Displaying publications 661 - 680 of 706 in total

Abstract:
Sort:
  1. Kong CY, Lai LL, Khoo AYY, Rahman NA, Chin KF
    BMC Surg, 2016 Feb 11;16:8.
    PMID: 26864939 DOI: 10.1186/s12893-016-0123-8
    BACKGROUND: Polypropylene meshes are widely used in hernia repairs. Hernia meshes have been developed incorporating coatings of active agents. One commercially available mesh has a fish oil coating which is promoted as having anti-inflammatory properties. We report a case, a symptomatic foreign body granuloma reaction associated with a fish oil coated polypropylene mesh, which required eventual mesh explantation.

    CASE PRESENTATION: A 61-year old lady with previous peptic ulcer disease underwent a laparoscopic intraperitoneal placement of mesh for incisional hernia utilising a fish oil coated polypropylene mesh. The patient presented 3 months after the procedure complaining of dyspepsia and pain at the operative site. There was no discharge. The patient was managed conservatively. She presented 10 months post-operatively with progressively worsening symptoms and a hard palpable mass in the epigastrium. Abdominal laparoscopy revealed dense adhesive disease around the mesh with exudates. Adhesiolysis, mesh explantation and a partial gastrectomy was performed. Histopathological examination revealed a foreign body granuloma formation to the mesh.

    CONCLUSION: In-vivo studies looking at intraperitoneal mesh placement with fish oil coatings including data on surgical outcomes such as fistula and adhesive characteristics are scarce in the literature. Further monitoring and studies are required to investigate the safety and efficacy profile of this mesh type in in-vivo models.

    Matched MeSH terms: Inflammation
  2. Patrick S, Hui-Tze C, Wan-Hazabbah WH, Zunaina E, Azhany Y, Liza-Sharmini AT
    J Taibah Univ Med Sci, 2018 Oct;13(5):483-487.
    PMID: 31435366 DOI: 10.1016/j.jtumed.2018.03.005
    Management of inflammation after surgery for recalcitrant anterior uveitis is challenging. Herein, we report successful treatment using intracameral injection of recombinant tissue plasminogen activator (rtPA) in two patients with recalcitrant anterior uveitis, due to infective uveitis and Vogt-Koyanagi-Harada disease, respectively. A 40-year-old woman presented with bilateral redness and vision reduction that had persisted 2 weeks. She also had bilateral anterior uveitis, vasculitis, retinitis, and optic disc swelling. Serology was positive for Bartonella henselae and Toxoplasma gondii. She was treated using long-term systemic corticosteroids and appropriate antibiotics. Our second case; a healthy 30-year-old man with bilateral eye redness and reduced vision without pain, and associated with headache and tinnitus for 1 weeks. He showed bilateral granulomatous inflammation with vitritis, choroiditis, retinitis, and hyperemic optic disc. The patient was diagnosed with Vogt-Koyanagi-Harada disease and treated with systemic corticosteroids. Both patients developed secondary cataracts and glaucoma that necessitated surgical intervention. Persistent chronic inflammation led to the formation of a thick fibrin membrane anterior to the intraocular lens (IOL) after phacoemulsification surgery with IOL implantation. This membrane was removed surgically, and intracameral injection of rtPA (25 μg) was carried out. The persistent inflammation had resolved and visual acuity had significantly improved within 1 week of intracameral rtPA injection. There were no reported ocular or systemic side effects. Intracameral rtPA is beneficial in patients with recalcitrant anterior uveitis who have undergone intraocular surgery. In most cases, surgical intervention improves the patients' vision. Intracameral rtPA should be considered in cases of persistent inflammation of varying etiology.
    Matched MeSH terms: Inflammation
  3. Sucedaram Y, Johns EJ, Husain R, Abdul Sattar M, H Abdulla M, Nelli G, et al.
    J Inflamm Res, 2021;14:689-710.
    PMID: 33716510 DOI: 10.2147/JIR.S299083
    Purpose: We hypothesized that low estrogen levels aggravate obesity-related complications. Diet-induced obesity can cause distinct pathologies, including impaired glucose tolerance, inflammation, and organ injury that leads to fatty liver and chronic kidney diseases. To test this hypothesis, ovariectomized (OVX) rats were fed a high-fat style diet (HFSD), and we examined structural changes and inflammatory response in the kidney and liver.

    Methods: Sprague-Dawley female rats were ovariectomized or sham-operated and divided into four groups: sham-operated rats fed a normal diet (ND); ovariectomized rats fed a normal diet (OVX-ND); sham-operated rats fed a HFSD; ovariectomized rats fed a high-fat style diet (OVX-HFSD). Mean blood pressure and fasting blood glucose were measured on weeks 0 and 10. The rats were sacrificed 10 weeks after initiation of ND or HFSD, the kidney and liver were harvested for histological, immunohistochemical and immunofluorescence studies.

