Displaying publications 681 - 700 of 1125 in total

Abstract:
Sort:
  1. Ng KH, Cheng YW, Khan MR, Cheng CK
    J Environ Manage, 2016 Dec 15;184(Pt 3):487-493.
    PMID: 27784576 DOI: 10.1016/j.jenvman.2016.10.034
    This paper reports on the optimization of palm oil mill effluent (POME) degradation in a UV-activated-ZnO system based on central composite design (CCD) in response surface methodology (RSM). Three potential factors, viz. O2 flowrate (A), ZnO loading (B) and initial concentration of POME (C) were evaluated for the significance analysis using a 2(3) full factorial design before the optimization process. It is found that all the three main factors were significant, with contributions of 58.27% (A), 15.96% (B) and 13.85% (C), respectively, to the POME degradation. In addition, the interactions between the factors AB, AC and BC also have contributed 4.02%, 3.12% and 1.01% to the POME degradation. Subsequently, all the three factors were subjected to statistical central composite design (CCD) analysis. Quadratic models were developed and rigorously checked. A 3D-response surface was subsequently generated. Two successive validation experiments were carried out and the degradation achieved were 55.25 and 55.33%, contrasted with 52.45% for predicted degradation value.
    Matched MeSH terms: Plant Oils*
  2. Li KS, Ali MA, Muhammad II, Othman NH, Noor AM
    J Oleo Sci, 2018 May 01;67(5):497-505.
    PMID: 29628486 DOI: 10.5650/jos.ess17203
    The impact of microwave roasting on the thermooxidative degradation of perah seed oil (PSO) was evaluated during heating at a frying temperature (170°C). The roasting resulted significantly lower increment of the values of oxidative indices such as free acidity, peroxide value, p-anisidine, total oxidation (TOTOX), specific extinctions and thiobarbituric acid in oils during heating. The colour L* (lightness) value dropped gradually as the heating time increased up to 12 h, whereas a*(redness) and b* (yellowness) tended to increase. The viscosity and total polar compound in roasted PSO was lower as compared to that in unroasted one at each heating times. The tocol retention was also high in roasted samples throughout the heating period. The relative contents of polyunsaturated fatty acids (PUFAs) were decreased to 94.42% and saturated fatty acids (SFAs) were increased to 110.20% in unroasted sample, after 12 h of heating. On the other hand, in 3 min roasted samples, the relative contents of PUFAs were decreased to 98.08% and of SFAs were increased to 103.41% after 12 h of heating. Outcome from analyses showed that microwave roasting reduced the oxidative deteriorations of PSO during heating.
    Matched MeSH terms: Plant Oils/chemistry*
  3. Wan Mohamad WAF, McNaughton D, Augustin MA, Buckow R
    Food Chem, 2018 Aug 15;257:361-367.
    PMID: 29622223 DOI: 10.1016/j.foodchem.2018.03.027
    Understanding the bioactive partitioning between the phases of an emulsion system underpins strategies for improving the efficiency of bioactive protection against degradation. We analysed partitioning of β-carotene in emulsions with various formulations in-situ using confocal Raman microscopy (CRM). The partitioning of β-carotene into the aqueous phase of emulsions increased when whey protein isolate (WPI) was heat or high pressure-treated prior to emulsion formation. However, increasing the concentration of high pressure-treated WPI reduced the β-carotene partitioning into the aqueous phase. Increasing the solid fat content in the carrier oil favoured the migration of β-carotene into the aqueous phase. The use of WPI as the emulsifier resulted in a greater partitioning of β-carotene into the aqueous phase compared to when Tween 40 was the emulsifier. This study demonstrates that partitioning of β-carotene between the aqueous and oil phase is dependent on the characteristics of the oil phase, emulsifier type and processing.
    Matched MeSH terms: Oils/chemistry
  4. Cheong AM, Tan CP, Nyam KL
    J Food Sci, 2018 Oct;83(10):2457-2465.
    PMID: 30178877 DOI: 10.1111/1750-3841.14332
    Kenaf seed oil-in-water nanoemulsions (NANO) stabilized by sodium caseinate (SC), beta-cyclodextrin (β-CD), and Tween 20 (T20) have been optimized and shown to improve in vitro bioaccessibility and physicochemical stability in the previous study. The main objective of this study was to evaluate the stability of bioactive compounds and antioxidants in the NANO during storage at different temperatures (4 °C, 25 °C, and 40 °C). An evaluation of the antioxidant activities of each emulsifier showed that SC had good scavenging capability with 97.6% ABTS radical scavenging activity. Therefore, SC which was used as one of the main emulsifiers could further enhanced the antioxidant activity of NANO. At week 8 of storage, NANO that stored at 4 °C had maintained the best bioactive compounds stability and antioxidant activities with 90% retention of vitamin E and 65% retention of phytosterols. These results suggested that 4 °C would be the most suitable storage temperature for NANO containing naturally present vitamin E and phytosterols. From the accelerated storage results at 40 °C, NANO containing vitamin E and phytosterols had maintained half of its initial concentration until week 4 and week 2 of storage, which is equivalent to 16 weeks and 8 weeks of storage at room temperature, respectively.

