Displaying publications 681 - 700 of 3987 in total

Abstract:
Sort:
  1. Yahaya Khan M, Abdul Karim ZA, Hagos FY, Aziz AR, Tan IM
    ScientificWorldJournal, 2014;2014:527472.
    PMID: 24563631 DOI: 10.1155/2014/527472
    Water-in-diesel emulsion (WiDE) is an alternative fuel for CI engines that can be employed with the existing engine setup with no additional engine retrofitting. It has benefits of simultaneous reduction of both NO x and particulate matters in addition to its impact in the combustion efficiency improvement, although this needs further investigation. This review paper addresses the type of emulsion, the microexplosion phenomenon, emulsion stability and physiochemical improvement, and effect of water content on the combustion and emissions of WiDE fuel. The review also covers the recent experimental methodologies used in the investigation of WiDE for both transport and stationary engine applications. In this review, the fuel injection pump and spray nozzle arrangement has been found to be the most critical components as far as the secondary atomization is concerned and further investigation of the effect of these components in the microexplosion of the emulsion is suggested to be center of focus.
    Matched MeSH terms: Water/chemistry*
  2. Zahari NK, Sheikh Ab Hamid S, Yusof N
    Cell Tissue Bank, 2015 Mar;16(1):55-63.
    PMID: 24647964 DOI: 10.1007/s10561-014-9438-9
    Preserved human amniotic membrane either air dried or glycerol preserved has been used effectively to treat superficial and partial thickness wounds without leaving any obvious hypertrophic scar. The preserved amnion, sterilised by ionising radiation, is known as an effective barrier for heat, fluid and protein loss while adheres nicely on wound. Air drying slightly reduced the oxygen transmission rate (OTR) of the amnion and the value significantly dropped after 15 kGy (p < 0.05). Glycerol preservation significantly reduced (p < 0.05) the OTR indicating less oxygen transmitted through the well structured cells of the amnion. Increase in the OTR with the increasing radiation doses up to 35 kGy possibly due to direct effects of radiation that resulted in large intercellular gaps. Both preservation methods significantly increased (p < 0.05) the water vapour transmission rate (WVTR). However, the low WVTR in the air dried amnion at 15 and 25 kGy was postulated due to cross-linking of collagen. Changes in the biophysical properties can be linked to direct and indirect effects of radiation on collagen bundles. The radiation dose of 25 kGy caused no adverse effect on biophysical properties hence it is still acceptable to sterilize both the air dried and the glycerol preserved amnions.
    Matched MeSH terms: Water/metabolism*
  3. Binti Ibnu Rasid EN, Mohamad SE, Jamaluddin H, Salleh MM
    Appl Biochem Biotechnol, 2014 Feb;172(4):2160-74.
    PMID: 24338298 DOI: 10.1007/s12010-013-0644-x
    Astaxanthin, a carotenoid pigment found in several aquatic organisms, is responsible for the red colour of salmon, trout and crustaceans. In this study, astaxanthin production from freshwater microalga Chlorella sorokiniana and marine microalga Tetraselmis sp. was investigated. Cell growth and astaxanthin production were determined spectrophotometrically at 620 and 480 nm, respectively. Astaxanthin was extracted using acetone and measured subsequent to biomass removal. Aerated conditions favoured astaxanthin production in C. sorokiniana, whereas Tetraselmis sp. was best cultured under unaerated conditions. C. sorokiniana produced more astaxanthin with the highest yield reached at 7.83 mg/l in 6.0 mM in nitrate containing medium compared to Tetraselmis sp. which recorded the highest yield of only 1.96 mg/l in 1.5 mM nitrate containing medium. Production in C. sorokiniana started at the early exponential phase, indicating that astaxanthin may be a growth-associated product in this microalga. Further optimization of astaxanthin production was performed using C. sorokiniana through a 2(3) full factorial experimental design, and a yield of 8.39 mg/l was achieved. Overall, the study has shown that both microalgae are capable of producing astaxanthin. Additionally, this research has highlighted C. sorokiniana as a potential astaxanthin producer that could serve as a natural astaxanthin source in the current market.
    Matched MeSH terms: Fresh Water/microbiology*
  4. Krishnaiah D, Nithyanandam R, Sarbatly R
    Crit Rev Food Sci Nutr, 2014;54(4):449-73.
    PMID: 24236997 DOI: 10.1080/10408398.2011.587038
    Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.