    Results: HFSD-fed rats presented a significantly greater adiposity index compared to their ND counterparts. Liver index, fasting blood glucose and mean blood pressure was increased in OVX-HFSD rats compared to HFSD rats at study terminal. Histological and morphometric studies showed focal interstitial mononuclear cell infiltration in the kidney of HFSD rats with mesangial expansion being greater in the OVX-HFSD rats. Both HFSD fed groups showed increased expressions of renal inflammatory markers, namely TNF-alpha, IL-6 and MCP-1, and infiltrating M1 macrophages with some influence of ovarian hormonal status. HFSD-feeding also caused hepatocellular steatosis which was aggravated in ovariectomized rats fed the same diet. Furthermore, hepatocellular ballooning was observed only in the OVX-HFSD rats. Similarly, HFSD-fed rats showed increased expressions of the inflammatory markers and M1 macrophage infiltration in the liver; however, only IL-6 expression was magnified in the OVX-HFSD.

    Conclusion: Our data suggest that some of the structural changes and inflammatory response in the kidney and liver of rats fed a HFSD are exacerbated by ovariectomy.

    Matched MeSH terms: Inflammation
  4. Ezzat MI, Hassan M, Abdelhalim MA, El-Desoky AM, Mohamed SO, Ezzat SM
    Food Funct, 2021 Mar 18.
    PMID: 33734250 DOI: 10.1039/d0fo03402a
    Morinda citrifolia L. is a plant of the family Rubiaceae and is known as Indian mulberry or Noni in India. It is a perennial herb native to Southeast Asia and has been used over the years as a food supplement and medicinal plant. Noni fruits are reported to possess anticancer, fungicidal, antiviral and antiarthritic effects. The objective of our study is the screening of the immunomodulatory activity of the total extract, fractions, and isolated compounds of Noni fruits to identify their bioactive compounds. To achieve our goal, an ethanol extract (EE) was prepared from Noni fruits. Fractionation and purification of the EE were accomplished. The cell-mediated immune (CMI) response in prednisolone-induced immunosuppression rats was evaluated. The toxicity of the EE, fractions and isolated compounds on the differentiated THP-1 macrophage was assessed using the MTT viability assay. Moreover, the inflammation-related immune responses in lipopolysaccharide (LPS)-induced THP-1 macrophage activation were evaluated. Fractionation of the EE gave three fractions, dichloromethane (DCMF), water (WF) and methanol (MF). Purification of DCMF yielded stigmast-7-ene-3-ol (M1), 28-hydroxy-3β-acetoxy-9-dehydrogramisterol (M2), 3β-acetoxy-taraxast-20(30)-ene-21-ol (M3), 22-dehydroclerosterol (M4) and 22-dehydroclerosterol-3-O-β-d-glucopyranoside (M5), while purification of MF yielded quercetin (M6), hesperidin (M7), naringin (M9) and gallic acid (M8). The results revealed that DCMF elicited an increase in paw edema to the extent of 35.8%. All the tested samples had no cytotoxic effect on THP-1 macrophages. Co-treatment of the LPS-induced macrophages with DCMF, M2, M3, and M6 decreased the production of TNF-α, IL-1β, and IL-6/IL-10. The expression of iNOS, COX-2, and NF-κB decreased to 0.14 ± 0.02, 0.15 ± 0.02, and 0.17 ± 0.03, respectively, after co-treatment with LPS and DCMF. M2 attenuated the expression of iNOS and NF-κB to 0.18 ± 0.03 and 0.17 ± 0.03, respectively. Additionally, M3 attenuated the expression of iNOS to 0.18 ± 0.03, and after co-treatment with M6 and LPS, the expression of COX-2 and NF-κB was down-regulated to 0.2 ± 0.03. Our study proves the immunomodulatory effect of Noni fruits and specifies for the first time the compounds responsible for their activity.
    Matched MeSH terms: Inflammation
  5. Paudel YN, Othman I, Shaikh MF
    Front Pharmacol, 2020;11:613009.
    PMID: 33732146 DOI: 10.3389/fphar.2020.613009
    Epilepsy is a chronic brain disease afflicting around 70 million global population and is characterized by persisting predisposition to generate epileptic seizures. The precise understanding of the etiopathology of seizure generation is still elusive, however, brain inflammation is considered as a major contributor to epileptogenesis. HMGB1 protein being an initiator and crucial contributor of inflammation is known to contribute significantly to seizure generation via activating its principal receptors namely RAGE and TLR4 reflecting a potential therapeutic target. Herein, we evaluated an anti-seizure and memory ameliorating potential of an anti-HMGB1 monoclonal antibody (mAb) (1, 2.5 and 5 