Displaying publications 41 - 60 of 554 in total

Abstract:
Sort:
  1. Li Y, Ouyang Y, Wu H, Wang P, Huang Y, Li X, et al.
    Eur J Med Chem, 2022 Jan 15;228:113979.
    PMID: 34802838 DOI: 10.1016/j.ejmech.2021.113979
    The shortage of new antibiotics makes infections caused by gram-negative (G-) bacteria a significant clinical problem. The key enzymes involved in folate biosynthesis represent important targets for drug discovery, and new antifolates with novel mechanisms are urgently needed. By targeting to dihydrofolate reductase (DHFR), a series of 1,3-diamino-7H-pyrrol[3,2-f]quinazoline (PQZ) compounds were designed, and exhibited potent antibacterial activities in vitro, especially against multi-drug resistant G- strains. Multiple experiments indicated that PQZ compounds contain a different molecular mechanism against the typical DHFR inhibitor, trimethoprim (TMP), and the thymidylate synthase (TS) was identified as another potential but a relatively weak target. A significant synergism between the representative compound, OYYF-175, and sulfamethoxazole (SMZ) was observed with a strong cumulative and significantly bactericidal effect at extremely low concentrations (2 μg/mL for SMZ and 0.03 pg/mL for OYYF-175), which could be resulted from the simultaneous inhibition of dihydropteroate synthase (DHPS), DHFR and TS. PQZ compounds exhibited therapeutic effects in a mouse model of intraperitoneal infections caused by Escherichia coli (E. coli). The co-crystal structure of OYYF-175-DHFR was solved and the detailed interactions were provided. The inhibitors reported represent innovative chemical structures with novel molecular mechanism of action, which will benefit the generation of new, efficacious bactericidal compounds.
    Matched MeSH terms: Structure-Activity Relationship
  2. Naseer S, Ali RF, Fati SM, Muneer A
    Sci Rep, 2022 01 07;12(1):128.
    PMID: 34996975 DOI: 10.1038/s41598-021-03895-4
    In biological systems, Glutamic acid is a crucial amino acid which is used in protein biosynthesis. Carboxylation of glutamic acid is a significant post-translational modification which plays important role in blood coagulation by activating prothrombin to thrombin. Contrariwise, 4-carboxy-glutamate is also found to be involved in diseases including plaque atherosclerosis, osteoporosis, mineralized heart valves, bone resorption and serves as biomarker for onset of these diseases. Owing to the pathophysiological significance of 4-carboxyglutamate, its identification is important to better understand pathophysiological systems. The wet lab identification of prospective 4-carboxyglutamate sites is costly, laborious and time consuming due to inherent difficulties of in-vivo, ex-vivo and in vitro experiments. To supplement these experiments, we proposed, implemented, and evaluated a different approach to develop 4-carboxyglutamate site predictors using pseudo amino acid compositions (PseAAC) and deep neural networks (DNNs). Our approach does not require any feature extraction and employs deep neural networks to learn feature representation of peptide sequences and performing classification thereof. Proposed approach is validated using standard performance evaluation metrics. Among different deep neural networks, convolutional neural network-based predictor achieved best scores on independent dataset with accuracy of 94.7%, AuC score of 0.91 and F1-score of 0.874 which shows the promise of proposed approach. The iCarboxE-Deep server is deployed at https://share.streamlit.io/sheraz-n/carboxyglutamate/app.py .
    Matched MeSH terms: Structure-Activity Relationship
  3. Saleem Khan M, Asif Nawaz M, Jalil S, Rashid F, Hameed A, Asari A, et al.
    Bioorg Chem, 2022 01;118:105457.
