 ’ 30 ’’ N, 101 o 43 ’ 24 ’’ E) were analysed using Neutron Activation Analysis (NAA) and Proton Induced X-ray Emission (PIXE). Results of the study show that the major component of the fine aerosol was black carbon and sulfur with the mass concentration ranged from 4.4 - 6.7µg m -3 and 1.2 - 1.9µg m -3 , respectively. The total fine aerosol mass concentration were in the ranged of 25 - 31µg m -3 with the reconstructed mass was about 50% as relative to the gravimetric mass. Statistical method, factor analysis with varimax approach has been applied to the aerosol composition data for the fingerprint identification. The analysis produces five identified fingerprint represent soil, industry, motor vehicles/biomass burning and Pb and Zn sources. There is also an unidentified source that could be related to unknown industrial activities.
    Matched MeSH terms: Protons
  12. Shahabudin N, Yahya R, Gan SN
    Polymers (Basel), 2016 Apr 06;8(4).
    PMID: 30979216 DOI: 10.3390/polym8040125
    One of the approaches to prolong the service lifespan of polymeric material is the development of self-healing ability by means of embedded microcapsules containing a healing agent. In this work, poly(melamine-urea-formaldehyde) (PMUF) microcapsules containing a palm oil-based alkyd were produced by polymerization of melamine resin, urea and formaldehyde that encapsulated droplets of the suspended alkyd particles. A series of spherical and free-flowing microcapsules were obtained. The chemical properties of core and shell materials were characterized by Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and proton nuclear magnetic resonance spectroscopy (¹H-NMR). Differential scanning calorimetry (DSC) analysis showed a glass transition around -15 °C due to the alkyd, and a melting temperature at around 200 °C due to the shell. Thermogravimetric analysis (TGA) results showed that the core and shell thermally degraded within the temperature range of 200⁻600 °C. Field emission scanning electron microscope (FESEM) examination of the ruptured microcapsule showed smooth inner and rough outer surfaces of the shell. Flexural strength and microhardness (Vickers) of the cured epoxy compound were not affected with the incorporation of 1%⁻3% of the microcapsules. The viability of the healing reactions was demonstrated by blending small amounts of alkyd with epoxy and hardener at different ratios. The blends could readily cure to non-sticky hard solids at room temperature and the reactions could be verified by ATR-FTIR.
    Matched MeSH terms: Protons
  13. Samah NA, Sánchez-Martín MJ, Sebastián RM, Valiente M, López-Mesas M
    Sci Total Environ, 2018 Aug 01;631-632:1534-1543.
    PMID: 29727977 DOI: 10.1016/j.scitotenv.2018.03.087
    Contaminants of Emerging Concerns (CECs) have been introduced as one type of recalcitrant pollutant sources in water. In this study, the non-steroidal anti-inflammatory drug diclofenac (DCF) has been removed from water solutions using Molecularly Imprinted Polymer (MIP), synthetized via bulk polymerization with allylthiourea (AT) as the functional monomer and using DCF as template (MIP-DCF). DCF detection has been performed by UV spectrophotometer. From the kinetic study in batch mode, approximately 100% of removal is observed by using 10mg of MIP-DCF, with an initial concentration of 5mg/L of DCF at pH7, within 3min and agitated at 25°C. In continuous flow mode study, using a cartridge pre-packed with 10mg of MIP-DCF, a high adsorption capacity of 160mgDCF/g MIP was obtained. To study the porosity of MIPs, scanning electron microscopy (SEM) has been used. In order to characterize the chemical interaction between monomer and template, the pre-polymerization mixture for MIP and DCF has also been studied by 1H NMR. One of the chemical shift observed has been related to the formation of a complex between amine protons of thiourea group of AT with carboxylic acid on DCF. In conclusion, the developed MIP works as a good adsorbent for DCF removal, and is selective to DCF in the presence of indomethacin and ibuprofen.
    Matched MeSH terms: Protons
  14. Salehmin MNI, Hil Me MF, Daud WRW, Mohd Yasin NH, Abu Bakar MH, Sulong AB, et al.
    Sci Total Environ, 2023 Jan 10;855:158527.