mg/kg, I.P.) in a second hit Pentylenetetrazol (PTZ) (80 mg/kg, I.P.) induced seizure model earlier stimulated with Pilocarpine (400 mg/kg, I.P.) in adult zebrafish. Pre-treatment with anti-HMGB1 mAb dose-dependently lowered the second hit PTZ-induced seizure but does not alter the disease progression. Moreover, anti-HMGB1 mAb also attenuated the second hit Pentylenetetrazol induced memory impairment in adult zebrafish as evidenced by an increased inflection ration at 3 and 24 h trail in T-maze test. Besides, decreased level of GABA and an upregulated Glutamate level was observed in the second hit PTZ induced group, which was modulated by pre-treatment with anti-HMGB1 mAb. Inflammatory responses occurred during the progression of seizures as evidenced by upregulated mRNA expression of HMGB1, TLR4, NF-κB, and TNF-α, in a second hit PTZ group, which was in-turn downregulated upon pre-treatment with anti-HMGB1 mAb reflecting its anti-inflammatory potential. Anti-HMGB1 mAb modulates second hit PTZ induced changes in mRNA expression of CREB-1 and NPY. Our findings indicates anti-HMGB1 mAb attenuates second hit PTZ-induced seizures, ameliorates related memory impairment, and downregulates the seizure induced upregulation of inflammatory markers to possibly protect the zebrafish from the incidence of further seizures through via modulation of neuroinflammatory pathway.
    Matched MeSH terms: Inflammation
  6. Ali SS, Mohamed SFA, Rozalei NH, Boon YW, Zainalabidin S
    Cardiovasc Toxicol, 2019 02;19(1):72-81.
    PMID: 30128816 DOI: 10.1007/s12012-018-9478-7
    Heart failure-associated morbidity and mortality is largely attributable to extensive and unregulated cardiac remodelling. Roselle (Hibiscus sabdariffa) calyces are enriched with natural polyphenols known for antioxidant and anti-hypertensive effects, yet its effects on early cardiac remodelling in post myocardial infarction (MI) setting are still unclear. Thus, the aim of this study was to investigate the actions of roselle extract on cardiac remodelling in rat model of MI. Male Wistar rats (200-300 g) were randomly allotted into three groups: Control, MI, and MI + Roselle. MI was induced with isoprenaline (ISO) (85 mg/kg, s.c) for two consecutive days followed by roselle treatment (100 mg/kg, orally) for 7 days. Isoprenaline administration showed changes in heart weight to body weight (HW/BW) ratio. MI was especially evident by the elevated cardiac injury marker, troponin-T, and histological observation. Upregulation of plasma levels and cardiac gene expression levels of inflammatory cytokines such as interleukin (IL)-6 and IL-10 was seen in MI rats. A relatively high percentage of fibrosis was observed in rat heart tissues with over-expression of collagen (Col)-1 and Col-3 genes following isoprenaline-induced MI. On top of that, cardiomyocyte areas were larger in heart tissues of MI rats with upregulation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression, indicating cardiac hypertrophy. Interestingly, roselle supplementation attenuated elevation of plasma troponin-T, IL-6, IL10, and gene expression level of IL-10. Furthermore, reduction of cardiac fibrosis and hypertrophy were observed. In conclusion, roselle treatment was able to limit early cardiac remodelling in MI rat model by alleviating inflammation, fibrosis, and hypertrophy; hence, the potential application of roselle in early adjunctive treatment to prevent heart failure.
    Matched MeSH terms: Inflammation
  7. Abdullah SF
    Med J Malaysia, 2021 03;76(2):177-182.
    PMID: 33742625
    INTRODUCTION: It is estimated that at least 30 to 40% of asthma attacks in adults are related to respiratory infections with viruses. The majority of asthma-related viruses include respiratory syncytial virus (RSV), rhinovirus, and parainfluenza. Inflammatory cytokines are supposed to play a vital role in causing inflammation of the respiratory tract as regulators of proliferation, chemotaxis, and activation of inflammatory cells.

    OBJECTIVES: The aim of this study is to assess the role of Granulocyte Macrophage-Colony Stimulating Factor (GMCSF) in asthmatic airway hyper-responsiveness associated with RSV infections.

    MATERIALS AND METHODS: Forty five asthmatic cases and 45 healthy individuals were studied in a cross-sectional design. All asthmatics underwent symptom score assessment.GMCSF concentrations in sputum and RSV-IgM/IgG in serum samples were measured for all participants by Enzyme Linked Immuno-Sorbent Assay (ELISA).

