METHODS: We performed a randomized, double-blind, placebo-controlled trial of consecutive adults with biopsy-proven NASH and a NAFLD activity score (NAS) of 4 or more at a tertiary care hospital in Kuala Lumpur, Malaysia, from November 2012 through August 2014. Patients were randomly assigned to groups given silymarin (700 mg; n = 49 patients) or placebo (n = 50 patients) 3 times daily for 48 weeks. After this 48-week period, liver biopsies were repeated. The primary efficacy outcome was a decrease of 30% or more in NAS; findings from 48-week liver biopsies were compared with those from the baseline biopsy. Secondary outcomes included changes in steatosis, lobular inflammation, hepatocyte ballooning, NAS and fibrosis score, and anthropometric measurements, as well as glycemic, lipid, and liver profiles and liver stiffness measurements.
RESULTS: The percentage of patients achieving the primary efficacy outcome did not differ significantly between the groups (32.7% in the silymarin group vs 26.0% in the placebo group; P = .467). A significantly higher proportion of patients in the silymarin group had reductions in fibrosis based on histology (reductions of 1 point or more; 22.4%) than did the placebo group (6.0%; P = .023), and based on liver stiffness measurements (decrease of 30% or more; 24.2%) than did the placebo group (2.3%; P = .002). The silymarin group also had significant reductions in mean aspartate aminotransferase to platelet ratio index (reduction of 0.14, P = .011 compared with baseline), fibrosis-4 score (reduction of 0.20, P = .041 compared with baseline), and NAFLD fibrosis score (reduction of 0.30, P < .001 compared with baseline); these changes were not observed in the placebo group (reduction of 0.07, P = .154; increase of 0.18, P = .389; and reduction of 0.05, P = .845, respectively). There was no significant difference between groups in number of adverse events; adverse events that occurred were not attributed to silymarin.
CONCLUSIONS: In a randomized trial of 99 patients, we found that silymarin (700 mg, given 3 times daily for 48 weeks) did not reduce NAS scores by 30% or more in a significantly larger proportion of patients with NASH than placebo. Silymarin may reduce liver fibrosis but this remains to be confirmed in a larger trial. It appears to be safe and well tolerated. ClinicalTrials.gov: NCT02006498.
METHODS: Among several species, Typhonium blumei, T. flagelliforme, T. divaricatum and T. giganteum were extensively studied due to the presence of a class of secondary metabolites. All the available reports on Typhonium were included and discussed in this article.
RESULTS: Until now several groups of compounds, namely amino acids (1, 2), cinnamic acid (3), fatty acids (4-14), glycerol derivatives (15-18) and cerebrosides (19-34), flavonoids (35), hydantoins (36-38), lignin monomers (39-44), nucleobases (45-48), pheophorbides (49-52), phthalate (53), terpene and steroids (54-59) and vitamins (60, 61) were isolated and characterized from Typhonium. These phytochemicals were investigated for their anticancer properties, and results confirmed the promising growth inhibitory effect and anticancer activities against human lung, breast, prostate and colon cancer cells. The anticancer activity of these compounds appears to be mediated through the induction of apoptotic cell death. These phytochemicals further reported to exhibit other pharmacological efficacies, including anti-inflammatory, antioxidant, antiviral, anti-allergic, neuroprotective and hepato-protective properties.
CONCLUSION: This is the first review to summarize the anticancer properties of all isolated compounds of Typhonium genus with confirmed chemical structures. Further advanced studies are necessary to establish the detailed signaling pathways that are involved in the anticancer property of the compounds.
OBJECTIVE: The current review was aimed to present a comprehensive overview and critical appraisal of majorly employed neuroimaging techniques for rational diagnosis and effective monitoring of effectiveness of employed therapeutic intervention for NPH. Moreover, a critical overview of recent developments and utilization of pharmacological agents for treatment of hydrocephalus has also been appraised.
RESULTS: Considering the complications associated with the shunt-based surgical operations, consistent monitoring of shunting via neuroimaging techniques hold greater clinical significance. Despite having extensive applicability of MRI and CT scan, these conventional neuroimaging techniques are associated with misdiagnosis or several health risks to patients. Recent advances in MRI (i.e., Sagittal-MRI, coronal-MRI, Time-SLIP (time-spatial-labeling-inversion-pulse), PC-MRI and diffusion-tensor-imaging (DTI)) have shown promising applicability in diagnosis of NPH. Having associated with several adverse effects with surgical interventions, non-invasive approaches (pharmacological agents) have earned greater interest of scientists, medical professional, and healthcare providers. Amongst pharmacological agents, diuretics, isosorbide, osmotic agents, carbonic anhydrase inhibitors, glucocorticoids, NSAIDs, digoxin, and gold-198 have been employed for management of NPH and prevention of secondary sensory/intellectual complications.
CONCLUSION: Employment of rational diagnostic tool and therapeutic modalities avoids misleading diagnosis and sophisticated management of hydrocephalus by efficient reduction of cerebrospinal fluid (CSF) production, reduction of fibrotic and inflammatory cascades secondary to meningitis and hemorrhage, and protection of brain from further deterioration.
DESIGN: Network meta-analysis.
DATA SOURCES: PubMed, Embase, Scopus, Cochrane Library and Web of Science from database inception to January 2022.
ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Randomised controlled trials (RCTs) comparing exercise therapy with oral NSAIDs and paracetamol directly or indirectly in knee or hip OA.
RESULTS: A total of n=152 RCTs (17 431 participants) were included. For pain relief, there was no difference between exercise and oral NSAIDs and paracetamol at or nearest to 4 (standardised mean difference (SMD)=-0.12, 95% credibility interval (CrI) -1.74 to 1.50; n=47 RCTs), 8 (SMD=0.22, 95% CrI -0.05 to 0.49; n=2 RCTs) and 24 weeks (SMD=0.17, 95% CrI -0.77 to 1.12; n=9 RCTs). Similarly, there was no difference between exercise and oral NSAIDs and paracetamol in functional improvement at or nearest to 4 (SMD=0.09, 95% CrI -1.69 to 1.85; n=40 RCTs), 8 (SMD=0.06, 95% CrI -0.20 to 0.33; n=2 RCTs) and 24 weeks (SMD=0.05, 95% CrI -1.15 to 1.24; n=9 RCTs).
CONCLUSIONS: Exercise has similar effects on pain and function to that of oral NSAIDs and paracetamol. Given its excellent safety profile, exercise should be given more prominence in clinical care, especially in older people with comorbidity or at higher risk of adverse events related to NSAIDs and paracetamol.CRD42019135166.