    PMID: 34798458 DOI: 10.1016/j.bioorg.2021.105457
    Substitution of hazardous and often harmful organic solvents with "green" and "sustainable" alternative reaction media is always desirous. Ionic liquids (IL) have emerged as valuable and versatile liquids that can replace most organic solvents in a variety of syntheses. However, recently new types of low melting mixtures termed as Deep Eutectic Solvents (DES) have been utilized in organic syntheses. DES are non-volatile in nature, have sufficient thermal stability, and also have the ability to be recycled and reused. Hence DES have been used as alternative reaction media to perform different organic reactions. The availability of green, inexpensive and easy to handle alternative solvents for organic synthesis is still scarce, hence our interest in DES mediated syntheses. Herein we have investigated Biginelli reaction in different DES for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Monoamine oxidases and cholinesterases are important drug targets for the treatment of various neurological disorders such as Alzheimer's disease, Parkinson's disease, depression and anxiety. The compounds synthesized herein were evaluated for their inhibitory potential against these enzymes. Some of the compounds were found to be highly potent and selective inhibitors. Compounds 1 h and 1c were the most active monoamine oxidase A (MAO A) (IC50 = 0.31 ± 0.11 µM) and monoamine oxidase B (MAO B) (IC50 = 0.34 ± 0.04 µM) inhibitors respectively. All compounds were selective AChE inhibitors and did not inhibit BChE (<29% inhibition). Compound 1 k (IC50 = 0.13 ± 0.09 µM) was the most active AChE inhibitor.
    Matched MeSH terms: Structure-Activity Relationship
  4. Jamil W, Shaikh J, Yousuf M, Taha M, Khan KM, Shah SAA
    J Biomol Struct Dyn, 2022;40(23):12723-12738.
    PMID: 34514955 DOI: 10.1080/07391102.2021.1975565
    This study reports synthesis of flavone hydrazide Schiff base derivatives with diverse functionalities for the cure of diabetic mellitus and their a-glucosidase inhibitor and in silico studies. In this regard, Flavone derivatives 1-20 has synthesized and characterized by various spectroscopic techniques. These compounds showed significant potential towards a-glucosidase enzyme inhibition activity and found to be many fold better active than the standard Acarbose (IC50 = 39.45 ± 0.11 µM). The IC50values ranges 1.02-38.1 µM. Among these, compounds 1(IC50 = 4.6 ± 0.23 µM), 2(IC50 = 1.02 ± 0.2 µM), 3(IC50 = 7.1 ± 0.11 µM), 4(IC50 = 8.3 ± 0.34 µM), 5(IC50 = 7.4 ± 0.15 µM), 6(IC50 = 8.5 ± 0.27 µM) and 18 (IC50 = 1.09 ± 0.26 µM) showed highest activity. It was revealed that the analogues having -OH substitution have higher activity than their look likes. The molecular docking analysis revealed that these molecules have high potential to interact with the protein molecule and have high ability to bind with the enzyme. Furthermore, in silico pharmacokinetics, physicochemical studies were also performed for these derivatives. The bioavailability radar analysis explored that of all these compounds have excellent bioavailability for five (5) descriptors, however, the sixth descriptor of instauration is slightly increased in all compounds.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Structure-Activity Relationship; Quantitative Structure-Activity Relationship
  5. Nawaz M, Taha M, Qureshi F, Ullah N, Selvaraj M, Shahzad S, et al.
    J Biomol Struct Dyn, 2022;40(21):10730-10740.
    PMID: 34463216 DOI: 10.1080/07391102.2021.1947892
    Herein, we report the synthesis and inhibitory potential of indazole (Methyl 1H-indazole-4-carboxylate) derivatives (1-13) against α-amylase and α-glucosidase enzymes. The described derivatives demonstrated good inhibitory potential with IC50 values, ranging between 15.04 ± 0.05 to 76.70 ± 0.06 µM ± SEM for α-amylase and 16.99 ± 0.19 to 77.97 ± 0.19 µM ± SEM for α-glucosidase, respectively. In particular, compounds (8-10 and 12) displayed significant inhibitory activities against both the screened enzymes, with their inhibitory potential comparable to the standard acarbose (12.98 ± 0.03 and 12.79 ± 0.17 µM ± SEM, respectively). Additionally, the influence of different substituents on enzyme inhibition activities was assessed to study the structure activity relationships. Molecular docking simulations were performed to rationalize the binding of derivatives/compounds with enzymes. All the synthesized derivatives (1-13) were characterized with the aid of spectroscopic instruments such as 1H-NMR, 13C-NMR, HR-MS, elemental analysis and FTIR.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Structure-Activity Relationship
  6. Mahleyuddin NN, Moshawih S, Ming LC, Zulkifly HH, Kifli N, Loy MJ, et al.
    Molecules, 2021 Dec 30;27(1).