    RESULTS: The GM-CSF concentration level was significantly higher in asthmatics (270.27± 194.87pg/mL) especially among moderate and severe disease with mean concentration of 197.33±98.47 and 521.08± 310.04 respectively, compared to healthy controls (22.20±21.27 pg/ mL) (p =0.0001). The sputum level of GM-CSF in asthmatics is highly significant associated with positive anti-RSV IgG sera which represents 35/45(77.8%) with mean GM-CSF concentration of (276.99± 86.42) compared with controls at about 31/45 (68.9%) with GM-CSF mean concentration of (22.84±23.47). On the other hand, positive anti-RSV IgM in asthma cases was 8 out of 45(17.8 %) with GM-CSF mean concentration of (307.25± 306.65). Furthermore, GM-CSF sputum level was significantly correlated with eosinophil count especially in moderate and severe asthma.

    CONCLUSIONS: This study revealed that GM-CSF level is associated with eosinophilia and indicates asthma severity that might be evident during RSV infection .The distinctive GM-CSF features observed in the sputum from asthmatics with RSV may be useful as a diagnostic methods to help match patients with antibody therapy.

    Matched MeSH terms: Inflammation
  8. Vântu A, Ghertescu D, Fiscă C, Mărginean A, Hutanu A, Gheban D, et al.
    Malays J Pathol, 2019 Apr;41(1):25-32.
    PMID: 31025634
    INTRODUCTION: Experimental models are essential for clarifying the pathogenesis of atherosclerosis in the context of diabetes mellitus (DM). We aimed to evaluate the presence and the magnitude of several factors known to promote atherogenesis, and to assess the potential of a pro-atherogenic environment to stimulate the development of atherosclerotic lesions in a rat model of long-term type 1 DM.

    MATERIALS AND METHODS: Six control and five DM Wistar rats were evaluated. DM was induced at 11 weeks of age using streptozotocin (STZ; 60 mg/kg, intraperitoneal). Animals were monitored up to 38 weeks of age, when plasma glucose, lipid profile, and markers specific for systemic inflammation, endothelial dysfunction, and oxidative stress were measured. The amount of fat within the aortic wall was assessed semiquantitatively using Oil Red O staining.

    RESULTS: Diabetic rats presented significantly higher plasma glucose (p < 0.001), total cholesterol and triglycerides (both p = 0.02), high-sensitivity C-reactive protein (p = 0.01), and vascular endothelial growth factor (p = 0.04) levels, and significantly lower interleukin-10 (p = 0.04), superoxide dismutase (p < 0.01), and glutathione peroxidase (p = 0.01) levels than the control rats. Mild (grade 1) atherosclerotic lesions were observed in the aortic wall of 80% of the diabetic rats and in none of the control rats.

    CONCLUSIONS: This study presents a STZ-induced type 1 DM rat model with one of the longest follow-ups in the literature. In this model, long-term DM created a highly pro-atherogenic environment characterised by hyperglycemia, dyslipidemia, systemic inflammation, endothelial dysfunction, and oxidative stress that resulted in the development of early aortic atherosclerotic lesions.

    Matched MeSH terms: Inflammation
  9. Madzuki IN, Lau SF, Abdullah R, Mohd Ishak NI, Mohamed S
    Phytother Res, 2019 Jul;33(7):1784-1793.
    PMID: 31033070 DOI: 10.1002/ptr.6366
    Vernonia amygdalina (VA) is a medicinal tropical herb for diabetes and malaria and believed to be beneficial for joint pains. The antiosteorthritis effects of VA leaf in cartilage explant assays and on postmenopausal osteoarthritis (OA) rat model were investigated. The VA reduced the proteoglycan and nitric oxide release from the cartilage explants with interleukin 1β (IL-1β) stimulation. For the preclinical investigation, ovariectomized (OVX) female rats were grouped (n = 8) into nontreated OA, OA + diclofenac (5 mg/kg), OA + VA extract (150 and 300 mg/kg), and healthy sham control. Monosodium iodoacetate was injected into the knee joints to accelerate OA development. After 8 weeks, the macroscopic, microscopic, and histological images showed that the OA rats treated with VA 300 mg/kg and diclofenac had significantly reduced cartilage erosions and osteophytes unlike the control OA rats. The extract significantly down-regulated the inflammatory prostaglandin E2, nuclear factor κβ, IL-1β, ADAMTS-5, collagen type 10α1, and caspase3 in the OVX-OA rats. It up-regulated the anti-inflammatory IL-10 and collagen type 2α1 mRNA expressions, besides reducing serum collagenases (MMP-3 and MMP-13) and collagen type II degradation biomarker (CTX-II) levels in these rats. The VA (containing various caffeoyl-quinic acids, flavanone-O-rutinoside, luteolin, apigenin derivative and vernonioside D) suppressed inflammation, pain, collagenases as well as cartilage degradation, and improved cartilage matrix synthesis to prevent OA.
    Matched MeSH terms: Inflammation
  10. Kandasamy M, Mak KK, Devadoss T, Thanikachalam PV, Sakirolla R, Choudhury H, et al.
    BMC Chem, 2019 Dec;13(1):117.
    PMID: 31572984 DOI: 10.1186/s13065-019-0633-4
    Background: The transcription factor Nuclear factor erythroid-2-related factor 2 (NRF2) and its principal repressive regulator, Kelch-like ECH-associated protein 1 (KEAP1), are perilous in the regulation of inflammation, as well as maintenance of homeostasis. Thus, NRF2 activation is involved in cytoprotection against many inflammatory disorders. N'-Nicotinoylquinoxaline-2-carbohdyrazide (NQC) was structurally designed by the combination of important pharmacophoric features of bioactive compounds reported in the literature.

