Displaying publications 41 - 60 of 215 in total

Abstract:
Sort:
  1. Yong ZJ, Bashir MJK, Hassan MS
    Sci Total Environ, 2021 Jul 01;776:145961.
    PMID: 33640552 DOI: 10.1016/j.scitotenv.2021.145961
    Waste management in Malaysia remains a persistent economic and environmental challenge. Up to date, more than 80% of Malaysian solid waste disposed at landfills and dumpsites. Therefore, Malaysia is facing an urgent need to move towards a sustainable solid waste management and thus resource recovery from organic solid waste. Hence, this study aims to investigate the feasibility of energy and bio fertilizer recovery from organic fraction municipal solid waste (OFMSW) via anaerobic digestion. The economic and environmental benefit analysis was investigated. Approximate and elementary analysis of OFMSW samples were carried out to estimate the potential production of biogas and bio fertilizer. It was found that organic waste contributes about 45% of the total MSW generated in Malaysia. Anaerobic digestion of 50% of organic waste is expected to produce 3941 MWh/day of electrical energy and 2500 t/day of bio fertilizer. In terms of environmental impacts, 2735 t/day of Carbon dioxide (CO2) emission, 1128 m2/day of landfilling area and 481 m3/day of leachate can be avoided. A net revenue of 3300 million RM (1 US Dollar ≈ 4.15 RM) can be generated by the sales of electricity via Feed-in-Tariff (FiT), sales of biofertilizer to local agricultural industries and inclusive of the saving generated from the reduction of OFMSW landfilling operations and leachate treatment at landfills. Economic development can go hand-in-hand with environmental sound practices in the field of waste management.
    Matched MeSH terms: Refuse Disposal*
  2. Mak TMW, Yu IKM, Xiong X, Zaman NQ, Yaacof N, Hsu SC, et al.
    Chemosphere, 2021 Jul;274:129750.
    PMID: 33549880 DOI: 10.1016/j.chemosphere.2021.129750
    To tackle the crisis associated with the rising commercial food waste generation, it is imperative to comprehend how corporates' recycling behaviour is influenced by different industry structures and economies. This study aims to fill in the information gap that various factors might be affecting corporates' recycling behaviour in two different economies due to environmental inequality by comparing upper-middle-income region (Malaysia) and high-income region (Hong Kong), respectively. A questionnaire survey regarding food waste management according to the Theory of Planned Behaviour was conducted with representatives coming from diverse industries of the hotel, food and beverage, and property management. The questionnaire responses were evaluated based on quantitative structural equation modelling and correlation analysis. The analysis results showed that the model fit the data well, explaining 78% of the variance in recycling behaviour. The findings demonstrated that the most substantial factor on individual's recycling intention by Malaysian commercial food waste generators was perceived behavioural control, and logistics and management incentives. Subjective norms demonstrated significant and adverse effects on the behaviour of food waste recycling. The variable of administrative incentives and corporate support presented strong positive correlations with moral attitudes as well as logistics and management incentives. Hotel industries from both Hong Kong and Malaysia have a higher acceptance level on human resources regarding food waste recycling. In comparison, food and beverage industries from both regions have a lower acceptance level. These findings could enrich our knowledge of the concerns in establishing regional policy strategies to encourage economic behavioural changes for sustainable development.
    Matched MeSH terms: Refuse Disposal*
  3. Lim LS, Tan KS, Fu MY, Au HL, Ebi I, Mohamad Lal MT, et al.
    Environ Res, 2021 07;198:110472.
    PMID: 33189743 DOI: 10.1016/j.envres.2020.110472
    The Bokashi leachate (BL) is a by-product from the anaerobic digestion of food waste, following the Bokashi composting method. Bokashi leachate is acidic and it contains effective microorganisms hence it has potential to be a functional feed additive to the plant proteins based diets for fish farming. This study evaluated the growth performance and feed utilization of the red tilapia (Oreochromis sp.) fingerlings fed with the BL supplemented soybean meal (SBM) based diets. After an 8-week feeding trial, fish fed with the 5% BL supplemented SBM diet attained the highest weight gain. This result was significantly higher (p  0.05) to those fed with the control full fish meal (FM) diet. Generally, dietary inclusion of BL enhanced the fish feed intake on the SBM diet but it did not show clear sign of improvement in their feed utilization. In addition, no significant difference was found across the hepatosomatic index and viscerosomatic index from all dietary treatments. These outcomes concluded that dietary inclusion of BL can enhance the feed intake and growth performance of the red tilapia fingerlings fed with the SBM based diet without compromising their health, and the optimum BL inclusion level was 5%. Nevertheless, further study on the properties and substances content of the BL produced from different types and ratios of food waste is strongly recommended. In this study, BL was also discovered to be capable of reducing the crude fiber content in the SBM diets. Such observation deserves a further exploitation on the application of BL to manipulate the crude fiber content in the plant proteins based diets in fish farming.