    Matched MeSH terms: Water/chemistry
  5. Mukhlisin M, Saputra A
    ScientificWorldJournal, 2013;2013:421762.
    PMID: 24282382 DOI: 10.1155/2013/421762
    In recent years many models have been proposed for measuring soil water content (θ) based on the permittivity (ε) value. Permittivity is one of the properties used to determine θ in measurements using the electromagnetic method. This method is widely used due to quite substantial differences in values of ε for air, soil, and water, as it allows the θ value to be measured accurately. The performance of six proposed models with one parameter (i.e., permittivity) and five proposed models with two or more parameters (i.e., permittivity, porosity, and dry bulk density of soil) is discussed and evaluated. Secondary data obtained from previous studies are used for comparison to calibrate and evaluate the models. The results show that the models with one parameter proposed by Roth et al. (1992) and Topp et al. (1980) have the greatest R² data errors, while for the model with two parameters, the model proposed by Malicki et al. (1996) agrees very well with the data compared with other models.
    Matched MeSH terms: Water/analysis*
  6. Gazzaz NM, Yusoff MK, Juahir H, Ramli MF, Aris AZ
    Water Environ Res, 2013 Aug;85(8):751-66.
    PMID: 24003601
    This study investigated relationships of a water quality index (WQI) with multiple water quality variables (WQVs), explored variability in water quality over time and space, and established linear and non-linear models predictive of WQI from raw WQVs. Data were processed using Spearman's rank correlation analysis, multiple linear regression, and artificial neural network modeling. Correlation analysis indicated that from a temporal perspective, the WQI, temperature, and zinc, arsenic, chemical oxygen demand, sodium, and dissolved oxygen concentrations increased, whereas turbidity and suspended solids, total solids, nitrate nitrogen (NO3-N), and biochemical oxygen demand concentrations decreased with year. From a spatial perspective, an increase with distance of the sampling station from the headwater was exhibited by 10 WQVs: magnesium, calcium, dissolved solids, electrical conductivity, temperature, NO3-N, arsenic, chloride, potassium, and sodium. At the same time, the WQI; Escherichia coli bacteria counts; and suspended solids, total solids, and dissolved oxygen concentrations decreased with distance from the headwater. Lastly, regression and artificial neural network models with high prediction powers (81.2% and 91.4%, respectively) were developed and are discussed.
    Matched MeSH terms: Water Quality*
  7. Ng HS, Ooi CW, Mokhtar MN, Show PL, Ariff A, Tan JS, et al.
    Bioresour Technol, 2013 Aug;142:723-6.
    PMID: 23806510 DOI: 10.1016/j.biortech.2013.05.087
    An extractive bioconversion with Bacillus cereus cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) in aqueous two-phase system (ATPS) was investigated for the synthesis and recovery of cyclodextrins (CDs). Optimum condition for the extractive bioconversion of CDs was achieved in ATPS consisted of 7.7% (w/w) polyethylene glycol (PEG) 20,000 and 10.3% (w/w) dextran T500 with volume ratio (VR) of 4.0. Enzymatic conversion of starch occurred mainly in dextran-rich bottom phase whereas the product, CDs was transferred to top phase and a higher partition coefficient of CDs was achieved. Repetitive batch of CDs synthesis was employed by replenishment of the top phase components and addition of starch every 8h. An average total CDs concentration of 13.7 mg/mL, (4.77 mg/mLα-CD, 5.02 mg/mLβ-CD and 3.91 mg/mLγ-CD) was recovered in the top phase of PEG 20,000/dextran T500 ATPS. This study showed the effectiveness of ATPS application in extractive bioconversion of CDs synthesis with B. cereus CGTase.
    Matched MeSH terms: Water/chemistry*
  8. Bayat S, Tejo BA, Salleh AB, Abdmalek E, Normi YM, Abdul Rahman MB
    Chirality, 2013 Nov;25(11):726-34.
    PMID: 23966316 DOI: 10.1002/chir.22205
    A series of tripeptide organocatalysts containing a secondary amine group and two amino acids with polar side chain units were developed and evaluated in the direct asymmetric intermolecular aldol reaction of 4-nitrobenzaldehyde and cyclohexanone. The effectiveness of short polar peptides as asymmetric catalysts in aldol reactions to attain high yields of enantio- and diastereoselective isomers were investigated. In a comparison, glutamic acid and histidine produced higher % ee and yields when they were applied as the second amino acid in short trimeric peptides. These short polar peptides were found to be efficient organocatalysts for the asymmetric aldol addition reaction in aqueous media.
