Displaying publications 621 - 640 of 9860 in total

Abstract:
Sort:
  1. Kwi NK, Hing NK
    Med J Malaysia, 1974 Jun;28(4):287-9.
    PMID: 4278824
    Matched MeSH terms: Blood Transfusion, Intrauterine/methods*; Fluoroscopy/methods
  2. Gantait S, El-Dawayati MM, Panigrahi J, Labrooy C, Verma SK
    Appl Microbiol Biotechnol, 2018 Oct;102(19):8229-8259.
    PMID: 30054703 DOI: 10.1007/s00253-018-9232-x
    Date palm (Phoenix dactylifera L.) is one of the most important fruit trees that contribute a major part to the economy of Middle East and North African countries. It is quintessentially called "tree of life" owing to its resilience to adverse climatic conditions, along with manifold nutritional-cum-medicinal attributes that comes from its fruits and other plant parts. Being a tree with such immense utility, it has gained substantial attention of tree breeders for its genetic advancement via in vitro biotechnological interventions. Herein, an extensive review of biotechnological research advances in date palm has been consolidated as one of the major research achievements during the past two decades. This article compares the different biotechnological techniques used in this species such as: tissue and organ culture, bioreactor-mediated large-scale propagation, cell suspension culture, embryogenic culture, protoplast culture, conservation (for short- and long-term) of germplasms, in vitro mutagenesis, in vitro selection against biotic and abiotic stresses, secondary metabolite production in vitro, and genetic transformation. This review provides an insight on crop improvement and breeding programs for improved yield and quality fruits; besides, it would undeniably facilitate the tissue culture-based research on date palm for accelerated propagation and enhanced production of quality planting materials, along with conservation and exchange of germplasms, and genetic engineering. In addition, the unexplored research methodologies and major bottlenecks identified in this review should be contemplated on in near future.
    Matched MeSH terms: Biotechnology/methods; Cell Culture Techniques/methods
  3. Ismail MA, Ahmad A, Mohammad JA, Fakri NMRM, Nor MZM, Pa MNM
    BMC Med Educ, 2019 Jun 25;19(1):230.
    PMID: 31238926 DOI: 10.1186/s12909-019-1658-z
    BACKGROUND: Gamification is an increasingly common phenomenon in education. It is a technique to facilitate formative assessment and to promote student learning. It has been shown to be more effective than traditional methods. This phenomenological study was conducted to explore the advantages of gamification through the use of the Kahoot! platform for formative assessment in medical education.

    METHODS: This study employed a phenomenological design. Five focus groups were conducted with medical students who had participated in several Kahoot! sessions.

    RESULTS: Thirty-six categories and nine sub-themes emerged from the focus group discussions. They were grouped into three themes: attractive learning tool, learning guidance and source of motivation.

    CONCLUSIONS: The results suggest that Kahoot! sessions motivate students to study, to determine the subject matter that needs to be studied and to be aware of what they have learned. Thus, the platform is a promising tool for formative assessment in medical education.