    PMID: 36096221 DOI: 10.1016/j.scitotenv.2022.158527
    Microbial electrodialysis cells (MEDCs) offer simultaneous wastewater treatment, water desalination, and hydrogen production. In a conventional design of MEDCs, the overall performance is retarded by the accumulation of protons on the anode due to the integration of an anion exchange membrane (AEM). The accumulation of protons reduces the anolyte pH to become acidic, affecting the microbial viability and thus limiting the charge carrier needed for the cathodic reaction. This study has modified the conventional MEDC with an internal proton migration pathway, known as the internal proton migration pathway-MEDC (IP-MEDC). Simulation tests under abiotic conditions demonstrated that the pH changes in the anolyte and catholyte of IP-MEDC were smaller than the pH changes in the anolyte and catholyte without the proton pathways. Under biotic conditions, the performance of the IP-MEDC agreed well with the simulation test, showing a significantly higher chemical oxygen demand (COD) removal rate, desalination rate, and hydrogen production than without the migration pathway. This result is supported by the lowest charge transfer resistance shown by EIS analysis and the abundance of microbes on the bioanode through field emission scanning electron microscopy (FESEM) observation. However, hydrogen production was diminished in the second-fed batch cycle, presumably due to the active diffusion of high Cl¯ concentrations from desalination to the anode chamber, which was detrimental to microbial growth. Enlarging the anode volume by threefold improved the COD removal rate and hydrogen production rate by 1.7- and 3.4-fold, respectively, owing to the dilution effect of Cl¯ in the anode. This implied that the dilution effect satisfies both the microbial viability and conductivity. This study also suggests that the anolyte and catholyte replacement frequencies can be reduced, typically at a prolonged hydraulic retention time, thus minimizing the operating cost (e.g., solution pumping). The use of a high concentration of NaCl (35 g L-1) in the desalination chamber and catholyte provides a condition that is close to practicality.
    Matched MeSH terms: Protons
  15. Sairi M, Arrigan DW
    Talanta, 2015 Jan;132:205-14.
    PMID: 25476299 DOI: 10.1016/j.talanta.2014.08.060
    The behaviour of protonated ractopamine (RacH(+)) at an array of micro-interfaces between two immiscible electrolyte solutions (micro-ITIES) was investigated via cyclic voltammetry (CV) and linear sweep stripping voltammetry (LSSV). The micro-ITIES array was formed at silicon membranes containing 30 pores of radius 11.09±0.12 µm and pore centre-to-centre separation of 18.4±2.1 times the pore radius. CV shows that RacH(+) transferred across the water |1,6-dichlorohexane µITIES array at a very positive applied potential, close to the upper limit of the potential window. Nevertheless, CV was used in the estimation of some of the drug's thermodynamic parameters, such as the formal transfer potential and the Gibbs transfer energy. LSSV was implemented by pre-concentration of the drug, into the organic phase, followed by voltammetric detection, based on the back-transfer of RacH(+) from the organic to aqueous phase. Under optimised pre-concentration and detection conditions, a limit of detection of 0.1 µM was achieved. In addition, the impact of substances such as sugar, ascorbic acid, metal ions, amino acid and urea on RacH(+) detection was assessed. The detection of RacH(+) in artificial serum indicated that the presence of serum protein interferes in the detection signal, so that sample deproteinisation is required for feasible bioanalytical applications.
    Matched MeSH terms: Protons*
  16. Raza H, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Hassan M, Abbas Q, et al.
    Bioorg Chem, 2020 01;94:103445.
    PMID: 31826809 DOI: 10.1016/j.bioorg.2019.103445
    In the current research work, different N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides have been synthesized according to the protocol described in scheme 1. The synthesis was initiated by reacting various substituted anilines (1a-e) with 4-chlorobutanoyl chloride (2) in aqueous basic medium to give various electrophiles, 4-chloro-N-(substituted-phenyl)butanamides (3a-e). These electrophiles were then coupled with 1-[(E)-3-phenyl-2-propenyl]piperazine (4) in polar aprotic medium to attain the targeted N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides (5a-e). The structures of all derivatives were identified and characterized by proton-nuclear magnetic resonance (1H NMR), carbon-nuclear magnetic resonance (13C NMR) and Infra-Red (IR) spectral data along with CHN analysis. The in vitro inhibitory potential of these butanamides was evaluated against Mushroom tyrosinase, whereby all compounds were found to be biologically active. Among them, 5b exhibited highest inhibitory potential with IC50 value of 0.013 ± 0.001 µM. The same compound 5b was also assayed through in vivo approach, and it was explored that it significantly reduced the pigments in zebrafish. The in silico studies were also in agreement with aforesaid results. Moreover, these molecules were profiled for their cytotoxicity through hemolytic activity, and it was found that except 5e, all other compounds showed minimal toxicity. The compound 5a also exhibited comparable results. Hence, some of these compounds might be worthy candidates for the formulation and development of depigmentation drugs with minimum side effects.
