Displaying publications 581 - 600 of 625 in total

Abstract:
Sort:
  1. Chan EW, Soh EY, Tie PP, Law YP
    Pharmacognosy Res, 2011 Oct;3(4):266-72.
    PMID: 22224051 DOI: 10.4103/0974-8490.89748
    BACKGROUND: The role of non-polymeric phenolic (NP) and polymeric tannin (PT) constituents in the antioxidant and antibacterial properties of six brands of green, black, and herbal teas of Camellia sinensis were investigated.

    MATERIALS AND METHODS: Total phenolic content (TPC) and ascorbic acid equivalent antioxidant capacity (AEAC) were assessed using the Folin-Ciocalteu and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, respectively. Minimum inhibitory dose (MID) against Gram-positive Micrococcus luteus, Staphylococcus aureus, and Bacillus cereus, and Gram-negative. Escherichia coli, Salmonella typhi, and Pseudomonas aeruginosa was assessed using the disc-diffusion method. Teas were extracted with hot water successively three times for one hour each time. The extracts were fractionated using Sephadex LH-20 column chromatography to obtain the NP and PT constituents.

    RESULTS: Extraction yields ranged from 12 to 23%. Yields of NP fractions (70-81%) were much higher than those of PT fractions (1-11%), suggesting that the former are the major tea components. Ranking of antioxidant properties of extracts was green tea>black tea>herbal tea. For all six teas, antioxidant properties of PT fractions were significantly higher than extracts and NP fractions. Extracts and fractions of all six teas showed no activity against the three Gram-negative bacteria. Green teas inhibited all three Gram-positive bacteria with S. aureus being the least susceptible. Black and herbal teas inhibited the growth of M. luteus and B. cereus, but not S. aureus. The most potent were the PT fractions of Boh Cameron Highlands and Ho Yan Hor with MID of 0.01 and 0.03 mg/disc against M. luteus.

    CONCLUSION: Results suggested that NP constituents are major contributors to the antioxidant and antibacterial properties of teas of C. sinensis. Although PT constituents have stronger antioxidant and antibacterial properties, they constitute only a minor component of the teas.