    PRACTICAL APPLICATION: The results of this study provide a better understanding on the stability of bioactive compounds and antioxidant activities in oil-in-water nanoemulsions that stabilized by similar ternary emulsifiers during storage at different temperatures. In addition, this study could be used as a predictive model to estimate the shelf life of bioactive compounds encapsulated in the form of nanoemulsions.

    Matched MeSH terms: Plant Oils/chemistry*
  5. Teh SS, Mah SH
    J Oleo Sci, 2018;67(11):1381-1387.
    PMID: 30404958 DOI: 10.5650/jos.ess18067
    The study was aimed at evaluating the effects of vegetable oils on emulsion stability. Palm olein (POo), olive oil (OO), safflower oil (SAF), grape seed oil (GSO), soybean oil (SBO) and sunflower oil (SFO) with different degree of saturation levels were chosen as major ingredient of oil phases. All the emulsions were stored at 4℃, 27℃ and 40℃ for 35 days and subjected to all the stability tests, including temperature variation, centrifuge test, cycle test, pH and slip melting point. The results indicated that POo exhibited the highest stability, followed by SAF, OO, GSO, SFO and SBO. In addition, the results implied that the degree of saturation levels of vegetable oils does give significant effect on emulsion stability based on the centrifuge testing for an approximate 30% usage level of oil. The POo-based emulsion exhibited good emulsion stability throughout the experimental period indicated that POo could be a good carrier oil for various applications in cosmetic industry.
    Matched MeSH terms: Plant Oils/chemistry*
  6. Agi A, Junin R, Arsad A, Abbas A, Gbadamosi A, Azli NB, et al.
    Int J Biol Macromol, 2020 Apr 01;148:1251-1271.
    PMID: 31760018 DOI: 10.1016/j.ijbiomac.2019.10.099
    Ascorbic acid was used for the first time to synthesize crystalline starch nanoparticles (CSNP). The physical properties of the CSNP were investigated. Rheological properties of the crystalline starch nanofluid (CSNF) were compared with native cassava starch (CS) and commercial polymer xanthan. Interfacial properties of the CSNF at the interface of oil and water (O/W) were investigated at different concentrations and temperatures. Wettability alteration efficiency of CSNF on oil-wet sandstone surface was investigated using the sessile drop method. Core flooding experiment was conducted at reservoir conditions. The methods were effective in producing spherical and polygonal nanoparticles with a mean diameter of 100 nm and increased in crystallinity of 7%. Viscosity increased with increase in surface area and temperature of the CSNF compared to a decrease in viscosity as the temperature increases for xanthan. Interfacial tension (IFT) decreased with increase in concentration of CSNF, electrolyte and temperature. The results show that CSNF can change the wettability of sandstone at low concentration, high salinity and elevated temperature. Pressure drops data shows stability of CSNF at 120 °C. The formation of oil bank was enough to increase oil recovery by 23%.
    Matched MeSH terms: Oils/chemistry*
  7. Ong TS, Chu CC, Tan CP, Nyam KL
    J Oleo Sci, 2020;69(4):297-306.
    PMID: 32249259 DOI: 10.5650/jos.ess19250