    Matched MeSH terms: Education, Medical, Undergraduate/methods*; Educational Measurement/methods*
  4. Taniselass S, Md Arshad MK, Gopinath SCB
    Mater Sci Eng C Mater Biol Appl, 2019 Mar;96:904-914.
    PMID: 30606604 DOI: 10.1016/j.msec.2018.11.062
    Reduction of graphene oxide becomes an alternative way to produce a scalable graphene and the resulting nanomaterial namely reduced graphene oxide (rGO) has been utilized in a wide range of potential applications. In this article, the level of green reduction strategies, especially the solution-based reduction methods are overviewed based on recent progression, to get insights towards biomedical applications. The degrees of gaining tips with the solution-based green reduction methods, conditions, complexity and the resulting rGO characteristics have been elucidated comparatively. Moreover, the application of greenly produced rGO in electrochemical biosensors has been elucidated as well as their electrical performance in term of linear range and limit of detections for various healthcare biological analytes. In addition, the characterization scheme for graphene-based materials and the analyses on the reduction especially for the solution-based green reduction methods are outlined for the future endeavours.
    Matched MeSH terms: Biosensing Techniques/methods*; Electrochemical Techniques/methods*
  5. Shuwandy ML, Zaidan BB, Zaidan AA, Albahri AS
    J Med Syst, 2019 Jan 06;43(2):33.
    PMID: 30612191 DOI: 10.1007/s10916-018-1149-5
    The new and groundbreaking real-time remote healthcare monitoring system on sensor-based mobile health (mHealth) authentication in telemedicine has considerably bounded and dispersed communication components. mHealth, an attractive part in telemedicine architecture, plays an imperative role in patient security and privacy and adapts different sensing technologies through many built-in sensors. This study aims to improve sensor-based defence and attack mechanisms to ensure patient privacy in client side when using mHealth. Thus, a multilayer taxonomy was conducted to attain the goal of this study. Within the first layer, real-time remote monitoring studies based on sensor technology for telemedicine application were reviewed and analysed to examine these technologies and provide researchers with a clear vision of security- and privacy-based sensors in the telemedicine area. An extensive search was conducted to find articles about security and privacy issues, review related applications comprehensively and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were investigated for articles on mHealth in telemedicine-based sensor. A total of 3064 papers were collected from 2007 to 2017. The retrieved articles were filtered according to the security and privacy of sensor-based telemedicine applications. A total of 19 articles were selected and classified into two categories. The first category, 57.89% (n = 11/19), included survey on telemedicine articles and their applications. The second category, 42.1% (n = 8/19), included articles contributed to the three-tiered architecture of telemedicine. The collected studies improved the essential need to add another taxonomy layer and review the sensor-based smartphone authentication studies. This map matching for both taxonomies was developed for this study to investigate sensor field comprehensively and gain access to novel risks and benefits of the mHealth security in telemedicine application. The literature on sensor-based smartphones in the second layer of our taxonomy was analysed and reviewed. A total of 599 papers were collected from 2007 to 2017. In this layer, we obtained a final set of 81 articles classified into three categories. The first category of the articles [86.41% (n = 70/81)], where sensor-based smartphones were examined by utilising orientation sensors for user authentication, was used. The second category [7.40% (n = 6/81)] included attack articles, which were not intensively included in our literature analysis. The third category [8.64% (n = 7/81)] included 'other' articles. Factors were considered to understand fully the various contextual aspects of the field in published studies. The characteristics included the motivation and challenges related to sensor-based authentication of smartphones encountered by researchers and the recommendations to strengthen this critical area of research. Finally, many studies on the sensor-based smartphone in the second layer have focused on enhancing accurate authentication because sensor-based smartphones require sensors that could authentically secure mHealth.
    Matched MeSH terms: Telemedicine/methods*; Remote Sensing Technology/methods*
  6. Khan MA, Alqadami AA, Otero M, Siddiqui MR, Alothman ZA, Alsohaimi I, et al.
    Chemosphere, 2019 Mar;218:1089-1099.
    PMID: 30609488 DOI: 10.1016/j.chemosphere.2018.11.210