    Matched MeSH terms: Refuse Disposal*
  4. Michel Devadoss PS, Pariatamby A, Bhatti MS, Chenayah S, Shahul Hamid F
    Waste Manag Res, 2021 Jul;39(7):914-927.
    PMID: 33506744 DOI: 10.1177/0734242X20983927
    The studies on municipal solid waste (MSW) management in Pakistan and its impacts on greenhouse gas (GHG) emissions are glaringly missing. Therefore, this study examines the effect of MSW management on GHG emissions in Pakistan and suggests the best suitable strategies for alleviating GHG emissions. The Intergovernmental Panel on Climate Change (IPCC) 2006 waste model (WM) was used to create inventory of GHG emissions from landfilling. The solid waste management GHG (SWM-GHG) calculator and strengths-weaknesses-opportunities-threat (SWOT) analyses were used as strategic planning tools to reduce GHG emissions by improving MSW management in Pakistan. The IPCC 2006 WM estimated 14,987,113 metric tonnes (Mt) carbon dioxide equivalents (CO2-eq) of GHG emissions in 2016. The SWM-GHG calculator, on the other hand, estimated 23,319,370 Mt CO2-eq of GHG emissions from management of 30,764,000 Mt of MSW in 2016, which included 8% recycling, 2% composting, and 90% disposal in open dumps. To reduce GHG emissions, two strategies including recycling-focused and incineration-focused were analysed. The recycling approach can reduce more GHG emissions than incineration, as it can reduce 36% of GHG emissions (as compared to GHG emission in 2016) by recycling 23% of MSW, anaerobically digesting 10% of MSW, and disposing of 67% of MSW in sanitary landfills (with energy recovery). Moreover, the SWOT analysis suggested integration of the informal sector, adoption of anaerobic digestion and formulation of explicit MSW regulations for improving the current management of MSW which will also result in lower GHG emissions.
    Matched MeSH terms: Refuse Disposal*
  5. Chun T'ing L, Moorthy K, Gunasaygaran N, Sek Li C, Omapathi D, Jia Yi H, et al.
    J Air Waste Manag Assoc, 2021 07;71(7):890-905.
    PMID: 33689567 DOI: 10.1080/10962247.2021.1900001
    Malaysia, also known as a food haven, is currently facing an excessive food waste problem which poses a threat to the environment. The objective of this research is to study the factors that affect the behavioral intention of Malaysians to reduce food waste. This study employs the Theory of Planned Behavior (TPB) and the Norm Activation Model (NAM) to better understand the behavioral intention of Malaysians toward reducing food waste. A cross-sectional study was conducted, using 352 self-administered survey questionnaires. Data collected were analyzed through PLS-SEM analysis. The results show that awareness of consequences (AC) and ascription of responsibility (AR) influence personal norms, while attitude, perceived behavioral control, and personal norms (PN) have significant effect on behavioral intention (BI) to reduce food waste. Furthermore, PN partially mediates the relationship between AC and BI as well as AR and BI. This study offers critical insights which will benefit the Malaysian Government, Non-Governmental Organizations (NGOs), and other related parties in recognizing factors influencing the intention to reduce food waste which can be adopted to develop practical solutions to curb food waste in Malaysia.Implications: This study offers critical insights to the Malaysian Government, non-governmental organizations (NGOs), and other related parties in recognizing factors influencing the intention to reduce food waste which can be adopted to develop practical solutions to curb food waste in Malaysia.
    Matched MeSH terms: Refuse Disposal*
  6. Kurniawan TA, Lo W, Singh D, Othman MHD, Avtar R, Hwang GH, et al.
    Environ Pollut, 2021 May 15;277:116741.