    Matched MeSH terms: Staphylococcus aureus
  2. Sasikumar G, Subramani A, Tamilarasan R, Rajesh P, Sasikumar P, Albukhaty S, et al.
    Molecules, 2023 Mar 24;28(7).
    PMID: 37049692 DOI: 10.3390/molecules28072931
    A new series of ternary metal complexes, including Co(II), Ni(II), Cu(II), and Zn(II), were synthesized and characterized by elemental analysis and diverse spectroscopic methods. The complexes were synthesized from respective metal salts with Schiff's-base-containing amino acids, salicylaldehyde derivatives, and heterocyclic bases. The amino acids containing Schiff bases showed promising pharmacological properties upon complexation. Based on satisfactory elemental analyses and various spectroscopic techniques, these complexes revealed a distorted, square pyramidal geometry around metal ions. The molecular structures of the complexes were optimized by DFT calculations. Quantum calculations were performed with the density functional method for which the LACVP++ basis set was used to find the optimized molecular structure of the complexes. The metal complexes were subjected to an electrochemical investigation to determine the redox behavior and oxidation state of the metal ions. Furthermore, all complexes were utilized for catalytic assets of a multi-component Mannich reaction for the preparation of -amino carbonyl derivatives. The synthesized complexes were tested to determine their antibacterial activity against E. coli, K. pneumoniae, and S. aureus bacteria. To evaluate the cytotoxic effects of the Cu(II) complexes, lung cancer (A549), cervical cancer (HeLa), and breast cancer (MCF-7) cells compared to normal cells, cell lines such as human dermal fibroblasts (HDF) were used. Further, the docking study parameters were supported, for which it was observed that the metal complexes could be effective in anticancer applications.
    Matched MeSH terms: Staphylococcus aureus
  3. Karunanidhi A, Ghaznavi-Rad E, Jeevajothi Nathan J, Abba Y, van Belkum A, Neela V
    PMID: 28321262 DOI: 10.1155/2017/1914732
    The in vivo antibacterial and burn wound healing potency of Persian shallot bulbs (Allium stipitatum) were explored in a mice burn model infected with methicillin-resistant Staphylococcus aureus (MRSA). Hexane (ASHE) and dichloromethane (ASDE) extracts were tested. Female BALB/c mice were inflicted with third-degree thermal injury followed by infection with MRSA. ASHE and ASDE formulated with simple ointment base (SOB) at concentrations of 1%, 2%, and 5% (w/w) were topically applied to burn wounds twice a day for 20 days. Silver sulfadiazine (1%) served as drug positive control. Microbiological analysis was carried out on 1, 2, 3, 4, and 5 days postwounding (dpw) and histopathological analysis at the end of the experiment (20 dpw). Both ointments demonstrated strong antibacterial activity with complete elimination of MRSA at 48-72 h after infection. The rate of wound contraction was higher (95-100%) in mice groups treated with ASHE and ASDE ointments after 15 dpw. Histological analysis revealed significant increase (p < 0.05) in epithelialization and collagenation in treated groups. The ASHE and ASDE were found to be relatively noncytotoxic and safe to Vero cell line (383.4 μg mL(-1); 390.6 μg mL(-1)), suggesting the extracts as safe topical antibacterial as well as promising alternatives in managing thermal injuries.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus
  4. Bharathi D, Ranjithkumar R, Nandagopal JGT, Djearamane S, Lee J, Wong LS
    Environ Res, 2023 Dec 01;238(Pt 1):117109.
    PMID: 37696324 DOI: 10.1016/j.envres.2023.117109
    The synthesis of polymer-encapsulated metal nanoparticles is a growing field of area due to their long-term uses in the development of new technologies. The present study describes the synthesis of chitosan/silver nanocomposite using kaempferol for anticancer and bactericidal activity. The formation of Kf-CS/Ag nanocomposite was confirmed by the development of a brown color and UV-absorbance around 438 nm. The IR study was utilized to determine the existence of Kf and CS in the synthesized nanocomposite. TEM analysis demonstrated that the synthesized nanocomposite have a predominantly uniform spherical shape and size ranges 7-10 nm. EDX spectrum showed the existence of Ag, C, and N elements in the nanocomposite material. Further, Kf-CS/Ag nanocomposite exhibited potential in vitro inhibitory property against triple-negative breast cancer (TNBC) cells and their IC50 values was found to be 53 μg/mL. Moreover, fluorescent assays such as DAPI and AO/EtBr confirmed the apoptosis induction ability of Kf-CS/Ag nanocomposite in MDA-MB-231 cells. The synthesized Kf-CS/Ag nanocomposite showed significant and dose-depended antibacterial property against S. aureus and P. aeruginosa. Thus, the obtained findings demonstrated that the synthesized nanocomposite can be potentially used to improve human health as biocidal nanocomposite in biomedical sectors.
    Matched MeSH terms: Staphylococcus aureus
  5. Hitam SAS, Hassan SA, Maning N
    Malays J Med Sci, 2019 Jan;26(1):107-114.
    PMID: 30914898 MyJurnal DOI: 10.21315/mjms2019.26.1.10
    Background: Foot infection is a major complication of diabetes mellitus (DM) and its agents are usually polymicrobial. This study aims to describe the agent and determine the association between polymicrobial infections and the severity of diabetic foot infections (DFI) and their outcomes.

    Methods: This retrospective cohort study was conducted during one year and it involved 104 patients. Their records were reviewed and assessed. The causative agents and its sensitivity pattern were noted. The results were presented as descriptive statistic and analysed.

    Results: A total of 133 microorganisms were isolated with 1.28 microorganisms per lesion. The microorganism isolated were 62% (n = 83) GN (Gram-negative) and 38% (n = 50) GP (Gram-positive). GN microorganisms include Pseudomonas spp (28%), Proteus spp (11%), Klebsiella spp (8%) and E. coli (4%). Staphylococcus aureus (54%) was predominant among GP, followed by Group B Streptococci (26%) and Enterococcus spp (6%). Thirty patients (28.8%) had polymicrobial infections. The association between the quantity of microorganisms and severity of DFI was significant. Among severe DFI cases, 77.8% with polymicrobial microorganisms underwent amputation compared to 33.3% with monomicrobial infection.