    Efforts to improve water quality have led to the development of green and sustainable water treatment approaches. Herein, nitrogen-doped magnetized hydrochar (mSBHC-N) was synthesized, characterized, and used for the removal of post-transition and transition heavy metals, viz. Pb2+ and Cd2+ from aqueous environment. mSBHC-N was found to be mesoporous (BET surface area - 62.5 m2/g) and paramagnetic (saturation magnetization - 44 emu/g). Both, FT-IR (with peaks at 577, 1065, 1609 and 3440 cm-1 corresponding to Fe - O stretching vibrations, C - N stretching, N - H in-plane deformation and stretching) and XPS analyses (with peaks at 284.4, 400, 530, 710 eV due to C 1s, N 1s, O 1s, and Fe 2p) confirmed the presence of oxygen and nitrogen containing functional groups on mSBHC-N. The adsorption of Pb2+ and Cd2+ was governed by oxygen and nitrogen functionalities through electrostatic and co-ordination forces. 75-80% of Pb2+ and Cd2+ adsorption at Co: 25 mg/L, either from deionized water or humic acid solution was accomplished within 15 min. The data was fitted to pseudo-second-order kinetic and Langmuir isotherm models, with maximum monolayer adsorption capacities being 323 and 357 mg/g for Cd2+and Pb2+ at 318 K, respectively. Maximum Cd2+ (82.6%) and Pb2+ (78.7%) were eluted with 0.01 M HCl, simultaneously allowing minimum iron leaching (2.73%) from mSBHC-N. In conclusion, the study may provide a novel, economical, and clean route to utilize agro-waste, such as sugarcane bagasse (SB), for aquatic environment remediation.
    Matched MeSH terms: Magnetics/methods*; Water Purification/methods*
  7. Yong NK, Awang N
    Environ Monit Assess, 2019 Jan 11;191(2):64.
    PMID: 30635772 DOI: 10.1007/s10661-019-7209-6
    This study presents the use of a wavelet-based time series model to forecast the daily average particulate matter with an aerodynamic diameter of less than 10 μm (PM10) in Peninsular Malaysia. The highlight of this study is the use of a discrete wavelet transform (DWT) in order to improve the forecast accuracy. The DWT was applied to convert the highly variable PM10 series into more stable approximations and details sub-series, and the ARIMA-GARCH time series models were developed for each sub-series. Two different forecast periods, one was during normal days, while the other was during haze episodes, were designed to justify the usefulness of DWT. The models' performance was evaluated by four indices, namely root mean square error, mean absolute percentage error, probability of detection and false alarm rate. The results showed that the model incorporated with DWT yielded more accurate forecasts than the conventional method without DWT for both the forecast periods, and the improvement was more prominent for the period during the haze episodes.
    Matched MeSH terms: Environmental Monitoring/methods*; Forecasting/methods*
  8. Goh CF, Moffat JG, Craig DQM, Hadgraft J, Lane ME
    Mol Pharm, 2019 01 07;16(1):359-370.
    PMID: 30525649 DOI: 10.1021/acs.molpharmaceut.8b01027
    Drug crystallization on and in the skin has been reported following application of topical or transdermal formulations. This study explored novel probe-based approaches including localized nanothermal analysis (nano-TA) and photothermal microspectroscopy (PTMS) to investigate and locate drug crystals in the stratum corneum (SC) of porcine skin following application of simple ibuprofen (IBU) formulations. We also conducted in vitro skin permeation studies and tape stripping. The detection of drug crystals in the SC on tape strips was confirmed using localized nano-TA, based on the melting temperature of IBU. The melting of IBU was also evident as indicated by a double transition and confirmed the presence of drug crystals in the SC. The single point scans of PTMS on the tape strips allowed collection of the photothermal FTIR spectra of IBU, confirming the existence of drug crystals in the skin. The combined methods also indicated that drug crystallized in the SC at a depth of ∼4-7 μm. Future studies will examine the potential of these techniques to probe crystallization of other commonly used actives in topical and transdermal formulations.
    Matched MeSH terms: Crystallization/methods*; Microspectrophotometry/methods*
  9. Jeyamogan S, Khan NA, Siddiqui R
    Arch Med Res, 2021 02;52(2):131-142.
    PMID: 33423803 DOI: 10.1016/j.arcmed.2020.10.016
    The number of cancer cases worldwide in terms of morbidity and mortality is a serious concern, despite the presence of therapeutic interventions and supportive care. Limitations in the current available diagnosis methods and treatments methods may contribute to the increase in cancer mortality. Theranostics, is a novel approach that has opened avenues for the simultaneous precise diagnosis and treatment for cancer patients. Although still in the early development stage, theranostic agents such as quantum dots, radioisotopes, liposomes and plasmonic nanobubbles can be bound to anticancer drugs, cancer cell markers and imaging agents, with the support of available imaging techniques, provide the potential to facilitate diagnosis, treatment and management of cancer patients. Herein, we discuss the potential benefits of several theranostic tools for the management of cancer. Specifically, quantum dots, radio-labelled isotopes, liposomes and plasmonic nanobubbles coupled with targeting agents and/or anticancer molecules and imaging agents as theranostic agents are deliberated upon in this review. Overall, the use of theranostic agents shows promise in cancer management. Nevertheless, intensive research is required to realize these expectations.
    Matched MeSH terms: Theranostic Nanomedicine/methods*; Precision Medicine/methods*
  10. Al-Shabi M, Lan BL, Chan WY, Ng KH, Tan M
    Int J Comput Assist Radiol Surg, 2019 Oct;14(10):1815-1819.
    PMID: 31020576 DOI: 10.1007/s11548-019-01981-7
    PURPOSE: Lung nodules have very diverse shapes and sizes, which makes classifying them as benign/malignant a challenging problem. In this paper, we propose a novel method to predict the malignancy of nodules that have the capability to analyze the shape and size of a nodule using a global feature extractor, as well as the density and structure of the nodule using a local feature extractor.