    PMID: 35011441 DOI: 10.3390/molecules27010209
    Coriandrum sativum (C. sativum), belonging to the Apiaceae (Umbelliferae) family, is widely recognized for its uses in culinary and traditional medicine. C. sativum contains various phytochemicals such as polyphenols, vitamins, and many phytosterols, which account for its properties including anticancer, anti-inflammatory, antidiabetic, and analgesic effects. The cardiovascular benefits of C. sativum have not been summarized before, hence this review aims to further evaluate and discuss its effectiveness in cardiovascular diseases, according to the recent literature. An electronic search for literature was carried out using the following databases: PubMed, Scopus, Google Scholar, preprint platforms, and the Cochrane Database of Systematic Reviews. Articles were gathered from the inception of the database until August 2021. Moreover, the traditional uses and phytochemistry of coriander were surveyed in the original resources and summarized. As a result, most of the studies that cover cardiovascular benefits and fulfilled the eligibility criteria were in vivo, while only a few were in vitro and clinical studies. In conclusion, C. sativum can be deemed a functional food due to its wide range of cardiovascular benefits such as antihypertensive, anti-atherogenic, antiarrhythmic, hypolipidemic as well as cardioprotective effects.
    Matched MeSH terms: Structure-Activity Relationship
  7. Charoenkwan P, Chotpatiwetchkul W, Lee VS, Nantasenamat C, Shoombuatong W
    Sci Rep, 2021 Dec 10;11(1):23782.
    PMID: 34893688 DOI: 10.1038/s41598-021-03293-w
    Owing to their ability to maintain a thermodynamically stable fold at extremely high temperatures, thermophilic proteins (TTPs) play a critical role in basic research and a variety of applications in the food industry. As a result, the development of computation models for rapidly and accurately identifying novel TTPs from a large number of uncharacterized protein sequences is desirable. In spite of existing computational models that have already been developed for characterizing thermophilic proteins, their performance and interpretability remain unsatisfactory. We present a novel sequence-based thermophilic protein predictor, termed SCMTPP, for improving model predictability and interpretability. First, an up-to-date and high-quality dataset consisting of 1853 TPPs and 3233 non-TPPs was compiled from published literature. Second, the SCMTPP predictor was created by combining the scoring card method (SCM) with estimated propensity scores of g-gap dipeptides. Benchmarking experiments revealed that SCMTPP had a cross-validation accuracy of 0.883, which was comparable to that of a support vector machine-based predictor (0.906-0.910) and 2-17% higher than that of commonly used machine learning models. Furthermore, SCMTPP outperformed the state-of-the-art approach (ThermoPred) on the independent test dataset, with accuracy and MCC of 0.865 and 0.731, respectively. Finally, the SCMTPP-derived propensity scores were used to elucidate the critical physicochemical properties for protein thermostability enhancement. In terms of interpretability and generalizability, comparative results showed that SCMTPP was effective for identifying and characterizing TPPs. We had implemented the proposed predictor as a user-friendly online web server at http://pmlabstack.pythonanywhere.com/SCMTPP in order to allow easy access to the model. SCMTPP is expected to be a powerful tool for facilitating community-wide efforts to identify TPPs on a large scale and guiding experimental characterization of TPPs.
    Matched MeSH terms: Structure-Activity Relationship
  8. Zabidi NA, Ishak NA, Hamid M, Ashari SE, Mohammad Latif MA
    J Enzyme Inhib Med Chem, 2021 Dec;36(1):109-121.
    PMID: 33249946 DOI: 10.1080/14756366.2020.1844680
    The inhibition of α-glucosidase and DPP enzymes capable of effectively reducing blood glucose level in the management of type 2 diabetes. The purpose of the present study is to evaluate the inhibitory potential of α-glucosidase and DPP (IV) activity including with the 2-NBDG uptake assay and insulin secretion activities through in vitro studies. The selected of active compounds obtained from the screening of compounds by LC-MS were docked with the targeted enzyme that involved in the mechanism of T2DM. From the results, root extracts displayed a better promising outcome in α-glucosidase (IC50 2.72 ± 0.32) as compared with the fruit extracts (IC50 3.87 ± 0.32). Besides, root extracts also displayed a better activity in the inhibition of DPP (IV), enhance insulin secretion and glucose uptake activity. Molecular docking results revealing that phlorizin binds strongly with α-glucosidase, DPP (IV) and Insulin receptor (IR) enzymes with achieving the lowest binding energy value. The present work suggests several of the compounds have the potential that contribute towards inhibiting α-glucosidase and DPP (IV) and thus effective in lowering post-prandial hyperglycaemia.