    Methods: NQC was synthesised and characterised using spectroscopic techniques. The compound was tested for its anti-inflammatory effect using Lipopolysaccharide from Escherichia coli (LPSEc) induced inflammation in mouse macrophages (RAW 264.7 cells). The effect of NQC on inflammatory cytokines was measured using enzyme-linked immune sorbent assay (ELISA). The Nrf2 activity of the compound NQC was determined using 'Keap1:Nrf2 Inhibitor Screening Assay Kit'. To obtain the insights on NQC's activity on Nrf2, molecular docking studies were performed using Schrödinger suite. The metabolic stability of NQC was determined using mouse, rat and human microsomes.

    Results: NQC was found to be non-toxic at the dose of 50 µM on RAW 264.7 cells. NQC showed potent anti-inflammatory effect in an in vitro model of LPSEc stimulated murine macrophages (RAW 264.7 cells) with an IC50 value 26.13 ± 1.17 µM. NQC dose-dependently down-regulated the pro-inflammatory cytokines [interleukin (IL)-1β (13.27 ± 2.37 μM), IL-6 (10.13 ± 0.58 μM) and tumor necrosis factor (TNF)-α] (14.41 ± 1.83 μM); and inflammatory mediator, prostaglandin E2 (PGE2) with IC50 values, 15.23 ± 0.91 µM. Molecular docking studies confirmed the favourable binding of NQC at Kelch domain of Keap-1. It disrupts the Nrf2 interaction with kelch domain of keap 1 and its IC50 value was 4.21 ± 0.89 µM. The metabolic stability studies of NQC in human, rat and mouse liver microsomes revealed that it is quite stable with half-life values; 63.30 ± 1.73, 52.23 ± 0.81, 24.55 ± 1.13 min; microsomal intrinsic clearance values; 1.14 ± 0.31, 1.39 ± 0.87 and 2.96 ± 0.34 µL/min/g liver; respectively. It is observed that rat has comparable metabolic profile with human, thus, rat could be used as an in vivo model for prediction of pharmacokinetics and metabolism profiles of NQC in human.

    Conclusion: NQC is a new class of NRF2 activator with potent in vitro anti-inflammatory activity and good metabolic stability.