    Plant seed oil is often incorporated into the cream emulsions to provide multifunctional effects on the skin. In the current study, pumpkin seed oil (PSO) was used to develop a stable oil-in-water emulsion. The study aimed to optimise PSO cream formulation and determine the synergistic effect of the PSO with vitamin E oil added. The physical properties, antioxidant activities and storage stability of the formulations were analysed. Besides, the synergistic effect of the best formulation was analysed based on α-tocopherol content using ultra-high performance liquid chromatography (UHPLC). The storage stability test was assessed upon storing at 25 ± 2°C and 40 ± 2°C for 12 weeks. The best formulation (20% PSO, vitamin E oil and beeswax) selected showed physically and microbiologically stable. The incorporation of vitamin E oil into the formulation produced with PSO was found to be compatible, as it showed a synergistic effect in the amount of α-tocopherol content (combination index (CI) = 0.98). Thus, PSO had shown its potency to be incorporated into the topical products with a promising potential in delivering additional properties that can nourish the skin.
    Matched MeSH terms: Plant Oils/chemistry*
  8. Idris NA, Dian NL
    Asia Pac J Clin Nutr, 2005;14(4):396-401.
    PMID: 16326647
    Inter-esterification is one of the processes used to modify the physico-chemical characteristics of oils and fats. Inter-esterification is an acyl-rearrangement reaction on the glycerol molecule. On the other hand, hydrogenation involves addition of hydrogen to the double bonds of unsaturated fatty acids. Due to health implications of trans fatty acids, which are formed during hydrogenation, the industry needs to find alternatives to hydrogenated fats. This paper discusses some applications of inter-esterified fats, with particular reference to inter-esterified palm products, as alternatives to hydrogenation. Some physico-chemical properties of inter-esterified fats used in shortenings are discussed. With inter-esterification, more palm stearin can be incorporated in vanaspati. For confectionary fats and infant formulations, enzymatic inter-esterification has been employed.
    Matched MeSH terms: Plant Oils/analysis
  9. Li KS, Ali A, Muhammad II
    Acta Sci Pol Technol Aliment, 2017 Jul-Sep;16(3):283-292.
    PMID: 29055976 DOI: 10.17306/J.AFS.0497
    BACKGROUND: Perah seed is one of the most underutilized oilseeds, containing high nutritional values and high percentage of α-linoleneic acid, which may have a high potential in food and pharmaceutical applica- tions. The main objective of this study was to evaluate the influence of microwave (MW) cooking on the proximate composition and antioxidant activity of perah seeds.

    METHODS: In this study, the proximate composition and amygdalin concentration of MW ir- radiated perah seeds were determined. The total phenolic content (TPC), Maillard reaction products (MRPs) and antioxidant activity of methanol (PME), 70% methanol in water (PMW), ethanol (PEE), 70% ethanol  in water (PEW) extracts and methanol extract of oil (PMO) were evaluated during MW cooking. The anti- oxidant activity was evaluated using multiple assays, namely DPPH radical scavenging activity, β-Carotene bleaching assay, and reducing power.

    RESULTS: Microwave cooking did not significantly increase crude lipid and carbohydrate content, and the amounts of other nutrients such as ash, crude protein and fibre remained almost unchanged. As evaluated  by HPLC, the amygdalin concentration in the seeds was reduced by MW cooking. The TPC, MRP and anti- oxidant activity of the solvent extracts of perah seeds increased significantly with increasing roasting time. Of all the extracts, PMW at all MW cooking times displayed the highest antioxidant effectiveness. However, thermal treatment significantly reduced the antioxidant properties of PMO. The values for TPC, MRP and antioxidant effectiveness of the samples were ranked in the following order: PMW > PEW > PME > PEE > PMO, in both control and microwaved samples.

