METHODS: We collected a total of 125 bat flies from three Pteropus species (Pteropus vampyrus, P. hypomelanus, and P. lylei) from eight localities in Malaysia, Cambodia, and Vietnam. We identified specimens morphologically and then sequenced three mitochondrial DNA gene fragments (CoI, CoII, cytB; 1744 basepairs total) from a subset of 45 bat flies. We measured genetic diversity, molecular variance, and population genetic subdivision (FST), and used phylogenetic and haplotype network analyses to quantify parasite genetic structure across host species and localities.
RESULTS: All flies were identified as Cyclopodia horsfieldi with the exception of two individuals of Eucampsipoda sundaica. Low levels of population genetic structure were detected between populations of Cyclopodia horsfieldi from across a wide geographic range (~1000 km), and tests for isolation by distance were rejected. AMOVA results support a lack of geographic and host-specific population structure, with molecular variance primarily partitioned within populations. Pairwise FST values from flies collected from island populations of Pteropus hypomelanus in East and West Peninsular Malaysia supported predictions based on previous studies of host genetic structure.
CONCLUSIONS: The lack of population genetic structure and morphological variation observed in Cyclopodia horsfieldi is most likely due to frequent contact between flying fox species and subsequent high levels of parasite gene flow. Specifically, we suggest that Pteropus vampyrus may facilitate movement of bat flies between the three Pteropus species in the region. We demonstrate the utility of parasite genetics as an additional layer of information to measure host movement and interspecific host contact. These approaches may have wide implications for understanding zoonotic, epizootic, and enzootic disease dynamics. Bat flies may play a role as vectors of disease in bats, and their competence as vectors of bacterial and/or viral pathogens is in need of further investigation.
METHODS AND RESULTS: A total of 181 strains of Strep. agalactiae isolated from red hybrid tilapia (Oreochromis sp.) and golden pompano (Trachinotus blochii) were characterized using RAPD and REP-PCR techniques. Both the fingerprinting techniques generated reproducible band patterns, differing in the number and molecular mass amplicons. The RAPD technique displayed greater discriminatory power by its production of more complex binding pattern and divided all the strains into 13 groups, compared to 9 by REP-PCR technique. Both techniques showed the availability to differentiate the genetic profiles of the strains according to their geographical location of origin. Three strains of Strep. agalactiae that were recovered from golden pompano showed a genetic dissimilarity from the strains isolated from red hybrid tilapia, while the strain of ATCC 27956 that recovered from bovine displayed a unique profile for both methods.
CONCLUSIONS: Both techniques possess excellent discriminative capabilities and can be used as a rapid means of comparing Strep. agalactiae strains for future epidemiological investigation.
SIGNIFICANCE AND IMPACT OF THE STUDY: Framework as the guideline in traceability of this disease and in the search for potential local vaccine candidates for streptococcosis in this country.
MATERIALS AND METHODS: A total of 175 subjects comprising 84 patients and 91 healthy individuals were recruited. Multiplex PCR was optimized to co-amplify DYS388, DYS435, DYS437, and DYS439 loci. All samples were genotyped for alleles of four DYS loci using a Genetic Analysis System.
RESULTS: Of all DYS loci, allele 10 (A) of DYS388 had a significantly lower incidence of disease in compare with other alleles of this locus, while a higher incidence of disease was found among males who had either allele 12 (C) of DYS388 or allele 14 (E) of DYS439. Moreover, a total of 47 different haplotypes comprising different alleles of four DYS loci were found among the whole study samples, of which haplotypes AABC and CAAA showed a lower and higher frequency among cases than controls, respectively.
CONCLUSIONS: It is likely that Malaysian males who belong to Y-lineages with either allele 12 of DYS388, allele 14 of DYS439, or haplotype CAAA are more susceptible to develop prostate cancer, while those belonging to lineages with allele 10 of DYS388 or haplotype AABC are more resistant to the disease.