    Matched MeSH terms: Structure-Activity Relationship
  9. Loh ZH, Kwong HC, Lam KW, Teh SS, Ee GCL, Quah CK, et al.
    J Enzyme Inhib Med Chem, 2021 Dec;36(1):627-639.
    PMID: 33557647 DOI: 10.1080/14756366.2021.1882452
    A new series of 3-O-substituted xanthone derivatives were synthesised and evaluated for their anti-cholinergic activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The results indicated that the xanthone derivatives possessed good AChE inhibitory activity with eleven of them (5, 8, 11, 17, 19, 21-23, 26-28) exhibited significant effects with the IC50 values ranged 0.88 to 1.28 µM. The AChE enzyme kinetic study of 3-(4-phenylbutoxy)-9H-xanthen-9-one (23) and ethyl 2-((9-oxo-9H-xanthen-3-yl)oxy)acetate (28) showed a mixed inhibition mechanism. Molecular docking study showed that 23 binds to the active site of AChE and interacts via extensive π-π stacking with the indole and phenol side chains of Trp86 and Tyr337, besides the hydrogen bonding with the hydration site and π-π interaction with the phenol side chain of Y72. This study revealed that 3-O-alkoxyl substituted xanthone derivatives are potential lead structures, especially 23 and 28 which can be further developed into potent AChE inhibitors.
    Matched MeSH terms: Structure-Activity Relationship
  10. Sukumaran SD, Nasir SB, Tee JT, Buckle MJC, Othman R, Rahman NA, et al.
    J Enzyme Inhib Med Chem, 2021 Dec;36(1):130-137.
    PMID: 33243025 DOI: 10.1080/14756366.2020.1847100
    A series of C4-substituted tertiary nitrogen-bearing 2'-hydroxychalcones were designed and synthesised based on a previous mixed type acetylcholinesterase inhibitor. Majority of the 2'-hydroxychalcone analogues displayed a better inhibition against acetylcholinesterase (AChE) than butyrylcholinesterase (BuChE). Among them, compound 4c was identified as the most potent AChE inhibitor (IC50: 3.3 µM) and showed the highest selectivity for AChE over BuChE (ratio >30:1). Molecular docking studies suggested that compound 4c interacts with both the peripheral anionic site (PAS) and catalytic anionic site (CAS) regions of AChE. ADMET analysis confirmed the therapeutic potential of compound 4c based on its blood-brain barrier penetrating. Overall, the results suggest that this 2'-hydroxychalcone deserves further investigation into the therapeutic lead for Alzheimer's disease (AD).
    Matched MeSH terms: Structure-Activity Relationship
  11. Jia Y, Zhao L
    Eur J Med Chem, 2021 Nov 15;224:113741.
    PMID: 34365130 DOI: 10.1016/j.ejmech.2021.113741
    Bacterial infection is amongst the most common diseases in community and hospital settings. Fluoroquinolones, exerting the antibacterial activity through binding to type II bacterial topoisomerase enzymes, DNA gyrase and topoisomerase IV, are mainstays of chemotherapy. At present, fluoroquinolones are the most valuable antibacterial agents used popularly. However, the emergence of more virulent and resistant pathogens by the development of either mutated DNA-binding proteins or efflux pump mechanism for fluoroquinolones results in an urgent demand to develop new fluoroquinolones to withstand the drug resistance and to obtain a broader spectrum of activity. This review aims to outline the recent advances of fluoroquinolone derivatives with antibacterial potential and to summarize the structure-activity relationship (SAR) so as to provide an insight for rational design of more active candidates, covering articles published between January 2018 and June 2021.
    Matched MeSH terms: Structure-Activity Relationship
  12. Taha M, Alrashedy AS, Almandil NB, Iqbal N, Anouar EH, Nawaz M, et al.
    Int J Biol Macromol, 2021 Nov 01;190:301-318.