    CONCLUSIONS: In determining the overall quality of the products, MW cooking time was found to be a critical factor. Solubilization of phenolic compounds and formation of MRPs during MW cooking could have caused the increase in antioxidant activity of the perah seeds.
    Matched MeSH terms: Plant Oils/chemistry
  10. Cheong AM, Tan CP, Nyam KL
    Food Sci Technol Int, 2018 Jul;24(5):404-413.
    PMID: 29466882 DOI: 10.1177/1082013218760882
    Kenaf ( Hibiscus cannabinus L.) seed oil has been proven for its multi-pharmacological benefits; however, its poor water solubility and stability have limited its industrial applications. This study was aimed to further improve the stability of pre-developed kenaf seed oil-in-water nanoemulsions by using food-grade ternary emulsifiers. The effects of emulsifier concentration (1, 5, 10, 15% w/w), homogenisation pressure (16,000, 22,000, 28,000 psi), and homogenisation cycles (three, four, five cycles) were studied to produce high stability of kenaf seed oil-in-water nanoemulsions using high pressure homogeniser. Generally, results showed that the emulsifier concentration and homogenisation conditions had great effect ( p 
    Matched MeSH terms: Plant Oils/chemistry*
  11. Lin CK, Bashir MJ, Abu Amr SS, Sim LC
    Water Sci Technol, 2016 Dec;74(11):2675-2682.
    PMID: 27973372
    The aim of the current study is to evaluate the effectiveness of combined persulphate with hydrogen peroxide (S2O8(2-)/H2O2) oxidation as a post-treatment of biologically treated palm oil mill effluent (POME) for the first time in the literature. The removal efficiencies of chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), and suspended solids (SS) were 36.8%, 47.6%, and 90.6%, respectively, by S2O8(2-) oxidation alone under certain operation conditions (i.e., S2O8(2-) = 0.82 g, pH 11, and contact time 20 min). Nevertheless, the combined process (S2O8(2-)/H2O2) achieved 75.8% and 87.1% removals of NH3-N and SS, respectively, under 2.45/1.63 g/g H2O2/S2O8(2-), pH 11, and 20 min oxidation. Moreover, 56.9% of COD was removed at pH 8.4.
    Matched MeSH terms: Plant Oils*
  12. Lai SM, Lim KW, Cheng HK
    Singapore Med J, 1990 Oct;31(5):463-5.
    PMID: 2259944
    Margosa Oil is an extract of the seed of the Neem tree and is widely used as a traditional medicine by Indians in India, Sri Lanka, Burma, Thailand, Malaysia and Indonesia. Used mainly for external applications, it is often administered orally to neonates and infants regularly in small amounts. Margosa Oil causes toxic encephalopathy particularly in infants and young children. The usual features are vomiting, drowsiness, tachypnea and recurrent generalised seizures. Leucocytosis and metabolic acidosis are significant laboratory findings. Management is aimed primarily towards the control of convulsions although supportive management is equally important. Prognosis is usually good but fatalities and neurological deficits have been reported. We report here two infants with Margosa Oil poisoning presenting with encephalopathy.
    Matched MeSH terms: Plant Oils/poisoning
  13. Akhtar NMY, Jantan I, Arshad L, Haque MA
    BMC Complement Altern Med, 2019 Nov 21;19(1):331.
    PMID: 31752812 DOI: 10.1186/s12906-019-2748-5
    BACKGROUND: Zingiber zerumbet rhizome and its bioactive metabolites have previously been reported to exhibit innumerable pharmacological properties particularly anti-inflammatory activities. In the present study, the 80% ethanol extract, essential oil and zerumbone of Z. zerumbet rhizomes were explored for their in vitro immunosuppressive properties on chemotaxis, CD11b/CD18 expression, phagocytosis and chemiluminescence of isolated human polymorphonuclear neutrophils (PMNs).