    Matched MeSH terms: Inflammation
  11. Tan WS, Arulselvan P, Karthivashan G, Fakurazi S
    Mediators Inflamm, 2015;2015:720171.
    PMID: 26609199 DOI: 10.1155/2015/720171
    Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway.
    Matched MeSH terms: Inflammation
  12. Choy KW, Zain ZM, Murugan DD, Giribabu N, Zamakshshari NH, Lim YM, et al.
    Front Pharmacol, 2021;12:632169.
    PMID: 33986669 DOI: 10.3389/fphar.2021.632169
    Type 2 diabetes mellitus is characterized by both resistance to the action of insulin and defects in insulin secretion. Bird's nest, which is derived from the saliva of swiftlets are well known to possess multiple health benefits dating back to Imperial China. However, it's effect on diabetes mellitus and influence on the actions of insulin action remains to be investigated. In the present study, the effect of standardized aqueous extract of hydrolyzed edible bird nest (HBN) on metabolic characteristics and insulin signaling pathway in pancreas, liver and skeletal muscle of db/db, a type 2 diabetic mice model was investigated. Male db/db diabetic and its euglycemic control, C57BL/6J mice were administered HBN (75 and 150 mg/kg) or glibenclamide (1 mg/kg) orally for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin and oral glucose tolerance test (OGTT). Insulin signaling and activation of inflammatory pathways in liver, adipose, pancreas and muscle tissue were evaluated by Western blotting and immunohistochemistry. Pro-inflammatory cytokines were measured in the serum at the end of the treatment. The results showed that db/db mice treated with HBN significantly reversed the elevated fasting blood glucose, serum insulin, serum pro-inflammatory cytokines levels and the impaired OGTT without affecting the body weight of the mice in all groups. Furthermore, HBN treatment significantly ameliorated pathological changes and increased the protein expression of insulin, and glucose transporters in the pancreatic islets (GLUT-2), liver and skeletal muscle (GLUT-4). Likewise, the Western blots analysis denotes improved insulin signaling and antioxidant enzyme, decreased reactive oxygen species producing enzymes and inflammatory molecules in the liver and adipose tissues of HBN treated diabetic mice. These results suggest that HBN improves β-cell function and insulin signaling by attenuation of oxidative stress mediated chronic inflammation in the type 2 diabetic mice.
    Matched MeSH terms: Inflammation
  13. Vijakumaran U, Yazid MD, Hj Idrus RB, Abdul Rahman MR, Sulaiman N
    Front Pharmacol, 2021;12:663266.
    PMID: 34093194 DOI: 10.3389/fphar.2021.663266
    Objective: Hydroxytyrosol (HT), a polyphenol of olive plant is well known for its antioxidant, anti-inflammatory and anti-atherogenic properties. The aim of this systematic search is to highlight the scientific evidence evaluating molecular efficiency of HT in halting the progression of intimal hyperplasia (IH), which is a clinical condition arises from endothelial inflammation. Methods: A systematic search was performed through PubMed, Web of Science and Scopus, based on pre-set keywords which are Hydroxytyrosol OR 3,4-dihydroxyphenylethanol, AND Intimal hyperplasia OR Neointimal hyperplasia OR Endothelial OR Smooth muscles. Eighteen in vitro and three in vitro and in vivo studies were selected based on a pre-set inclusion and exclusion criteria. Results: Based on evidence gathered, HT was found to upregulate PI3K/AKT/mTOR pathways and supresses inflammatory factors and mediators such as IL-1β, IL-6, E-selectin, P-selectin, VCAM-1, and ICAM-1 in endothelial vascularization and functioning. Two studies revealed HT disrupted vascular smooth muscle cells (SMC) cell cycle by dephosphorylating ERK1/2 and AKT pathways. Therefore, HT was proven to promote endothelization and inhibit vascular SMCs migration thus hampering IH development. However, none of these studies described the effect of HT collectively in both vascular endothelial cells (EC) and SMCs in IH ex vivo model. Conclusions: Evidence from this concise review provides an insight on HT regulation of molecular pathways in reendothelization and inhibition of VSMCs migration. Henceforth, we propose effect of HT on IH prevention could be further elucidated through in vivo and ex vivo model.
    Matched MeSH terms: Inflammation
  14. Karim K, Giribabu N, Salleh N
    Phytomedicine, 2021 Oct;91:153677.
    PMID: 34333329 DOI: 10.1016/j.phymed.2021.153677
    BACKGROUND: M. pumilum has been claimed to protect the bone against the adverse effect of estrogen deficiency. Additionally, it also exhibits anti-diabetic activity. In view of these, this study aims to identify the mechanisms underlying the bone protective effect of M. pumilum in the presence of both estrogen deficiency and diabetes mellitus (DM).

    METHODS: Ovariectomized, diabetic female rats were given M. pumilum leave aqueous extract (MPLA) (50 and 100 mg/kg/day), estrogen, glibenclamide and estrogen plus glibenclamide for 28 consecutive days. At the end of the treatment, fasting blood glucose (FBG), serum insulin, Ca2+, PO43- and bone alkaline phosphatase (BALP) levels were measured. Rats were sacrificed and femur bones were harvested for determination of expression level and distribution of RANK, RANKL, OPG and oxidative stress and inflammatory proteins by molecular biological techniques.

    RESULTS: 100 mg/kg/day MPLA treatment decreased the FBG and BALP levels but increased the serum insulin, Ca2+ and PO43- levels in estrogen deficient, diabetic rats. Expression and distribution of RANKL, NF-κB p65, IKKβ, IL-6, IL-1β and Keap-1 decreased however expression and distribution of RANK, OPG, BMP-2, Type-1 collagen, Runx2, TRAF6, Nrf2, NQO-1, HO-1, SOD and CAT increased in the bone of estrogen deficient, diabetic rats which received 100 mg/kg/day MPLA with greater effects than estrogen-only, glibenclamide-only and estrogen plus glibenclamide treatments.

    CONCLUSION: MPLA helps to overcome the adverse effect of estrogen deficiency and DM on the bone and thus this herb could potentially be used for the treatment and prevention of osteoporosis in postmenopausal women with diabetes.