    METHODS: We propose to use Residual Blocks with a 3 × 3 kernel size for local feature extraction and Non-Local Blocks to extract the global features. The Non-Local Block has the ability to extract global features without using a huge number of parameters. The key idea behind the Non-Local Block is to apply matrix multiplications between features on the same feature maps.

    RESULTS: We trained and validated the proposed method on the LIDC-IDRI dataset which contains 1018 computed tomography scans. We followed a rigorous procedure for experimental setup, namely tenfold cross-validation, and ignored the nodules that had been annotated by

    Matched MeSH terms: Image Processing, Computer-Assisted/methods*; Tomography, X-Ray Computed/methods*
  11. McKimm J, Ramani S, Kusurkar RA, Fornari A, Nadarajah VD, Thampy H, et al.
    Perspect Med Educ, 2020 12;9(6):385-390.
    PMID: 33051804 DOI: 10.1007/s40037-020-00623-y
    BACKGROUND: Conversations about educational challenges and potential solutions among a globally and culturally diverse group of health professions' educators can facilitate identity formation, mentoring relationships and professional network building. The COVID-19 pandemic has made it even more important to co-create and disseminate knowledge, specifically regarding online and flexible learning formats.

    APPROACH: Based on the principles of social learning, we combined speed mentoring and world café formats to offer a virtual Zoom™ workshop, with large and small group discussions, to reach health professions' educators across the globe. The goal was to establish a psychologically safe space for dialogue regarding adaptation to online teaching-learning formats.

    EVALUATION: We aimed to establish psychological safety to stimulate thought-provoking discussions within the various small groups and obtain valuable contributions from participants. From these conversations, we were able to formulate 'hot tips' on how to adapt to (sometimes new) online teaching-learning formats while nurturing teacher and student wellbeing.

    REFLECTION: Through this virtual workshop we realized that despite contextual differences, many challenges are common worldwide. We experienced technological difficulties during the session, which needed rapid adaptation by the organising team. We encouraged, but did not pressure, participants to use video and audio during breakout discussions as we wanted them to feel safe and comfortable. The large audience size and different time zones were challenging; therefore, leadership had to be resilient and focussed. Although this virtual format was triggered by the pandemic, the format can be continued in the future to discuss other relevant global education topics.