    METHODS: The extract was analyzed quantitatively by performing a validated reversed phase high performance liquid chromatography (RP-HPLC). Zerumbone was isolated by chromatographic technique while the essential oil was acquired through hydro-distillation of the rhizomes and further analyzed by gas chromatography (GC) and GC-MS. Chemotaxis assay was assessed by using a 24-well cell migration assay kit, while CD18 integrin expression and phagocytic engulfment were measured using flow cytometry. The reactive oxygen species (ROS) production was evaluated by applying lucigenin- and luminol-enhanced chemiluminescence assays.

    RESULTS: Zerumbone was found to be the most abundant compound in the extract (242.73 mg/g) and the oil (58.44%). Among the samples tested, the oil revealed the highest inhibition on cell migration with an IC50 value of 3.24 μg/mL. The extract, oil and zerumbone showed moderate inhibition of CD18 integrin expression in a dose-dependent trend. Z. zerumbet extract showed the highest inhibitory effect on phagocytic engulfment with percentage of phagocytizing cells of 55.43% for PMN. Zerumbone exhibited strong inhibitory activity on oxidative burst of zymosan- and PMA-stimulated neutrophils. Zerumbone remarkably inhibited extracellular ROS production in PMNs with an IC50 value of 17.36 μM which was comparable to that of aspirin.

    CONCLUSION: The strong inhibition on the phagocytosis of neutrophils by Z. zerumbet extract and its essential oil might be due the presence of its chemical components particularly zerumbone which was capable of impeding phagocytosis at different stages.

    Matched MeSH terms: Oils, Volatile/pharmacology*
  14. Lua PL, Zakaria NS
    J Altern Complement Med, 2012 Jun;18(6):534-40.
    PMID: 22784340 DOI: 10.1089/acm.2010.0862
    OBJECTIVES: The objective of this study was to compile existing scientific evidence regarding the effects of essential oils (EOs) administered via inhalation for the alleviation of nausea and vomiting.

    METHODS: CINAHL, PubMed, and EBSCO Host and Science Direct databases were searched for articles related to the use of EOs and/or aromatherapy for nausea and vomiting. Only articles using English as a language of publication were included. Eligible articles included all forms of evidence (nonexperimental, experimental, case report). Interventions were limited to the use of EOs by inhalation of their vapors to treat symptoms of nausea and vomiting in various conditions regardless of age group. Studies where the intervention did not utilize EOs or were concerned with only alcohol inhalation and trials that combined the use of aromatherapy with other treatments (massage, relaxations, or acupressure) were excluded.

    RESULTS: Five (5) articles met the inclusion criteria encompassing trials with 328 respondents. Their results suggest that the inhaled vapor of peppermint or ginger essential oils not only reduced the incidence and severity of nausea and vomiting but also decreased antiemetic requirements and consequently improved patient satisfaction. However, a definitive conclusion could not be drawn due to methodological flaws in the existing research articles and an acute lack of additional research in this area.

    CONCLUSIONS: The existing evidence is encouraging but yet not compelling. Hence, further well-designed large trials are needed before confirmation of EOs effectiveness in treating nausea and vomiting can be strongly substantiated.