    Conclusion: GN microorganisms were predominantly isolated from DFIs and remained sensitive to widely used agents. Polymicrobial infections were associated with DFI severity.
    Matched MeSH terms: Staphylococcus aureus
  6. Yaqubi AK, Astuti SD, Zaidan AH, Syahrom A, Nurdin DZI
    Lasers Med Sci, 2024 Jan 26;39(1):47.
    PMID: 38277009 DOI: 10.1007/s10103-024-03991-7
    Living organisms, particularly humans, frequently encounter microorganisms such as bacteria, fungi, and viruses in their surroundings. Silver nanoparticles are widely used in biomedical devices because of their antibacterial and antiviral properties. The study evaluates the efficacy of red laser and silver nanoparticles from grape seed extract (AgNPs-GSE) in reducing Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria, which cause infections. The sample comprised three groups: a control group without laser irradiation (T0), Escherichia coli samples (A1 and A2) irradiated with a 405-nm diode laser at different times and concentrations of silver nanoparticles, and Staphylococcus aureus samples (A3 and A4) illuminated with a 405-nm diode laser at different times and concentrations. Bacteria in groups A2 and A4 were treated with a photosensitizer (PS) made from grape seed extracts, incubated for 10 min, and then irradiated for 90, 120, 150, and 180 s. The samples were cultured on TSA media, set at 37 °C, counted using a Quebec colony counter, and analyzed using ANOVA and Tukey tests with a significance level of p 
    Matched MeSH terms: Staphylococcus aureus
  7. Ravikumar OV, Marunganathan V, Kumar MSK, Mohan M, Shaik MR, Shaik B, et al.
    Mol Biol Rep, 2024 Feb 24;51(1):352.
    PMID: 38400866 DOI: 10.1007/s11033-024-09289-9
    BACKGROUND: Oral diseases are often attributed to dental pathogens such as S. aureus, S. mutans, E. faecalis, and C. albicans. In this research work, a novel approach was employed to combat these pathogens by preparing zinc oxide nanoparticles (ZnO NPs) capped with cinnamic acid (CA) plant compounds.

    METHODS: The synthesized ZnO-CA NPs were characterized using SEM, FTIR, and XRD to validate their composition and structural features. The antioxidant activity of ZnO-CA NPs was confirmed using DPPH and ABTS free radical scavenging assays. The antimicrobial effects of ZnO-CA NPs were validated using a zone of inhibition assay against dental pathogens. Autodock tool was used to identify the interaction of cinnamic acid with dental pathogen receptors.

    RESULTS: ZnO-CA NPs exhibited potent antioxidant activity in both DPPH and ABTS assays, suggesting their potential as powerful antioxidants. The minimal inhibitory concentration of ZnO-CA NPs against dental pathogens was found 25 µg/mL, indicating their effective antimicrobial properties. Further, ZnO-CA NPs showed better binding affinity and amino acid interaction with dental pathogen receptors. Also, the ZnO-CA NPs exhibited dose-dependent (5 µg/mL, 15 µg/mL, 25 µg/mL, and 50 µg/mL) anticancer activity against Human Oral Epidermal Carcinoma KB cells. The mechanism of action of apoptotic activity of ZnO-CA NPs on the KB cells was identified through the upregulation of BCL-2, BAX, and P53 genes.

    CONCLUSIONS: This research establishes the potential utility of ZnO-CA NPs as a promising candidate for dental applications. The potent antioxidant, anticancer, and effective antimicrobial properties of ZnO-CA NPs make them a valuable option for combating dental pathogens.