    PMID: 33652179 DOI: 10.1016/j.envpol.2021.116741
    Recently Xiamen (China) has encountered various challenges of municipal solid waste management (MSWM) such as lack of a complete garbage sorting and recycling system, the absence of waste segregation between organic and dry waste at source, and a shortage of complete and clear information about the MSW generated. This article critically analyzes the existing bottlenecks in its waste management system and discusses the way forward for the city to enhance its MSWM by drawing lessons from Hong Kong's effectiveness in dealing with the same problems over the past decades. Solutions to the MSWM problem are not only limited to technological options, but also integrate environmental, legal, and institutional perspectives. The solutions include (1) enhancing source separation and improving recycling system; (2) improving the legislation system of the MSWM; (3) improvement of terminal disposal facilities in the city; (4) incorporating digitization into MSWM; and (5) establishing standards and definitions for recycled products and/or recyclable materials. We also evaluate and compare different aspects of MSWM in Xiamen and Hong Kong SAR (special administrative region) under the framework of 'One Country, Two Systems' concerning environmental policies, generation, composition, characteristics, treatment, and disposal of their MSW. The nexus of society, economics of the MSW, and the environment in the sustainability sphere are established by promoting local recycling industries and the standardization of recycled products and/or recyclable materials. The roles of digitization technologies in the 4th Industrial Revolution for waste reduction in the framework of circular economy (CE) are also elaborated. This technological solution may improve the city's MSWM in terms of public participation in MSW separation through reduction, recycle, reuse, recovery, and repair (5Rs) schemes. To meet top-down policy goals such as a 35% recycling rate for the generated waste by 2030, incorporating digitization into the MSWM provides the city with technology-driven waste solutions.
    Matched MeSH terms: Refuse Disposal*
  7. Hantoko D, Li X, Pariatamby A, Yoshikawa K, Horttanainen M, Yan M
    J Environ Manage, 2021 May 15;286:112140.
    PMID: 33652254 DOI: 10.1016/j.jenvman.2021.112140
    The COVID-19 pandemic has imposed a global emergency and also has raised issues with waste management practices. This study emphasized the challenges of increased waste disposal during the COVID-19 crisis and its response practices. Data obtained from the scientific research papers, publications from the governments and multilateral organizations, and media reports were used to quantify the effect of the pandemic towards waste generation. A huge increase in the amount of used personal protective equipments (facemasks, gloves, and other protective stuffs) and wide distribution of infectious wastes from hospitals, health care facilities, and quarantined households was found. The amount of food and plastic waste also increased during the pandemic. These factors caused waste treatment facilities to be overwhelmed, forcing emergency treatment and disposals (e.g., co-disposal in a municipal solid waste incinerator, cement kilns, industrial furnaces, and deep burial) to ramp up processing capacity. This paper discussed the ways the operation of those facilities must be improved to cope with the challenge of handling medical waste, as well as working around the restrictions imposed due to COVID-19. The study also highlights the need for short, mid, and longer-term responses towards waste management during the pandemic. Furthermore, the practices discussed in this paper may provide an option for alternative approaches and development of sustainable strategies for mitigating similar pandemics in the future.
    Matched MeSH terms: Refuse Disposal*
  8. Roslan MAM, Jefri NQUA, Ramlee N, Rahman NAA, Chong NHH, Bunawan H, et al.
    Saudi J Biol Sci, 2021 May;28(5):3001-3012.
    PMID: 34012331 DOI: 10.1016/j.sjbs.2021.02.041
    Food waste (FW) minimization at the source by using food waste biodigester (FWBs) has a vast potential to lower down the impact of increasing organic fraction in municipal solid waste generation. To this end, this research sought to check the performance of locally isolated hydrolase-producing bacteria (HPB) to improve food waste biodegradation rate. Two under-explored HPB identified as Bacillus paralicheniformis GRA2 and Bacillus velezensis TAP5 were able to produce maximum amylase, cellulase, protease and lipase activities, and demonstrated a significant hydrolase synergy in co-culture fermentation. In vitro biodegradation analysis of both autoclaved and non-autoclaved FW revealed that the HPB inoculation was effective to degrade total solids (>62%), protein (>19%), total fat (>51), total sugar (>86%), reducing sugar (>38%) and starch (>50%) after 8-day incubation. All co-culture treatments were recorded superior to the respective monocultures and the uninoculated control. The results of FW biodegradation using batch-biodigester trial indicated that the 1500 mL and 1000 mL inoculum size of HPB inoculant reached a plateau on the 4th day, with gross biodegradation percentage (GBP) of >85% as compared to control (66.4%). The 1000 mL inoculum was sufficient to achieve the maximum GBP (>90%) of FW after an 8-day biodigestion in a FWB.
