METHODS: Workers from all 143 registered abattoirs in 11 of 13 states in Malaysia were invited to participate in this cross-sectional study. Participants were interviewed to ascertain information on illness and activities performed at the abattoir. A serum sample was obtained to test for Nipah virus antibody.
RESULTS: Seven (1.6 %) of 435 abattoir workers who slaughtered pigs versus zero (0%) of 233 workers who slaughtered ruminants showed antibody to Nipah virus (P = 0.05). All antibody-positive workers were from abattoirs in the three states that reported outbreak cases among pig farmers. Workers in these three states were more likely than those in other states to have Nipah antibody (7/144 [4.86%] versus 0/291 [0%], P < 0.001) and report symptoms suggestive of Nipah disease in pigs admitted to the abattoirs (P = 0.001).
CONCLUSIONS: Nipah infection was not widespread among abattoir workers in Malaysia and was linked to exposure to pigs. Since it may be difficult to identify Nipah-infected pigs capable of transmitting virus by clinical symptoms, using personal protective equipment, conducting surveillance for Nipah infection on pig farms which supply abattoirs, and avoiding handling and processing of potentially infected pigs are presently the best strategies to prevent transmission of Nipah virus in abattoirs.
RESULTS: A total of 75,350,240 sequence reads were obtained via Hi-seq 2500 sequencing technology. A total of 5473 significant differentially expressed genes were called. Gene ontology functional categorisation showed that cellular process, catalytic activity, and cell part categories had the highest number of expressed genes, while the metabolic pathways category possessed the highest number of expressed genes in the KEGG pathway analysis. The additional sequence dataset will further enrich existing M. fascicularis transcriptome assemblies, and provide a dataset for further downstream studies.
RESULTS: Twenty-five MRSA biofilm producers were used as substrates to isolate MRSA-specific phages. Despite the difficulties in obtaining an isolate of this phage, two phages (UPMK_1 and UPMK_2) were isolated. Both phages varied in their ability to produce halos around their plaques, host infectivity, one-step growth curves, and electron microscopy features. Furthermore, both phages demonstrated antagonistic infectivity on planktonic cultures. This was validated in an in vitro static biofilm assay (in microtiter-plates), followed by the visualization of the biofilm architecture in situ via confocal laser scanning microscopy before and after phage infection, and further supported by phages genome analysis. The UPMK_1 genome comprised 152,788 bp coding for 155 putative open reading frames (ORFs), and its genome characteristics were between the Myoviridae and Siphoviridae family, though the morphological features confined it more to the Siphoviridae family. The UPMK_2 has 40,955 bp with 62 putative ORFs; morphologically, it presented the features of the Podoviridae though its genome did not show similarity with any of the S. aureus in the Podoviridae family. Both phages possess lytic enzymes that were associated with a high ability to degrade biofilms as shown in the microtiter plate and CLSM analyses.
CONCLUSIONS: The present work addressed the possibility of using phages as potential biocontrol agents for biofilm-producing MRSA.
METHOD: We simulate the CT head examination using a water phantom with a standard protocol (120 kVp/180 mAs) and a low dose protocol (100 kVp/142 mAs). The table height was adjusted to simulate miscentering by 5 cm from the isocenter, where the height was miscentered superiorly (MCS) at 109, 114, 119, and 124 cm, and miscentered inferiorly (MCI) at 99, 94, 89, and 84 cm. Seven circular regions of interest were used, with one drawn at the center, four at the peripheral area of the phantom, and two at the background area of the image.
RESULTS: For the standard protocol, the mean CNR decreased uniformly as table height increased and significantly differed (p