    Matched MeSH terms: Staphylococcus aureus
  8. Khosravi Y, Ling LC, Loke MF, Shailendra S, Prepageran N, Vadivelu J
    Eur Arch Otorhinolaryngol, 2014 May;271(5):1227-33.
    PMID: 23880921 DOI: 10.1007/s00405-013-2637-3
    This study aims to assess the association between microbial composition, biofilm formation and chronic otorhinolaryngologic disorders in Malaysia. A total of 45 patients with chronic rhinosinusitis, chronic tonsillitis and chronic suppurative otitis media and 15 asymptomatic control patients were studied. Swab samples were obtained from these subjects. Samples were studied by conventional microbiological culturing, PCR-based microbial detection and Confocal Laser Scanning Microscopy (CLSM). Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae, coagulase-negative staphylococci (CoNS) and other Streptococcus species were detected in subjects of both patient and control groups. Biofilm was observed in approximately half of the smear prepared from swab samples obtained from subjects of the patient group. Most of these were polymicrobial biofilms. S. aureus biofilm was most prevalent among nasal samples while H. influenzae biofilm was more common among ear and throat samples. Results from this study supported the hypothesis that chronic otorhinolaryngologic diseases may be biofilm related. Due to the presence of unculturable bacteria in biofilms present in specimens from ear, nose and throat, the use of molecular methods in combination with conventional microbiological culturing has demonstrated an improvement in the detection of bacteria from such specimens in this study.
    Matched MeSH terms: Staphylococcus aureus/physiology
  9. Karunakaran R, Halim HA, Ng KP, Hanifah YA, Chin E, Jaafar FL, et al.
    Eur Rev Med Pharmacol Sci, 2011 Nov;15(11):1343-6.
    PMID: 22195371
    Tsukamurella spp. are a rare but important cause of intravascular catheter-related bacteremia in immunocompromised patients. The organism is an aerobic, Gram-positive, weakly acid-fast bacillus that is difficult to differentiate using standard laboratory methods from other aerobic actinomycetales such as Nocardia spp., Rhododoccus spp., Gordonia spp., and the rapid growing Mycobacterium spp. We report a case of Tsukamurella tyrosinosolvens catheter-related bacteremia in a 51-year-old haematology patient who responded to treatment with imipenem and subsequent line removal. 16srRNA sequencing allowed for the prompt identification of this organism.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  10. Shameli K, Bin Ahmad M, Zargar M, Yunus WM, Ibrahim NA, Shabanzadeh P, et al.
    Int J Nanomedicine, 2011;6:271-84.
    PMID: 21499424 DOI: 10.2147/IJN.S16043
    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24-1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28-9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  11. Baskaran S, Nahulan T, Kumar AS
    Med J Malaysia, 2004 Dec;59 Suppl F:72-4.
    PMID: 15941170
    This is the first time we encountered a peculiar case of osteomyelitis complicating a closed fracture. The patient was a 38 year-old lady who presented just like any other patient with a closed fracture of the right femur. Intraoperatively we were surprised to find pus from the fracture site. This not only changed the surgical management but altered the subsequent outcome as well.
    Matched MeSH terms: Staphylococcus aureus/isolation & purification
  12. Boldbaatar D, Gunasekera S, El-Seedi HR, Göransson U
    J Nat Prod, 2015 Nov 25;78(11):2545-51.
    PMID: 26509914 DOI: 10.1021/acs.jnatprod.5b00463
    The Ricinus communis biomarker peptides RCB-1 to -3 comprise homologous sequences of 19 (RCB-1) or 18 (RCB-2 and -3) amino acid residues. They all include four cysteine moieties, which form two disulfide bonds. However, neither the 3D structure nor the biological activity of any of these peptides is known. The synthesis of RCB-1, using microwave-assisted, Fmoc-based solid-phase peptide synthesis, and a method for its oxidative folding are reported. The tertiary structure of RCB-1, subsequently established using solution-state NMR, reveals a twisted loop fold with antiparallel β-sheets reinforced by the two disulfide bonds. Moreover, RCB-1 was tested for antibacterial, antifungal, and cytotoxic activity, as well as in a serum stability assay, in which it proved to be remarkably stable.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  13. Hussain MA, Shah A, Jantan I, Shah MR, Tahir MN, Ahmad R, et al.
    Int J Nanomedicine, 2015;10:2079-88.
    PMID: 25844038 DOI: 10.2147/IJN.S75874