    Matched MeSH terms: Oils, Volatile/therapeutic use*
  15. Yaser AZ, Abd Rahman R, Kalil MS
    Pak J Biol Sci, 2007 Dec 15;10(24):4473-8.
    PMID: 19093514
    Composting of Palm Oil Mill Sludge (POMS) with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40 degrees C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along the process with final pH compost is acidic (pH 5.7). The highest maximum organic losses are about 50% with final C/N ratio of the compost is about 19. Final compost also showed some fertilizing value but need to be adjusted to obtain an ideal substrate. Addition of about 70% sandy soil causes highest yield and excellent root development for C. citratus in potted media. Beside that, compost from POMS-sawdust also found to have fertilizer value and easy to handle. Composting of POMS with sawdust shows potential as an alternative treatment to dispose and recycle waste components.
    Matched MeSH terms: Plant Oils/analysis*
  16. Kon TW, Bong CF, King JH, Leong CT
    Pak J Biol Sci, 2012 Feb 01;15(3):108-20.
    PMID: 22866541
    Termites are the major decomposers in tropical region but yet their occurrences in oil palm plantation especially in peat soil are generally treated as pest. Study of termite species in peat land was conducted in selected oil palm plantations in North Sarawak with 5-7 years old palms and South Sarawak with 13-15 years old palms with two sites in each area. Results of quadrate (25 x 25 x 30 cm) sampling showed termite was significantly higher in relative density with increasing depth of soil (0-10 = 21.23, 10-20 = 42.52 and 20-30 cm = 81.12%) which could be advantaged from being predated by ants (Hymenoptera: Formicidae) which were higher in density from soil surface to 10 cm soil depth with relative density of 31.84%. Modified transect sampling (50x6 m) had successfully sampled 18 species of termites from 2 families (Rhinotermitidae and Termitidae), 5 subfamilies (Rhinotermitinae, Coptotermitinae, Termitinae, Macrotermitinae and Nasutitermitinae) and 11 genera (Coptotermes, Schedorhinotermes, Termes, Macrotermes, Nasutitermes, Globitermes, Amitermes, Parrhinotermes, Pericapritermes, Havilanditermes and Prohamitermes). Both plantation sites have termite dominantly feeding on rotten wood as a result of abundant dead woods. However, Coptotermes curvignathus Holmgren was identified to feed on the living tissues of oil palm causing damage or death of the tree. Study showed higher encounter of soil-feeding termite in longer established plantation. It indicates the gradually shifting of soil condition towards a stabilized environment which favors the successful settlement of soil feeder termite species. Termite control should be more targets specific to avoid harming beneficial termites.
    Matched MeSH terms: Plant Oils/chemistry
  17. Lim SH, Ibrahim D
    Pak J Biol Sci, 2013 Sep 15;16(18):920-6.
    PMID: 24502148
    The aim of this study was to develop an economical bioprocess to produce the fermentable sugars at laboratory scales Using Oil Palm Frond (OPF) as substrate in Solid State Fermentation (SSF). OPF waste generated by oil palm plantations is a major problem in terms of waste management. However, this lignocellulosic waste material is a cheap source of cellulose. We used OPF as substrate to produce fermentable sugars. The high content of cellulose in OPF promises the high fermentable sugars production in SSF. Saccharification of OPF waste by A. niger USMAI1 generates fermentable sugars and was evaluated through a solid state fermentation. Physical parameters, e.g., inoculum size, initial substrate moisture, initial pH, incubation temperature and the size of substrate were optimized to obtain the maximum fermentable sugars from oil palm fronds. Up to 77 mg of fermentable sugars per gram substrate was produced under the optimal physical parameter conditions. Lower productivity of fermentable sugars, 32 mg fermentable sugars per gram substrate was obtained under non optimized conditions. The results indicated that about 140.6% increase in fermentable sugar production after optimization of the physical parameters. Glucose was the major end component amongst the fermentable sugars obtained. This study indicated that under optimum physical parameter conditions, the OPF waste can be utilized to produce fermentable sugars which then convert into other products such as alcohol.
    Matched MeSH terms: Plant Oils/metabolism*
  18. Jairoun AA, Shahwan M, Zyoud SH
    PLoS One, 2020;15(12):e0244688.
    PMID: 33382790 DOI: 10.1371/journal.pone.0244688
    BACKGROUND: Fish oil supplements that are rich in omega-3 long-chain polyunsaturated fatty acids (n-3 PUFAs). PUFAs are among the most widely-used dietary supplements globally, and millions of people consume them regularly. There have always been public concerns that these products should be guaranteed to be safe and of good quality, especially as these types of fish oil supplements are extremely susceptible to oxidative degradation.