    Matched MeSH terms: Refuse Disposal
  9. Kamal H, Le CF, Salter AM, Ali A
    Compr Rev Food Sci Food Saf, 2021 05;20(3):2455-2475.
    PMID: 33819382 DOI: 10.1111/1541-4337.12739
    The chief intent of this review is to explain the different extraction techniques and efficiencies for the recovery of protein from food waste (FW) sources. Although FW is not a new concept, increasing concerns about chronic hunger, nutritional deficiency, food security, and sustainability have intensified attention on alternative and sustainable sources of protein for food and feed. Initiatives to extract and utilize protein from FW on a commercial scale have been undertaken, mainly in the developed countries, but they remain largely underutilized and generally suited for low-quality products. The current analysis reveals the extraction of protein from FW is a many-sided (complex) issue, and that identifies for a stronger and extensive integration of diverse extraction perspectives, focusing on nutritional quality, yield, and functionality of the isolated protein as a valued recycled ingredient.
    Matched MeSH terms: Refuse Disposal*
  10. Lew PS, Nik Ibrahim NNL, Kamarudin S, Thamrin NM, Misnan MF
    Sensors (Basel), 2021 Apr 18;21(8).
    PMID: 33919490 DOI: 10.3390/s21082847
    Malaysians generate 15,000 tons of food waste per day and dispose of it in the landfill, contributing to greenhouse gas emissions. As a solution for the stated problem, this research aims to produce an excellent quality bokashi compost from household organic waste using a smart composting bin. The bokashi composting method is conducted, whereby banana peels are composted with three types of bokashi brans prepared using 12, 22, and 32 mL of EM-1 mother cultured. During the 14 days composting process, the smart composting bin collected the temperature, air humidity, and moisture content produced by the bokashi-composting process. With the ATmega328 microcontroller, these data were uploaded and synchronized to Google Sheet via WIFI. After the bokashi-composting process was completed, three of each bokashi compost and a control sample were buried in separate black soil for three weeks to determine each compost's effectiveness. NPK values and the C/N ratio were analyzed on the soil compost. From the research, 12 mL of EM-1 shows the most effective ratio to the bokashi composting, as it resulted in a faster decomposition rate and has an optimum C/N ratio. Bokashi composting can help to reduce household food wastes. An optimum amount of the EM-1 used during the bokashi-composting process will produce good quality soil without contributing to environmental issues.
    Matched MeSH terms: Refuse Disposal*
  11. Chew KW, Chia SR, Chia WY, Cheah WY, Munawaroh HSH, Ong WJ
    Environ Pollut, 2021 Mar 01;278:116836.
    PMID: 33689952 DOI: 10.1016/j.envpol.2021.116836
    The remarkable journey of progression of mankind has created various impacts in the form of polluted environment, amassed heavy metals and depleting resources. This alarming situation demands sustainable energy resources and approaches to deal with these environmental hazards and power deficit. Pyrolysis and co-pyrolysis address both energy and environmental issues caused by civilization and industrialization. The processes use hazardous waste materials including waste tires, plastic and medical waste, and biomass waste such as livestock waste and agricultural waste as feedstock to produce gas, char and pyrolysis oil for energy production. Usage of hazardous materials as pyrolysis and co-pyrolysis feedstock reduces disposal of harmful substances into environment, reducing occurrence of soil and water pollution, and substituting the non-renewable feedstock, fossil fuels. As compared to combustion, pyrolysis and co-pyrolysis have less emission of air pollutants and act as alternative options to landfill disposal and incineration for hazardous materials and biomass waste. Hence, stabilizing heavy metals and solving the energy and waste management problems. This review discusses the pyrolysis and co-pyrolysis of biomass and harmful wastes to strive towards circular economy and eco-friendly, cleaner energy with minimum waste disposal, reducing negative impact on the planet and creating future possibilities.
    Matched MeSH terms: Refuse Disposal
  12. Chan YH, Syed Abdul Rahman SNF, Lahuri HM, Khalid A
    Environ Pollut, 2021 Mar 01;278:116843.