    Matched MeSH terms: Protons
  17. Ramlli, M.A., Isa, M.I.N., Yu, K.X., Siew, Y.W.
    ASM Science Journal, 2018;11(101):47-55.
    MyJurnal
    Affordable and greener materials were extensively studied in electrode fabrication for Liion
    based batteries but less interest was shown to proton battery. Hence, in this work,
    a methodology on preparing a natural based binder for proton battery was reported. 2-
    Hydroxyethyl Cellulose (2HEC) was chosen to replace PVDF commercial binder in electrode
    for ZnSO4|MnO2 proton battery configuration. SEM image shows good surface formation
    for both anode and cathode with good porous structure. OCV result shows that the cell
    improved the stable voltage of reference cell of 0.7 V to 0.9 V after 24 hours. The first
    discharge of the cell took 6 hours and 49 minutes at 0.005mA and shows good potential for
    rechargebility test.
    Matched MeSH terms: Protons
  18. Ramlli MA, Isa MI
    J Phys Chem B, 2016 11 10;120(44):11567-11573.
    PMID: 27723333
    Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transference number measurement (TNM) techniques were applied to investigate the complexation, structural, and ionic transport properties of and the dominant charge-carrier species in a solid biopolymer electrolyte (SBE) system based on carboxymethyl cellulose (CMC) doped with ammonium fluoride (NH4F), which was prepared via a solution casting technique. The SBEs were partially opaque in appearance, with no phase separation. The presence of interactions between the host polymer (CMC) and the ionic dopant (NH4F) was proven by FT-IR analysis at the C-O band. XRD spectra analyzed using Origin 8 software disclose that the degree of crystallinity (χc%) of the SBEs decreased with the addition of NH4F, indicating an increase in the amorphous nature of the SBEs. Analysis of the ionic transport properties reveals that the ionic conductivity of the SBEs is dependent on the ionic mobility (μ) and diffusion of ions (D). TNM analysis confirms that the SBEs are proton conductors.
    Matched MeSH terms: Protons*
  19. Poh BL, Khairuddean M
    Talanta, 1996 Oct;43(10):1727-31.
    PMID: 18966659
    A non-cyclic tetrameric structure has been suggested for calcichrome (calcion). This structure is consistent with its mass spectrum, proton NMR spectrum, elemental composition and complexing ability with polyaromatic hydrocarbons in water. The stability constants of the 1:1 complexes formed between calcichrome and seven polyaromatic hydrocarbons in water at room temperature have been measured.
    Matched MeSH terms: Protons
  20. Perumal, V., Khoo, W.C., Abdul-Hamid, A., Ismail, A., Saari, K., Murugesu, S., et al.
    MyJurnal
    Momordica charantia, also known as bitter melon or ‘peria katak’ in Malaysia, is a member of the family Cucurbitaceae. Bitter melon is an excellent source of vitamins and minerals that made it extensively nutritious. Moreover, the seed, fruit and leave of the plant contain bioactive compounds with a wide range of biological activities that have been used in traditional medicines in the treatment of several diseases, including inflammation, infections, obesity and diabetes. The aim of this study was to evaluate changes in urinary metabolite profile of the normal, streptozotocin-induced type 1 diabetes and M. charantia treated diabetic rats using proton nuclear magnetic resonance (1H-NMR) -based metabolomics profiling. Study had been carried out by inducing diabetes in the rats through injection of streptozotocin, which exhibited type 1 diabetes. M. charantia extract (100 and 200 mg/kg body weight) was administrated to the streptozotocin-induced diabetic rats for one week. Blood glucose level after administration was measured to examine hypoglycemic effect of the extract. The results obtained indicated that M. charantia was effective in lowering blood glucose level of the diabetic rats. The loading plot of Partial Least Square (PLS) component 1 showed that diabetic rats had increased levels of lactate and glucose in urine whereas normal and the extract treated diabetic rats had higher levels of succinate, creatine, creatinine, urea and phenylacetylglycine in urine. While the loading plot of PLS component 2 showed a higher levels of succinate, citrate, creatine, creatinine, sugars, and hippurate in urine of normal rat compared to the extract treated diabetic rat. Administration of M. charantia extract was found to be able to regulate the altered metabolic processes. Thus, it could be potentially used to treat the diabetic patients.
    
    Matched MeSH terms: Protons
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links