    Matched MeSH terms: Education, Professional/methods*; Education, Distance/methods*
  12. Noordin R, Yunus MH, Tan Farrizam SN, Arifin N
    Adv Parasitol, 2020;109:131-152.
    PMID: 32381194 DOI: 10.1016/bs.apar.2020.01.003
    Toxocariasis is a human infection primarily caused by larvae of Toxocara canis from dogs, and also by T. cati from cats. Children have a more significant risk of acquiring the infection due to their closer contact with pets, and greater chances of ingesting soil. Diagnosis of toxocariasis is based on clinical, epidemiological, and serological data. Indirect IgG ELISA is a widely used serodiagnostic method for toxocariasis, with native T. canis TES most commonly used as the antigen. Western blots, using the same antigen, can be used to confirm positive ELISA findings to reduce false-positive results. Improvements in Toxocara serodiagnosis include the use of recombinant TES antigens, simpler and more rapid assay formats, and IgG4 subclass detection. Also, incorporation of recombinant T. cati TES protein increases the diagnostic sensitivity. Development of antigen detection tests using polyclonal and monoclonal antibodies, nanobodies, or aptamers can complement the antibody detection assays, and enhance the effectiveness of the serodiagnosis.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods; Blotting, Western/methods
  13. Vijayasarveswari V, Andrew AM, Jusoh M, Sabapathy T, Raof RAA, Yasin MNM, et al.
    PLoS One, 2020;15(8):e0229367.
    PMID: 32790672 DOI: 10.1371/journal.pone.0229367
    Breast cancer is the most common cancer among women and it is one of the main causes of death for women worldwide. To attain an optimum medical treatment for breast cancer, an early breast cancer detection is crucial. This paper proposes a multi- stage feature selection method that extracts statistically significant features for breast cancer size detection using proposed data normalization techniques. Ultra-wideband (UWB) signals, controlled using microcontroller are transmitted via an antenna from one end of the breast phantom and are received on the other end. These ultra-wideband analogue signals are represented in both time and frequency domain. The preprocessed digital data is passed to the proposed multi- stage feature selection algorithm. This algorithm has four selection stages. It comprises of data normalization methods, feature extraction, data dimensional reduction and feature fusion. The output data is fused together to form the proposed datasets, namely, 8-HybridFeature, 9-HybridFeature and 10-HybridFeature datasets. The classification performance of these datasets is tested using the Support Vector Machine, Probabilistic Neural Network and Naïve Bayes classifiers for breast cancer size classification. The research findings indicate that the 8-HybridFeature dataset performs better in comparison to the other two datasets. For the 8-HybridFeature dataset, the Naïve Bayes classifier (91.98%) outperformed the Support Vector Machine (90.44%) and Probabilistic Neural Network (80.05%) classifiers in terms of classification accuracy. The finalized method is tested and visualized in the MATLAB based 2D and 3D environment.
    Matched MeSH terms: Forecasting/methods*; Pattern Recognition, Automated/methods
  14. Dong X, Xu S, Liu Y, Wang A, Saripan MI, Li L, et al.
    Cancer Imaging, 2020 Aug 01;20(1):53.
    PMID: 32738913 DOI: 10.1186/s40644-020-00331-0
    BACKGROUND: Convolutional neural networks (CNNs) have been extensively applied to two-dimensional (2D) medical image segmentation, yielding excellent performance. However, their application to three-dimensional (3D) nodule segmentation remains a challenge.

    METHODS: In this study, we propose a multi-view secondary input residual (MV-SIR) convolutional neural network model for 3D lung nodule segmentation using the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset of chest computed tomography (CT) images. Lung nodule cubes are prepared from the sample CT images. Further, from the axial, coronal, and sagittal perspectives, multi-view patches are generated with randomly selected voxels in the lung nodule cubes as centers. Our model consists of six submodels, which enable learning of 3D lung nodules sliced into three views of features; each submodel extracts voxel heterogeneity and shape heterogeneity features. We convert the segmentation of 3D lung nodules into voxel classification by inputting the multi-view patches into the model and determine whether the voxel points belong to the nodule. The structure of the secondary input residual submodel comprises a residual block followed by a secondary input module. We integrate the six submodels to classify whether voxel points belong to nodules, and then reconstruct the segmentation image.