    Matched MeSH terms: Inflammation
  15. Fu, Tzeh Long, Ong, Kien Chai, Wong, Kum Thong
    Neurology Asia, 2015;20(4):349-354.
    MyJurnal
    We have developed and characterised a mouse model of Japanese encephalitis virus (JEV) infection via
    footpad inoculation in order to better mimic viral transmission by mosquito bites. Two-week-old and
    5-week-old mice consistently developed signs of infection such as ruffled fur, weight loss, hunchback
    posture, tremors, mask-like facies and occasionally, hindlimb paralysis at 4 days post infection (dpi)
    and 11-13 dpi, respectively. Most of the animals died within 24 to 48 hours following the onset of signs
    of infection, with mortalities of 100% and 33.3% in 2-week-old and 5-week-old mice, respectively.
    Mild meningitis and variable parenchymal inflammation with formation of microglial nodules, focal
    necrosis and neuronophagia, and perivascular cuffing by inflammatory cells were observed in the
    caudate nucleus, putamen, thalamus, cerebral cortex, brainstem, and spinal cord. Viral antigens/RNA
    were demonstrated by immunohistochemisty and in situ hybridization, respectively, in most of these
    areas as well as in the hippocampus and cerebellum, albeit more focally. The pathological findings in
    this mouse model were generally similar to human Japanese encephalitis (JE) and other established JE
    models but perhaps, compared to other JEV mouse models, it demonstrates lethal encephalitic infection
    more consistently. We believe that our mouse model should be useful to study the pathogenesis of JE,
    and for testing anti-viral drugs and vaccines
    Matched MeSH terms: Inflammation
  16. Goh CF, Craig DQ, Hadgraft J, Lane ME
    Eur J Pharm Biopharm, 2017 Feb;111:16-25.
    PMID: 27845181 DOI: 10.1016/j.ejpb.2016.10.025
    Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicles, propylene glycol (PG) and dimethyl sulphoxide (DMSO), were carried out in porcine ear skin. Tape stripping and ATR-FTIR spectroscopy were conducted simultaneously to collect spectral data as a function of skin depth. Multivariate data analysis was applied to visualise and categorise the spectral data in the region of interest (1700-1500cm(-1)) containing the carboxylate (COO(-)) asymmetric stretching vibrations of DF Na. Spectral data showed the redshifts of the COO(-) asymmetric stretching vibrations for DF Na in the solution compared with solid drug. Similar shifts were evident following application of saturated solutions of DF Na to porcine skin samples. Multivariate data analysis categorised the spectral data based on the spectral differences and drug crystallisation was found to be confined to the upper layers of the skin. This proof-of-concept study highlights the utility of ATR-FTIR spectroscopy in combination with multivariate data analysis as a simple and rapid approach in the investigation of drug deposition in the skin. The approach described here will be extended to the study of other actives for topical application to the skin.
    Matched MeSH terms: Inflammation
  17. Leong, Melody Pui Yee, Usman Bala, Lim, Chai Ling, Rozita Rosli, Cheah, Pike-See, Ling, King-Hwa
    Neuroscience Research Notes, 2018;1(1):21-41.
    MyJurnal
    Ts1Cje is a mouse model of Down syndrome (DS) with partial triplication of chromosome 16, which encompasses a high number of human chromosome 21 (HSA21) orthologous genes. The mouse model exhibits muscle weakness resembling hypotonia in DS individuals. The effect of extra gene dosages on muscle weakness or hypotonia in Ts1Cje and DS individuals remains unknown. To identify molecular dysregulation of the skeletal muscle, we compared the transcriptomic signatures of soleus and extensor digitorum longus (EDL) muscles between the adult Ts1Cje and disomic littermates. A total of 166 and 262 differentially expressed protein-coding genes (DEGs) were identified in the soleus and EDL muscles, respectively. The partial trisomy of MMU16 in Ts1Cje mice has a greater effect on gene expression in EDL. Top-down clustering analysis of all DEGs for represented functional ontologies revealed 5 functional clusters in soleus associated with signal transduction, development of reproductive system, nucleic acid biosynthesis, protein modification and metabolism as well as regulation of gene expression. On the other hand, only 3 functional clusters were observed for EDL namely neuron and cell development, protein modification and metabolic processes as well as ion transport. A total of 11 selected DEGs were validated using qPCR (disomic DEGs: Mansc1; trisomic DEGs: Itsn1, Rcan1, Synj1, Donson, Dyrk1a, Ifnar1, Ifnar2, Runx1, Sod1 and Tmem50b). The validated DEGs were implicated in neuromuscular junction signalling (Itsn1, Syn1), oxidative stress (Sod1, Runx1) and chronic inflammation processes (Runx1, Rcan1, Ifnar1, Ifnar2). Other validated DEGs have not been well-documented as involved in the skeletal muscle development or function, thus serve as interesting novel candidates for future investigations. To our knowledge, the study was the first attempt to determine the transcriptomic profiles of both soleus and EDL muscles in Ts1Cje mice. It provides new insights on the possible disrupted molecular pathways associated with hypotonia in DS individuals.
    Matched MeSH terms: Inflammation
  18. Lin X, Liu X, Xu J, Cheng KK, Cao J, Liu T, et al.
    Chin Med, 2019;14:18.
    PMID: 31080495 DOI: 10.1186/s13020-019-0240-2
    Background: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, which is commonly treated with antidiarrhoeal, antispasmodics, serotonergic agents or laxative agents. These treatments provide relief for IBS symptoms but may also lead to undesired side effects. Previously, herb-partitioned moxibustion (HPM) treatment has been demonstrated to be effective in ameliorating symptoms of IBS. However, the underlying mechanism of this beneficial treatment is yet to be established. The aim of the current study was to systematically assess the metabolic alterations in response to diarrhea-predominant IBS (IBS-D) and therapeutic effect of HPM.