    OBJECTIVES: The aim of the current study is to investigate and examine the oxidation status of dietary supplements containing fish oils and to identify important factors related to the oxidation status of such supplements available in the United Arab Emirates (UAE).

    METHODS: A total of 44 fish oil supplements were analysed in this study. For each product, the oxidative parameters peroxide value (PV), anisidine value (AV), and total oxidation (TOTOX) were calculated, and comparisons were made with the guidelines supplied by the Global Organization for EPA and DHA Omega-3s (GOED). Median values for each of the above oxidative parameters were tested using the Kruskal-Wallis and Mann-Whitney U tests. P values < 0.05 were chosen as the statistically significant boundary.

    RESULTS: The estimate for the average PV value was 6.4 with a 95% confidence interval (CI) [4.2-8.7] compared to the maximum allowable limit of 5 meq/kg. The estimate for the average P-AV was 11 with a 95% CI [7.8-14.2] compared to the maximum allowable limit of 20. The estimate for the average TOTOX value was 23.8 meq/kg with a 95% CI [17.4-30.3] compared to the maximum allowable limit of 26 according to the GOED standards.

    CONCLUSION: This research shows that most, although not all, of the fish oil supplements tested are compliant with the GOED oxidative quality standards. Nevertheless, it is clear that there should be a high level of inspection and control regarding authenticity, purity, quality, and safety in the processes of production and supply of dietary supplements containing fish oils.

    Matched MeSH terms: Fish Oils/analysis*
  19. Khoramnia A, Ebrahimpour A, Beh BK, Lai OM
    J Biomed Biotechnol, 2011;2011:702179.
    PMID: 21960739 DOI: 10.1155/2011/702179
    The lipase production ability of a newly isolated Acinetobacter sp. in submerged (SmF) and solid-state (SSF) fermentations was evaluated. The results demonstrated this strain as one of the rare bacterium, which is able to grow and produce lipase in SSF even more than SmF. Coconut oil cake as a cheap agroindustrial residue was employed as the solid substrate. The lipase production was optimized in both media using artificial neural network. Multilayer normal and full feed forward backpropagation networks were selected to build predictive models to optimize the culture parameters for lipase production in SmF and SSF systems, respectively. The produced models for both systems showed high predictive accuracy where the obtained conditions were close together. The produced enzyme was characterized as a thermotolerant lipase, although the organism was mesophile. The optimum temperature for the enzyme activity was 45°C where 63% of its activity remained at 70°C after 2 h. This lipase remained active after 24 h in a broad range of pH (6-11). The lipase demonstrated strong solvent and detergent tolerance potentials. Therefore, this inexpensive lipase production for such a potent and industrially valuable lipase is promising and of considerable commercial interest for biotechnological applications.
    Matched MeSH terms: Plant Oils/metabolism
  20. Salimon J, Salih N, Abdullah BM
    J Biomed Biotechnol, 2011;2011:196565.
    PMID: 22131799 DOI: 10.1155/2011/196565
    For environmental reasons, a new class of environmentally acceptable and renewable biolubricant based on vegetable oils is available. In this study, oxirane ring opening reaction of monoepoxide linoleic acid (MEOA) was done by nucleophilic addition of oleic acid (OA) with using p-toluene sulfonic acid (PTSA) as a catalyst for synthesis of 9(12)-hydroxy-10(13)-oleoxy-12(9)-octadecanoic acid (HYOOA) and the physicochemical properties of the resulted HYOOA are reported to be used as biolubricant base oils. Optimum conditions of the experiment using D-optimal design to obtain high yield% of HYOOA and lowest OOC% were predicted at OA/MEOA ratio of 0.30 : 1 (w/w), PTSA/MEOA ratio of 0.50 : 1 (w/w), reaction temperature at 110°C, and reaction time at 4.5 h. The results showed that an increase in the chain length of the midchain ester resulted in the decrease of pour point (PP) -51°C, increase of viscosity index (VI) up to 153, and improvement in oxidative stability (OT) to 180.94°C.
    Matched MeSH terms: Plant Oils/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links