    RESULTS: The results of tests conducted using our model and comparison with other existing CNN models indicate that the MV-SIR model achieves excellent results in the 3D segmentation of pulmonary nodules, with a Dice coefficient of 0.926 and an average surface distance of 0.072.

    CONCLUSION: our MV-SIR model can accurately perform 3D segmentation of lung nodules with the same segmentation accuracy as the U-net model.

    Matched MeSH terms: Tomography, X-Ray Computed/methods*; Imaging, Three-Dimensional/methods*
  15. Win ST, Tan PC, Balchin I, Khong SY, Si Lay K, Omar SZ
    Am J Obstet Gynecol, 2019 04;220(4):387.e1-387.e12.
    PMID: 30633917 DOI: 10.1016/j.ajog.2019.01.004
    BACKGROUND: Labor is induced in 20-30% of maternities, with an increasing trend of use. Labor induction with oral misoprostol is associated with reduced risk of cesarean deliveries and has a safety and effectiveness profile comparable to those of mechanical methods such as Foley catheter use. Labor induction in nulliparous women continues to be challenging, with the process often quite protracted. The eventual cesarean delivery rate is high, particularly when the cervix is unfavorable and ripening is required. Vaginal examination can cause discomfort and emotional distress particularly to nulliparous women, and plausibly can affect patient satisfaction with the induction and birth process.

    OBJECTIVE: The aim of this study was to evaluate regular (4-hourly prior to each oral misoprostol dose with amniotomy when feasible) compared with restricted (only if indicated) vaginal assessments during labor induction with oral misoprostol in term nulliparous women MATERIALS AND METHODS: We performed a randomized trial between November 2016 and September 2017 in a university hospital in Malaysia. Our oral misoprostol labor induction regimen comprised 50 μg of misoprostol administered 4 hourly for up to 3 doses in the first 24 hours. Participants assigned to regular assessment had vaginal examinations before each 4-hourly misoprostol dose with a view to amniotomy as soon as it was feasible. Participants in the restricted arm had vaginal examinations only if indicated. Primary outcomes were patient satisfaction with the birth process (using an 11-point visual numerical rating scale), induction to vaginal delivery interval, and vaginal delivery rate at 24 hours.

    RESULTS: Data from 204 participants (101 regular, 103 restricted) were analyzed. The patient satisfaction score with the birth process was as follows (median [interquartile range]): 7 [6-9] vs 8 [6-10], P = .15. The interval of induction to vaginal delivery (mean ± standard deviation) was 24.3 ± 12.8 vs 31.1 ± 15.0 hours (P = .013). The vaginal delivery rate at 24 hours was 27.7% vs 20.4%; (relative risk [RR], 1.4; 95% confidence interval [CI], 0.8-2.3; P = .14) for the regular vs restricted arms, respectively. The cesarean delivery rate was 50% vs 43% (RR, 1.1; 95% CI, 0.9-1.5; P = .36). When assessed after delivery, participants' fidelity to their assigned vaginal examination schedule in a future labor induction was 45% vs 88% (RR, 0.5; 95% CI, 0.4-0.7; P < .001), and they would recommend their assigned schedule to a friend (47% vs 87%; RR, 0.6; 95% CI, 0.5-0.7; P < .001) in the regular compared with the restricted arms, respectively.

    CONCLUSION: Despite a shorter induction to vaginal delivery interval with regular vaginal examination and a similar vaginal delivery rate at 24 hours and birth process satisfaction score, women expressed a higher preference for the restricted examination schedule and were more likely to recommend such a schedule to a friend.