    PMID: 33711630 DOI: 10.1016/j.envpol.2021.116843
    Carbon monoxide (CO) is a highly valuable component of syngas which could be used to synthesize various chemicals and fuels. Conventionally, syngas is derived from fossil-based natural gas and coal which are non-renewable. To curb the problem, CO2 gasification offers a win-win solution in which CO2 is converted with wastes to CO, achieving carbon emission mitigation and addressing waste disposal issue simultaneously. In this review, gasification of various wastes by CO2 with particular focus given to generation of CO-rich syngas is presented and critically discussed. This includes the effects of operating parameters (temperature, pressure and physicochemical properties of feedstocks) and advanced CO2 gasification techniques (catalytic CO2 gasification, CO2 co-gasification and microwave-driven CO2 gasification). Furthermore, associated technological challenges are highlighted and way forward in this field are proposed.
    Matched MeSH terms: Refuse Disposal
  13. Lim YF, Chan YJ, Abakr YA, Sethu V, Selvarajoo A, Singh A, et al.
    Environ Technol, 2021 Feb 18.
    PMID: 33502966 DOI: 10.1080/09593330.2021.1882587
    As the population increases, energy demands continue to rise rapidly. In order to satisfy this increasing energy demand, biogas offers a potential alternative. Biogas is economically viable to be produced through anaerobic digestion (AD) from various biomass feedstocks that are readily available in Malaysia, such as food waste (FW), palm oil mill effluent (POME), garden waste (GW), landfill, sewage sludge (SS) and animal manure. This paper aims to determine the potential feedstocks for biogas production via AD based on their characteristics, methane yield, kinetic studies and economic analysis. POME and FW show the highest methane yield with biogas yields up to 0.50 L/g VS while the lowest is 0.12 L/g VS by landfill leachate. Kinetic study shows that modified Gompertz model fits most of the feedstock with R 2 up to 1 indicating that this model can be used for estimating treatment efficiencies of full-scale reactors and performing scale-up analysis. The economic analysis shows that POME has the shortest payback period (PBP), highest internal rate of return (IRR) and net present value (NPV). However, it has already been well explored, with 93% of biogas plants in Malaysia using POME as feedstock. The FW generation rate in Malaysia is approximately 15,000 tonnes per day, at the same time FW as the second place shows potential to have a PBP of 5.4 years and 13.3% IRR, which is close to the results achieved with POME. This makes FW suitable to be used as the feedstock for biogas production.
    Matched MeSH terms: Refuse Disposal
  14. Phillip E, Khoo KS, Yusof MAW, Abdel Rahman RO
    J Environ Manage, 2021 Feb 15;280:111703.
    PMID: 33288318 DOI: 10.1016/j.jenvman.2020.111703
    Disused Sealed Radioactive Sources (DSRS) borehole disposal is an innovative concept recommended by international atomic energy agency (IAEA) to improve the safety and security of the management end point for these sources. A green application of Palm Oil Fuel Ash (POFA) as a supplementary material for cementitious backfill barrier in DSRS borehole disposal facility is proposed. Samples with up to 50% POFA replacement complied with the mechanical and hydraulic performance requirements for backfill barriers in retrievable radioactive waste disposal facilities. The structures of one year old OPC and optimum OPC-POFA cement backfills were evaluated using FESEM, XRD, EDXRF, BET, and TGA and their 226 Ra confinement performances were assessed. 30% POFA replacement improved the geochemical conditions by reducing competitive Ca2+ release into the disposal environment. It enhanced 226Ra confinement performance independently on the amount of water intrusion or releases below 2% of 1 Ci source. The improved performance is attributed to the higher fraction of active sites of OPC-POFA backfill compared to that of OPC backfill. 226Ra sorption onto C-S-H is irreversible, spontaneous, endothermic, and independent on the degree of the surface filling. The provided experimental data and theoretical analysis proved the feasibility of this green use of POFA in reducing the radiological hazard of 226Ra.
    Matched MeSH terms: Refuse Disposal*
  15. Liang Y, Tan Q, Song Q, Li J
    Waste Manag, 2021 Jan 01;119:242-253.