    Polysaccharides are attracting the vigil eye of researchers in order to design the green synthesis of silver nanoparticles (Ag NPs) of diverse size, shape, and application. We report an environmentally friendly method to synthesize Ag NPs where no physical reaction conditions were employed. Hydroxypropylcellulose (HPC) was used as a template nanoreactor, stabilizer, and capping agent to obtain Ag NPs. Different concentrations of AgNO3 solutions (50 mmol, 75 mmol, and 100 mmol) were mixed with a concentrated aqueous solution of HPC and the progress of the reaction was monitored by noting color changes of the reaction mixture at different reaction times for up to 24 hours. Characteristic ultraviolet-visible spectroscopy (UV/Vis) absorption bands of Ag NPs were observed in the range of 388-452 nm. The morphology of the Ag NPs was studied by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy. The TEM images confirmed that the size of the Ag NPs was in the range of 25-55 nm. Powder X-ray diffraction studies showed that the crystal phase of the Ag NPs was face-centered cubic. The as-prepared Ag NPs were found to be stable, and no changes in size and morphology were observed after storage in HPC thin films over 1 year, as indicated by UV/Vis spectra. So, the present work furnishes a green and economical strategy for the synthesis and storage of stable Ag NPs. As-synthesized Ag NPs showed significant antimicrobial activity against different bacterial (Escherichia coli, Staphylococcus epidermidis, S. aureus, Bacillus subtilis, Pseudomonas aeruginosa) and fungal strains (Actinomycetes and Aspergillus niger).
    Matched MeSH terms: Staphylococcus aureus/drug effects
  14. Permana D, Lajis NH, Mackeen MM, Ali AM, Aimi N, Kitajima M, et al.
    J Nat Prod, 2001 Jul;64(7):976-9.
    PMID: 11473441
    Two new prenylated compounds, the benzoquinone atrovirinone (1) and the depsidone atrovirisidone (2), were isolated from the roots of Garcinia atroviridis. Their structures were determined on the basis of the analysis of spectroscopic data. While compound 2 showed some cytotoxicity against HeLa cells, both compounds 1 and 2 were only mildly inhibitory toward Bacillus cereus and Staphylococcus aureus.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  15. Bayrami A, Ghorbani E, Rahim Pouran S, Habibi-Yangjeh A, Khataee A, Bayrami M
    Ultrason Sonochem, 2019 Nov;58:104613.
    PMID: 31450359 DOI: 10.1016/j.ultsonch.2019.104613
    The leaf extract of a medicinally important plant, watercress (Nasturtium officinale), was obtained through an ultrasound-facilitated method and utilized for the preparation of ZnO nanoparticles via a joint ultrasound-microwave assisted procedure. The characteristics of the extract enriched nanoparticles (Ext/ZnO) were determined by SEM, TEM, XRD, EDX, BET, FTIR, TGA, and UV-Vis DRS analyses and compared to that of ZnO prepared in the absence of the extract (ZnO). The presence of carbon and carbonaceous bonds, changes in the morphology, size, band gap energy, and weight-decay percentage were a number of differences between ZnO and Ext/ZnO that confirmed the link of extract over nanoparticles. Ext/ZnO, watercress leaf extract, ZnO, and insulin therapies were administrated to treat alloxan-diabetic Wister rats and their healing effectiveness results were compared to one another. The serum levels of the main diabetic indices such as insulin, fasting blood glucose, and lipid profile (total triglyceride, total cholesterol, and high-density lipoprotein cholesterol) were estimated for healthy, diabetic, and the rats rehabilitated with the studied therapeutic agents. The watercress extract-enriched ZnO nanoparticles offered the best performance and suppressed the diabetic status of rats. Moreover, both ZnO samples satisfactory inhibited the activities of Staphylococcus aureus and Escherichia coli bacteria. Based on the results, the application of Nasturtium officinale leaf extract can strongly empower ZnO nanoparticles towards superior antidiabetic and enhanced antibacterial activities.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  16. Yuan X, Amarnath Praphakar R, Munusamy MA, Alarfaj AA, Suresh Kumar S, Rajan M
    Carbohydr Polym, 2019 Feb 15;206:1-10.
    PMID: 30553301 DOI: 10.1016/j.carbpol.2018.10.098
    Natural polymer guar gum has one of the highest viscosities in water solution and hence, these are significantly used in pharmaceutical applications. Guar gum inter-connected micelles as a new carrier has been developed for poor water soluble rifampicin drug. The hydrogel inter-connected micelle core was formulated as a hydrophilic inner and hydrophobic outer core by using guar gum/chitosan/polycaprolactone and the carrier interaction with rifampicin was confirmed by FT-IR. The morphological observations were carried out through TEM, SEM and AFM analysis. The encapsulation efficiency and in-vitro drug release behavior of prepared hydrogel based micelle system was analyzed by UV-vis spectrometry. The anti-bacterial activity against K. pneumoniae and S. aureus was studied by observing their ruptured surface by SEM. The cytotoxicity study reveals that the pure polymeric system has no toxic effect whereas drug loaded ones showed superior activity against THP-1 cells. From the cell apoptosis analyses, the apoptosis was carried out in a time dependent manner. The cell uptake behavior was also observed in THP-1 cells which indicate that the hydrogel based micelle system is an excellent material for the mucoadhesive on intracellular alveolar macrophage treatment.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  17. Chendran P, Seng Fai T, Wan Abdul Halim WH, Md Din N