    Matched MeSH terms: Labor, Induced/methods*; Gynecological Examination/methods*
  16. Kamal Eddin FB, Fen YW
    Molecules, 2020 Jun 15;25(12).
    PMID: 32549390 DOI: 10.3390/molecules25122769
    For a healthy life, the human biological system should work in order. Scheduled lifestyle and lack of nutrients usually lead to fluctuations in the biological entities levels such as neurotransmitters (NTs), proteins, and hormones, which in turns put the human health in risk. Dopamine (DA) is an extremely important catecholamine NT distributed in the central nervous system. Its level in the body controls the function of human metabolism, central nervous, renal, hormonal, and cardiovascular systems. It is closely related to the major domains of human cognition, feeling, and human desires, as well as learning. Several neurological disorders such as schizophrenia and Parkinson's disease are related to the extreme abnormalities in DA levels. Therefore, the development of an accurate, effective, and highly sensitive method for rapid determination of DA concentrations is desired. Up to now, different methods have been reported for DA detection such as electrochemical strategies, high-performance liquid chromatography, colorimetry, and capillary electrophoresis mass spectrometry. However, most of them have some limitations. Surface plasmon resonance (SPR) spectroscopy was widely used in biosensing. However, its use to detect NTs is still growing and has fascinated impressive attention of the scientific community. The focus in this concise review paper will be on the principle of SPR sensors and its operation mechanism, the factors that affect the sensor performance. The efficiency of SPR biosensors to detect several clinically related analytes will be mentioned. DA functions in the human body will be explained. Additionally, this review will cover the incorporation of nanomaterials into SPR biosensors and its potential for DA sensing with mention to its advantages and disadvantages.
    Matched MeSH terms: Biosensing Techniques/methods; Surface Plasmon Resonance/methods*
  17. Sankari M, Rao PR, Hemachandran H, Pullela PK, Doss C GP, Tayubi IA, et al.
    J Biotechnol, 2018 Jan 20;266:89-101.
    PMID: 29247672 DOI: 10.1016/j.jbiotec.2017.12.010
    Carotenoids are isoprenoid pigments synthesized exclusively by plants and microorganisms and play critical roles in light harvesting, photoprotection, attracting pollinators and phytohormone production. In recent years, carotenoids have been used for their health benefits due to their high antioxidant activity and are extensively utilized in food, pharmaceutical, and nutraceutical industries. Regulation of carotenoid biosynthesis occurs throughout the life cycle of plants, with vibrant changes in composition based on developmental needs and responses to external environmental stimuli. With advancements in metabolic engineering techniques, there has been tremendous progress in the production of industrially valuable secondary metabolites such as carotenoids. Application of metabolic engineering and synthetic biology has become essential for the successful and improved production of carotenoids. Synthetic biology is an emerging discipline; metabolic engineering approaches may provide insights into novel ideas for biosynthetic pathways. In this review, we discuss the current knowledge on carotenoid biosynthetic pathways and genetic engineering of carotenoids to improve their nutritional value. In addition, we investigated synthetic biological approaches for the production of carotenoids. Theoretical biology approaches that may aid in understanding the biological sciences are discussed in this review. A combination of theoretical knowledge and experimental strategies may improve the production of industrially relevant secondary metabolites.
    Matched MeSH terms: Synthetic Biology/methods*; Metabolic Engineering/methods*
  18. Chan VS, Mohamed F, Yusoff YA, Dewi DEO, Anuar A, Shamsudin MA, et al.
    Med Biol Eng Comput, 2020 May;58(5):889-902.
    PMID: 31599379 DOI: 10.1007/s11517-019-02044-4