    PMID: 33091837 DOI: 10.1016/j.wasman.2020.09.049
    It is well known that Asia generates and receives large quantities of plastic waste. Through a detailed study of plastic waste generation and trade, the management and treatment of plastic waste in Asia were analyzed from the regional perspective. The amounts of plastic waste in municipal solid waste and in industrial solid waste were estimated to be 79 Mt and 42 Mt, respectively, in Asia. The overall treatment and recycling status in Asia are unsatisfactory. Asia imported 74% of the plastic waste in the world in 2016, and China (mainland) imported the most plastic waste until 2017, with 5.8 to 8.3 Mt. In 2017, about half the plastic waste imported by Asia came from other regions, and after subtracting the exported quantity, 98% of the plastic waste was left in Asia for treatment and disposal. The plastic waste imported by Asia declined about 72% in monetary value in 2018. There is still a large gap between the plastic waste quantity imported to Asia and that exported from Asia. China's ban of plastic waste imports caused import quantities to drop to 52 kt in 2018, simultaneously, exports from the largest exporting countries or regions such as Hong Kong (China), the USA, Japan, and Germany decreased. While Vietnam, Malaysia and some other Asian countries and regions saw significant increases in plastic waste imports from 2016 to 2018. Considering this situation, countries in Asia are starting to strictly limit plastic waste imports from other countries.
    Matched MeSH terms: Refuse Disposal*
  16. Michel Devadoss PS, Agamuthu P, Mehran SB, Santha C, Fauziah SH
    Waste Manag, 2021 Jan 01;119:135-144.
    PMID: 33059163 DOI: 10.1016/j.wasman.2020.09.038
    The management of municipal solid waste (MSW) in Malaysia has been mainly focused on collection, transportation and disposal of MSW. To examine the contribution of MSW management to GHG emissions, Intergovernmental Panel on Climate Change (IPCC) 2006 Waste Model was used by deploying Tier 2 method. It estimated that 6,898,167 tonnes CO2-eq of GHG emissions were released in 2016 from solid waste disposal sites (SWDS) and are projected to increase to 9,991,486 tonnes CO2-eq in 2030. To reduce GHG emissions from MSW management, Solid-Waste-Management Greenhouse-Gas (SWM-GHG) calculator was used to compare different approaches. SWM-GHG calculator focused on three settings including recycling approach, incineration approach and integrated approach. According to SWM-GHG calculator, in 2016, 15,906,614 tonnes CO2-eq of GHG emissions were released by recycling approximately 16% of MSW and disposing of 84% of MSW in SWDS. Out of the three approaches, integrated approach can result in highest reduction of GHG emissions by 2050 (64%) from GHG emissions in 2016, as compared to recycling approach (50% reduction) and incineration approach (46% reduction). While, recycling has been the main national goal for last 14 years as it has increased up to 17.5% by 2016, the current Malaysian government aims to establish 8 incinerators in Malaysia that will treat approximately 32% of MSW annually. However, estimations of SWM-GHG calculator and some opportunities and threats highlighted by SWOT analysis suggest the integrated approach as the best suited approach for Malaysia for achieving significant and sustainable reductions in GHG emissions.
    Matched MeSH terms: Refuse Disposal*
  17. Valizadeh S, Lam SS, Ko CH, Lee SH, Farooq A, Yu YJ, et al.
    Bioresour Technol, 2021 Jan;320(Pt B):124313.
    PMID: 33197736 DOI: 10.1016/j.biortech.2020.124313
    Steam and air gasification with 5 wt% Ni/Al2O3 eggshell (Ni-EG) and homo (Ni-H) catalysts were performed for the first time to produce biohydrogen from food waste. The steam gasification produced comparably higher gas yield than air gasification. In non-catalytic experiments, steam gasification generated a higher volume percent of H2, whereas more CO, CO2, CH4, and C2-C4 were produced in air gasification. Ni-EG demonstrated higher potential to obtain H2-rich gases with a low C2-C4 content compared to that obtained by Ni-H, particularly in steam gasification at 800 °C, which produced gaseous products with 59.48 vol% H2. The long-term activity of both catalysts in steam gasification was evaluated, and Ni-EG exhibited higher stability than Ni-H. The ideal distribution of Ni species on the outer region of γ-Al2O3 pellets in Ni-EG resulted in higher activity, stability, and selectivity than Ni-H in both steam and air gasification.