    PMID: 34481854 DOI: 10.1016/j.ijbiomac.2021.08.207
    In this study, we have investigated a series of indole-based compounds for their inhibitory study against pancreatic α-amylase and intestinal α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes appear to have an essential role as antidiabetic drugs. All analogous exhibited good to moderate α-amylase (IC50 = 3.80 to 47.50 μM), and α-glucosidase inhibitory interactions (IC50 = 3.10-52.20 μM) in comparison with standard acarbose (IC50 = 12.28 μM and 11.29 μM). The analogues 4, 11, 12, 15, 14 and 17 had good activity potential both for enzymes inhibitory interactions. Structure activity relationships were deliberated to propose the influence of substituents on the inhibitory potential of analogues. Docking studies revealed the interaction of more potential analogues and enzyme active site. Further, we studied their kinetic study of most active compounds showed that compounds 15, 14, 12, 17 and 11 are competitive for α-amylase and non- competitive for α-glucosidase.
    Matched MeSH terms: Structure-Activity Relationship
  13. Upadhyay N, Tilekar K, Safuan S, Kumar AP, Schweipert M, Meyer-Almes FJ, et al.
    Bioorg Chem, 2021 11;116:105350.
    PMID: 34547645 DOI: 10.1016/j.bioorg.2021.105350
    In the present study, two novel series of compounds incorporating naphthyl and pyridyl linker were synthesized and biological assays revealed 5-((6-(2-(5-(2-chlorophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethoxy) naphthalene-2-yl)methylene)thiazolidine-2,4-dione (14b) as the most potent dual inhibitors of vascular endothelial growth factors receptor-2 (VEGFR-2) and histone deacetylase 4 (HDAC4). Compounds 13b, 14b, 17f, and 21f were found to stabilize HDAC4; where, pyridyl linker swords were endowed with higher stabilization effects than naphthyl linker. Also, 13b and 14b showed best inhibitory activity on VEGFR-2 as compared to others. Compound 14b was most potent as evident by in-vitro and in-vivo biological assessments. It displayed anti-angiogenic potential by inhibiting endothelial cell proliferation, migration, tube formation and also suppressed new capillary formation in the growing chick chorioallantoic membranes (CAMs). It showed selectivity and potency towards HDAC4 as compared to other HDAC isoforms. Compound 14b (25 mg/kg, i.p.) also indicated exceptional antitumor efficacy on in-vivo animal xenograft model of human colorectal adenocarcinoma (HT-29). The mechanism of action of 14b was also confirmed by western blot.
    Matched MeSH terms: Structure-Activity Relationship
  14. Poh Yen K, Stanslas J, Zhang T, Li H, Wang X, Kok Meng C, et al.
    Bioorg Med Chem, 2021 11 01;49:116442.
    PMID: 34600241 DOI: 10.1016/j.bmc.2021.116442
    Acquired paclitaxel (PTX) chemoresistance in triple-negative breast cancer (TNBC) can be inferred from the overexpression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) proteins and the activation of the TLR4/MyD88 cascading signalling pathway. Finding a new inhibitor that can attenuate the activation of this pathway is a novel strategy for reducing PTX chemoresistance. In this study, a series of small molecule compounds were synthesised and tested in combination with PTX against TNBC cells. The trimethoxy-substituted compound significantly decreased MyD88 overexpression and improved PTX activity in MDA-MB-231TLR4+ cells but not in HCCTLR4- cells. On the contrary, the trifluoromethyl-substituted compound with PTX synergistically improved the growth inhibition in both TNBC subtypes. The fluorescence titrations indicated that both compounds could bind with MD2 with good and comparable binding affinities. This was further supported by docking analysis, in which both compounds fit perfectly well and form some critical binding interactions with MD2, an essential lipid-binding accessory to TLR4 involved in activating the TLR-4/MyD88-dependent pathway.
    Matched MeSH terms: Structure-Activity Relationship
  15. Zafar MN, Butt AM, Chaudhry GE, Perveen F, Nazar MF, Masood S, et al.
    J Inorg Biochem, 2021 11;224:111590.