    Methods: Proton nuclear magnetic resonance spectroscopy (1H NMR)-based metabolomics approach was used to investigate fecal and serum metabolome of rat model of IBS-D with and without HPM treatment.

    Results: The current results showed that IBS-induced metabolic alterations in fecal and serum sample include higher level of threonine and UDP-glucose together with lower levels of aspartate, ornithine, leucine, isoleucine, proline, 2-hydroxy butyrate, valine, lactate, ethanol, arginine, 2-oxoisovalerate and bile acids. These altered metabolites potentially involve in impaired gut secretory immune system and intestinal inflammation, malabsorption of nutrients, and disordered metabolism of bile acids. Notably, the HPM treatment was found able to normalize the Bristol stool forms scale scores, fecal water content, plasma endotoxin level, and a number of IBS-induced metabolic changes.

    Conclusions: These findings may provide useful insight into the molecular basis of IBS and mechanism of the HPM intervention.

    Matched MeSH terms: Inflammation
  19. Perumal, V., Khoo, W.C., Abdul-Hamid, A., Ismail, A., Saari, K., Murugesu, S., et al.
    MyJurnal
    Momordica charantia, also known as bitter melon or ‘peria katak’ in Malaysia, is a member of the family Cucurbitaceae. Bitter melon is an excellent source of vitamins and minerals that made it extensively nutritious. Moreover, the seed, fruit and leave of the plant contain bioactive compounds with a wide range of biological activities that have been used in traditional medicines in the treatment of several diseases, including inflammation, infections, obesity and diabetes. The aim of this study was to evaluate changes in urinary metabolite profile of the normal, streptozotocin-induced type 1 diabetes and M. charantia treated diabetic rats using proton nuclear magnetic resonance (1H-NMR) -based metabolomics profiling. Study had been carried out by inducing diabetes in the rats through injection of streptozotocin, which exhibited type 1 diabetes. M. charantia extract (100 and 200 mg/kg body weight) was administrated to the streptozotocin-induced diabetic rats for one week. Blood glucose level after administration was measured to examine hypoglycemic effect of the extract. The results obtained indicated that M. charantia was effective in lowering blood glucose level of the diabetic rats. The loading plot of Partial Least Square (PLS) component 1 showed that diabetic rats had increased levels of lactate and glucose in urine whereas normal and the extract treated diabetic rats had higher levels of succinate, creatine, creatinine, urea and phenylacetylglycine in urine. While the loading plot of PLS component 2 showed a higher levels of succinate, citrate, creatine, creatinine, sugars, and hippurate in urine of normal rat compared to the extract treated diabetic rat. Administration of M. charantia extract was found to be able to regulate the altered metabolic processes. Thus, it could be potentially used to treat the diabetic patients.
    
    Matched MeSH terms: Inflammation
  20. Abdul Jalil N, Abdul Rahim N, Md Shalleh N, Rossetti C
    Singapore Med J, 2008 Jul;49(7):e178-82.
    PMID: 18695852
    A majority of the clinical use of positron emission tomography (PET)-computed tomography (CT) is related to cancer management. Its application in evaluating inflammatory diseases and pyrexia of unknown origin is becoming popular. We reviewed the fluorine-18-fluorodeoxyglucose PET-CT findings of an 80-year-old woman with nonspecific clinical presentation consisting of generalised malaise, moderately high fever and weight loss. Prior CT and magnetic resonance imaging were not helpful in providing a clinical diagnosis. The diagnosis was Horton's arteritis, and the patient responded well to high-dose steroids.
    Matched MeSH terms: Inflammation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links