    Matched MeSH terms: Refuse Disposal*
  18. Madhiyah Yahaya Bermakai, Nor Farahin Jafri, Norha Abdul Hadi
    MyJurnal
    Recently, the development of activated carbon electrodes from agricultural waste biomass for application in carbon-based electrode of supercapacitor is increasing. The use of agricultural waste biomass as a precursor for the production of activated carbon become popular because it is economical, easily available and also beneficial in reducing waste disposal problem in agricultural industries. In this review, the biomass material for activated carbon using various activators is presented. The effects of activating methods which is physical and chemical activation on the properties of activated carbons are reviewed. Carbonaceous materials with high surface area, which is above 1000 m2g-1 and good porosity with total pore volume approximately 1.0 cm3g-1 promote fast ion-transport, making them an ideal choice to be used in supercapacitor. Previous study had shown that different types of activation method influence significantly on the properties of activated carbon produced. Producing a high porosity and high surface area of activated carbon are essentials to fabricate a high quality of supercapacitor. With proper treatment, it is found that many agriculture wastes have high potential and carry good properties as an electrode in supercapacitor.
    Matched MeSH terms: Refuse Disposal
  19. Ab Rahman MF, Rusli A, Misman MA, Rashid AA
    ACS Omega, 2020 Nov 24;5(46):30329-30335.
    PMID: 33251468 DOI: 10.1021/acsomega.0c04964
    With increased awareness on the importance of gloves arising from the COVID-19 pandemic, people are expected to continue using them even after the pandemic recedes. This scenario in a way increased the rubber solid waste disposal problem; therefore, the production of biodegradable gloves may be an option to overcome this problem. However, the need to study the shelf life of biodegradable gloves is crucial before commercialization. There are well-established models to address the failure properties of gloves as stated in the American Society for Testing and Material (ASTM) D7160. In this study, polysaccharide-based material-filled natural rubber latex (PFNRL) gloves, which are biodegradable gloves, were subjected to an accelerated aging process at different temperatures of 50-80 °C for 1-120 days. Prediction models based on Arrhenius and shift factors were used to estimate the shelf life of the PFNRL gloves. Based on the results obtained, the estimated time for the PFNRL gloves to retain 75% of their tensile strength at shelf temperature (30 °C) based on Arrhenius and shift factor models was 2.8 years. Verification on the activation energy based on the shift factor model indicated that the shelf life of PFNRL gloves is 2.9 years, which is only a 3.6% difference. The value obtained is aligned with the requirement in accordance with ASTM D7160, which states that only up to a maximum of 3 years' shelf life is allowed for the gloves under accelerated aging conditions.
    Matched MeSH terms: Refuse Disposal
  20. Zainol Abidin NA, Kormin F, Zainol Abidin NA, Mohamed Anuar NAF, Abu Bakar MF
    Int J Mol Sci, 2020 Jul 15;21(14).
    PMID: 32679639 DOI: 10.3390/ijms21144978
    Chitin, being the second most abundant biopolymer after cellulose, has been gaining popularity since its initial discovery by Braconot in 1811. However, fundamental knowledge and literature on chitin and its derivatives from insects are difficult to obtain. The most common and sought-after sources of chitin are shellfish (especially crustaceans) and other aquatic invertebrates. The amount of shellfish available is obviously restricted by the amount of food waste that is allowed; hence, it is a limited resource. Therefore, insects are the best choices since, out of 1.3 million species in the world, 900,000 are insects, making them the most abundant species in the world. In this review, a total of 82 samples from shellfish-crustaceans and mollusks (n = 46), insects (n = 23), and others (n = 13)-have been collected and studied for their chemical extraction of chitin and its derivatives. The aim of this paper is to review the extraction method of chitin and chitosan for a comparison of the optimal demineralization and deproteinization processes, with a consideration of insects as alternative sources of chitin. The methods employed in this review are based on comprehensive bibliographic research. Based on previous data, the chitin and chitosan contents of insects in past studies favorably compare and compete with those of commercial chitin and chitosan-for example, 45% in Bombyx eri, 36.6% in Periostracum cicadae (cicada sloughs), and 26.2% in Chyrysomya megacephala. Therefore, according to the data reported by previous researchers, demonstrating comparable yield values to those of crustacean chitin and the great interest in insects as alternative sources, efforts towards comprehensive knowledge in this field are relevant.
    Matched MeSH terms: Refuse Disposal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links