    Position tracking has been widely used in medical applications, especially in 3D ultrasound imaging, where it has transformed the 2D slice limitation into 3D volume with bigger clinical impacts. As a game controller can also produce position tracking information, it has the potential to act as a low-cost and portable position tracker for ultrasound probes. This paper aims to investigate the feasibility of a game controller to perform as a position tracker and to design its implementation in 3D ultrasound imaging. The study consists of data acquisition and 3D ultrasound reconstruction for visualization. The data acquisition is accomplished by capturing the 2D ultrasound frame and its relative positional and orientation data by using an ultrasound probe and game controller respectively. These data are further reconstructed to produce 3D ultrasound volume for visualization. Our experiments include game controller position tracker testing and 3D ultrasound reconstruction on baby phantom. The results have confirmed that the game controller performance was closely aligned with that of in a robot arm. Also, the 3D ultrasound reconstruction implementation has revealed promising outcomes. With these features, the function of the currently available ultrasound probes can be prospectively improved using a game controller position tracker effectively. Graphical Abstract.
    Matched MeSH terms: Ultrasonography/methods*; Imaging, Three-Dimensional/methods*
  19. Hakami AAH, Wabaidur SM, Ali Khan M, Abdullah Alothman Z, Rafatullah M, Siddiqui MR
    Molecules, 2020 Oct 06;25(19).
    PMID: 33036289 DOI: 10.3390/molecules25194564
    Lower dye concentrations and the presence of several dyes along with other matrices in environmental samples restrict their determination. Herein, a highly sensitive and rapid ultra-performance tandem mass spectrometric method was developed for simultaneous determination of cationic dyes, namely methylene blue (MB), rhodamine B (RB) and crystal violet (CV), in environmental samples. To preconcentrate environmental samples, solid-phase extraction cartridges were developed by using hydrogen peroxide modified pistachio shell biomass (MPSB). The surface morphological and chemical functionalities of MPSB were well characterized. The developed method was validated considering different validation parameters. In terms of accuracy and precision, the %RSD for all three dyes at all four concentration points was found to be between 1.26 and 2.76, while the accuracy reported in terms of the recovery was found to be 98.02%-101.70%. The recovery was found to be in the range of 98.11% to 99.55%. The real sample analysis shows that MB, RB, and CV were found in the ranges of 0.39-5.56, 0.32-1.92 and 0.27-4.36 μg/mL, respectively.
    Matched MeSH terms: Chromatography, Liquid/methods*; Solid Phase Extraction/methods*
  20. Cirielli V, Bortolotti F, Cima L, De Battisti Z, Del Balzo G, De Salvia A, et al.
    Med Sci Law, 2021 Jan;61(1_suppl):25-35.
    PMID: 33591882 DOI: 10.1177/0025802420965763
    The magnitude of the diagnostic benefit conferred by performing histopathological examinations after medico-legal/forensic autopsies remains debatable. We have tried to address this issue by reviewing a series of histopathology referrals concerning medico-legal autopsies in real-world routine practice. We present an audit of the consultations provided to forensics by clinical pathologists at our institute between 2015 and 2018. Over this period, 493 post-mortem examinations were performed by forensic pathologists. Of these cases, 52 (11%) were referred for histopathology. Gross assessment was requested in 22/52 (42%) cases. Histopathology examination was performed on single organs in 15/52 (29%) cases, primarily on the lung and heart, whereas parenchymatous multi-organ analysis was carried out in 14/52 (27%) cases. Bone-marrow sampling was studied in 4/52 (8%) cases. Immunohistochemistry was needed in 16/52 (31%) cases, special stains in 9/52 (21%) cases and molecular analysis in 4/52 (8%) cases. Focusing on technical processes, standard methodology on pre-analytical procedures was changed in 10/52 (19%) cases in order to answer specific diagnostic questions. We showed that although most of the time the diagnosis is clear by the end of dissection on the basis of the macroscopic findings, histopathology can provide, modify or confirm the cause of death in many medico-legal/forensic cases. Therefore, it is desirable that forensic pathologists and clinical pathologists establish robust working relationships in a cooperative environment. We conclude that it is important to implement guidelines based on real-world routine practice in order to identify cases where histopathology can provide useful contributions, which in our experience applied to 11% of forensic cases.
    Matched MeSH terms: Pathology, Clinical/methods*; Forensic Pathology/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links