    PMID: 34507110 DOI: 10.1016/j.jinorgbio.2021.111590
    The bidentate N-(1-Alkylpyridin-4(1H)-ylidene)amide (PYA) pro-ligands [H2LBn][Cl]2 (2), and [H2LMe][TfO]2 (3) were prepared by simple alkylation reactions of the known compound, N,N-di(pyridin-4-yl)oxalamide (H2L, 1). The Pd(II) complexes, [Pd(LBn)2][Cl]2 (4), [Pd(LMe)2][Cl][TfO] (5), Pd(LBn)Cl2 (6) and Pd(LMe)Cl2 (7) were synthesized through reactions between these pro-ligands and suitable Pd(II) substrates in the presence of base. The molecular structures of 3 and 6 were obtained by single crystal X-ray structure determinations. Studies of the experimental and computational DNA binding interactions of the compounds 1-7 revealed that overall 4 and 6 have the largest values for the binding parameters Kb and ΔGbo. The results showed a good correlation with the steric and electronic parameters obtained by quantitative structure activity relationship (QSAR) studies. In-vitro cytotoxicity studies against four different cell lines showed that the human breast cancer cell lines MCF-7, T47D and cervical cancer cell line HeLa had either higher or similar sensitivities towards 4, 6 and 2, respectively, compared to cisplatin. In general, the cytotoxicity of the compounds, represented by IC50 values, decreased in the order 4 > 6 > 2 > 5 > 3 > 1 > 7 in cancer cell lines. Apoptosis contributed significantly to the cytotoxic effects of these anticancer agents as evaluated by apoptosis studies.
    Matched MeSH terms: Quantitative Structure-Activity Relationship
  16. Zaman K, Rahim F, Taha M, Sajid M, Hayat S, Nawaz M, et al.
    Bioorg Chem, 2021 10;115:105199.
    PMID: 34329995 DOI: 10.1016/j.bioorg.2021.105199
    Synthesis of quinoline analogs and their urease inhibitory activities with reference to the standard drug, thiourea (IC50 = 21.86 ± 0.40 µM) are presented in this study. The inhibitory activity range is (IC50 = 0.60 ± 0.01 to 24.10 ± 0.70 µM) which displayed that it is most potent class of urease inhibitor. Analog 1-9, and 11-13 emerged with many times greater antiurease potential than thiourea, in which analog 1, 2, 3, 4, 8, 9, and 11 (IC50 = 3.50 ± 0.10, 7.20 ± 0.20, 1.30 ± 0.10, 2.30 ± 0.10, 0.60 ± 0.01, 1.05 ± 0.10 and 2.60 ± 0.10 µM respectively) were appeared the most potent ones among the series. In this context, most potent analogs such as 1, 3, 4, 8, and 9 were further subjected for their in vitro antinematodal study against C. elegans to examine its cytotoxicity under positive control of standard drug, Levamisole. Consequently, the cytotoxicity profile displayed that analogs 3, 8, and 9 were found with minimum cytotoxic outline at higher concentration (500 µg/mL). All analogs were characterized through 1H NMR, 13C NMR and HR-EIMS. The protein-ligand binding interaction for most potent analogs was confirmed via molecular docking study.
    Matched MeSH terms: Structure-Activity Relationship
  17. Qazi SU, Naz A, Hameed A, Osra FA, Jalil S, Iqbal J, et al.
    Bioorg Chem, 2021 10;115:105209.
    PMID: 34364054 DOI: 10.1016/j.bioorg.2021.105209
    A series of semicarbazone, thiosemicarbazone, thiazole, and oxazole derivatives were designed, synthesized, and examined for monoamine oxidase inhibition using two isoforms, i.e., MAO-A and MAO-B. Among all the analogues, 3c and 3j possessed substantial activity against MAO-A with IC50 values of 5.619 ± 1.04 µM and 0.5781 ± 0.1674 µM, respectively. Whereas 3d and 3j were active against monoamine oxidase B with the IC50 values of 9.952 ± 1.831 µM and 3.5 ± 0.7 µM, respectively. Other derivatives active against MAO-B were 3c and 3g with the IC50 values of 17.67 ± 5.6 µM and 37.18 ± 2.485 µM. Moreover, molecular docking studies were achieved for the most potent compound (3j) contrary to human MAO-A and MAO-B. Kinetic studies were also performed for the most potent analogue to evaluate its mode of interaction with MAO-A and MAO-B.
    Matched MeSH terms: Structure-Activity Relationship
  18. Ahmad S, Usman Mirza M, Yean Kee L, Nazir M, Abdul Rahman N, Trant JF, et al.
    Chem Biol Drug Des, 2021 Oct;98(4):604-619.