    J Glaucoma, 2019 10;28(10):e162-e164.
    PMID: 31368915 DOI: 10.1097/IJG.0000000000001334
    Ocular pyogenic granuloma is a benign tumor seen after ocular insult secondary to ocular surgeries, trauma or infection. Although benign, intervention is sometimes necessary. Previous authors have reported pyogenic granuloma formation following oculoplastic surgeries. We report a pyogenic granuloma after an Ahmed glaucoma valve implantation. A 65-year-old gentleman presented with right eye redness associated with pain and swelling ~2 months after Ahmed glaucoma valve implantation. Examination found a sessile growth on the tube extruding puss with signs of endophthalmitis. The glaucoma drainage device was explanted and culture results grew Staphylococcus aureus. This article discusses the formation of pyogenic granuloma on a glaucoma drainage device and its management.
    Matched MeSH terms: Staphylococcus aureus/isolation & purification*
  18. Lee ML, Tan NH, Fung SY, Sekaran SD
    PMID: 21059402 DOI: 10.1016/j.cbpc.2010.11.001
    The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  19. Ong JS, Taylor TD, Wong CB, Khoo BY, Sasidharan S, Choi SB, et al.
    J Biotechnol, 2019 Jul 20;300:20-31.
    PMID: 31095980 DOI: 10.1016/j.jbiotec.2019.05.006
    Increasing levels of antibiotic resistance in pathogens, including Staphylococcus aureus, remains a serious problem for public health, leading to the need for better alternative antimicrobial strategies. The antimicrobial proteins produced by Lactobacillus plantarum USM8613 attributed to its anti-staphylococcal activity were identified as extracellular transglycosylase and glyceraldehyde-3-phosphate dehydrogenase (GADPH), both with different mechanisms of action. Extracellular transglycosylase, which contains a LysM domain, exerts a cell wall-mediated killing mechanism, while GADPH penetrates into S. aureus cells and subsequently induces the overexpression of autolysis regulators, resulting in S. aureus autolysis. Both extracellular transglycosylase and GADPH exert anti-inflammatory effects in S. aureus-infected HaCaT cells by reducing the expression and production of TLR-2, hBDs and various pro-inflammatory cytokines (IL-1α, IL-1β, IL-6, TNF-α, and IL-8). Taken together, extracellular transglycosylase and GADPH produced by L. plantarum USM8613 could potentially be applied as an alternative therapeutic agent to treat S. aureus skin infections and promote skin health.
    Matched MeSH terms: Staphylococcus aureus/drug effects*
  20. Khan MUA, Raza MA, Razak SIA, Abdul Kadir MR, Haider A, Shah SA, et al.
    J Tissue Eng Regen Med, 2020 10;14(10):1488-1501.
    PMID: 32761978 DOI: 10.1002/term.3115
    It is a challenging task to develop active biomacromolecular wound dressing materials that are biocompatible and possesses antibacterial properties against the bacterial strains that cause severe skin disease. This work is focused on the preparation of a biocompatible and degradable hydrogel for wound dressing application using arabinoxylan (ARX) and guar gum (GG) natural polymers. Fourier transform infrared spectroscopy (FT-IR) confirmed that both ARX and GG interacted well with each other, and their interactions further increased with the addition of crosslinker tetraethyl orthosilicate. Scanning electron microscope (SEM) micrographs showed uniform porous morphologies of the hydrogels. The porous morphologies and uniform interconnected pores are attributed to the increased crosslinking of the hydrogel. Elastic modulus, tensile strength, and fracture strain of the hydrogels significantly improved (from ATG-1 to ATG-4) with crosslinking. Degradability tests showed that hydrogels lost maximum weight in 7 days. All the samples showed variation in swelling with pH. Maximum swelling was observed at pH 7. The hydrogel samples showed good antibacterial activity against Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) in PBS, good drug release profile (92% drug release), and nontoxic cellular behavior. The cells not only retained their cylindrical morphologies onto the hydrogel but were also performing their normal activities. It is, therefore, believed that as-developed hydrogel could be a potential material for wound dressing application.
    Matched MeSH terms: Staphylococcus aureus/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links