    PMID: 34148292 DOI: 10.1111/cbdd.13914
    3CLpro is essential for SARS-CoV-2 replication and infection; its inhibition using small molecules is a potential therapeutic strategy. In this study, a comprehensive crystallography-guided fragment-based drug discovery approach was employed to design new inhibitors for SARS-CoV-2 3CLpro. All small molecules co-crystallized with SARS-CoV-2 3CLpro with structures deposited in the Protein Data Bank were used as inputs. Fragments sitting in the binding pocket (87) were grouped into eight geographical types. They were interactively coupled using various synthetically reasonable linkers to generate larger molecules with divalent binding modes taking advantage of two different fragments' interactions. In total, 1,251 compounds were proposed, and 7,158 stereoisomers were screened using Glide (standard precision and extra precision), AutoDock Vina, and Prime MMGBSA. The top 22 hits having conformations approaching the linear combination of their constituent fragments were selected for MD simulation on Desmond. MD simulation suggested 15 of these did adopt conformations very close to their constituent pieces with far higher binding affinity than either constituent domain alone. These structures could provide a starting point for the further design of SARS-CoV-2 3CLpro inhibitors with improved binding, and structures are provided.
    Matched MeSH terms: Structure-Activity Relationship
  19. Maniam S, Maniam S
    Int J Mol Sci, 2021 Sep 08;22(18).
    PMID: 34575883 DOI: 10.3390/ijms22189722
    Targeted chemotherapy has become the forefront for cancer treatment in recent years. The selective and specific features allow more effective treatment with reduced side effects. Most targeted therapies, which include small molecules, act on specific molecular targets that are altered in tumour cells, mainly in cancers such as breast, lung, colorectal, lymphoma and leukaemia. With the recent exponential progress in drug development, programmed cell death, which includes apoptosis and autophagy, has become a promising therapeutic target. The research in identifying effective small molecules that target compensatory mechanisms in tumour cells alleviates the emergence of drug resistance. Due to the heterogenous nature of breast cancer, various attempts were made to overcome chemoresistance. Amongst breast cancers, triple negative breast cancer (TNBC) is of particular interest due to its heterogeneous nature in response to chemotherapy. TNBC represents approximately 15% of all breast tumours, however, and still has a poor prognosis. Unlike other breast tumours, signature targets lack for TNBCs, causing high morbidity and mortality. This review highlights several small molecules with promising preclinical data that target autophagy and apoptosis to induce cell death in TNBC cells.
    Matched MeSH terms: Structure-Activity Relationship
  20. Gunasekharan M, Choi TI, Rukayadi Y, Mohammad Latif MA, Karunakaran T, Mohd Faudzi SM, et al.
    Molecules, 2021 Sep 01;26(17).
    PMID: 34500755 DOI: 10.3390/molecules26175314
    Bacterial infections are regarded as one of the leading causes of fatal morbidity and death in patients infected with diseases. The ability of microorganisms, particularly methicillin-resistant Staphylococcus aureus (MRSA), to develop resistance to current drugs has evoked the need for a continuous search for new drugs with better efficacies. Hence, a series of non-PAINS associated pyrrolylated-chalcones (1-15) were synthesized and evaluated for their potency against MRSA. The hydroxyl-containing compounds (8, 9, and 10) showed the most significant anti-MRSA efficiency, with the MIC and MBC values ranging from 0.08 to 0.70 mg/mL and 0.16 to 1.88 mg/mL, respectively. The time-kill curve and SEM analyses exhibited bacterial cell death within four hours after exposure to 9, suggesting its bactericidal properties. Furthermore, the docking simulation between 9 and penicillin-binding protein 2a (PBP2a, PDB ID: 6Q9N) suggests a relatively similar bonding interaction to the standard drug with a binding affinity score of -7.0 kcal/mol. Moreover, the zebrafish model showed no toxic effects in the normal embryonic development, blood vessel formation, and apoptosis when exposed to up to 40 µM of compound 9. The overall results suggest that the pyrrolylated-chalcones may be considered as a potential inhibitor in the design of new anti-MRSA agents.
    Matched MeSH terms: Structure-Activity Relationship
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links