    Matched MeSH terms: Water/chemistry*
  9. Alkarkhi AF, Lim HK, Yusup Y, Teng TT, Abu Bakar MA, Cheah KS
    J Environ Manage, 2013 Jun 15;122:121-9.
    PMID: 23570974 DOI: 10.1016/j.jenvman.2013.03.010
    The ability of aluminum coagulant extracted from red earth to treat Terasil Red R (disperse) and Cibacron Red R (reactive) synthetic dye wastewater was studied. The effects of extractant concentration, soil-to-volume of extractant ratio, and the types of extracting agents (NaOH vs. KCl) on the concentration of aluminum extracted were also investigated. In addition, the efficiency of extracted aluminum was compared with aluminum sulfate, in terms of its capability to reduce the chemical oxygen demand (COD) and to remove synthetic color. Factorial design was applied to determine the effect of selected factors on the amount of aluminum extracted from red earth (i.e., pH, dose of coagulant, type of coagulant on COD reduction, and color removal). It was found that only selected factors exhibited a significant effect on the amount of aluminum extracted from red earth. It was also determined that all factors and their interactions exhibited a significant effect on COD reduction and color removal when applying the extracted aluminum in a standard coagulation process. The results were also compared to aluminum sulfate. Furthermore, NaOH was found to be a better extractant of aluminum in red earth than KCl. Therefore, the best extracting conditions for both extractants were as follows: 2 M NaOH and in a 1:5 (soil/volume of extractant) ratio; 1 M KCl and 1:5 ratio. In treating synthetic dye wastewater, the extracted coagulant showed comparable treatment efficiency to the commercial coagulant. The extracted coagulant was able to reduce the COD of the dispersed dye by 85% and to remove 99% of the color of the dispersed dye, whereas the commercial coagulant reduced 90% of the COD and removed 99% of the color of the dispersed dye. Additionally, the extracted coagulant was able to reduce the COD of the reactive dye by 73% and to remove 99% of the color of the reactive dye. However, the commercial coagulant managed to reduce the COD of the reactive dye by 94% and to remove 96% of the color for the reactive dye.
    Matched MeSH terms: Water Purification/methods*
  10. Tang SY, Sivakumar M, Nashiru B
    Colloids Surf B Biointerfaces, 2013 Feb 1;102:653-8.
    PMID: 23107943 DOI: 10.1016/j.colsurfb.2012.08.036
    The present investigation focuses in investigating the effect of osmotic pressure, gelling on the mean droplet diameter, polydispersity index, droplet size stability of the developed novel Aspirin containing water-in-oil-in-water (W/O/W) nano multiple emulsion. The aspirin-loaded nano multiple emulsion formulation was successfully generated using two-stage ultrasonic cavitational emulsification which had been reported in author's previous study. The osmotic behavior of ultrasonically prepared nano multiple emulsions were also examined with different glucose concentrations both in the inner and outer aqueous phases. In addition, introducing gelatin into the formulation also observed to play an important role in preventing the interdroplet coalescence via the formation of interfacial rigid film. Detailed studies were also made on the possible mechanisms of water migration under osmotic gradient which primarily caused by the permeation of glucose. Besides, the experimental results have shown that the interfacial tension between the two immiscible phases decreases with varying the composition of organic phase. Although the W/O/W emulsion prepared with the inner/outer glucose weight ratio of 1-0.5% (w/w) showed an excellent droplet stability, the formulation containing 0.5% (w/w) glucose in the inner aqueous phase appeared to be the most stable with minimum change in the mean droplet size upon one-week storage period. Based on the optimization, nano multiple emulsion droplets with the mean droplet diameter of around 400 nm were produced using 1.25% (w/w) Span 80 and 0.5% Cremophore EL. Overall, our investigation makes a pathway in proving that the use of ultrasound cavitation is an efficient yet promising approach in the generation of stable and uniform nano multiple emulsions and could be used in the encapsulation of various active pharmaceutical ingredients in the near future.
    Matched MeSH terms: Water/chemistry*
  11. Han NS, Basri M, Abd Rahman MB, Abd Rahman RN, Salleh AB, Ismail Z
    J Cosmet Sci, 2012 Sep-Oct;63(5):333-44.
    PMID: 23089355
    Oil-in-water (O/W) nanoemulsions play an important key role in transporting bioactive compounds into a range of cosmeceutical products to the skin. Small droplet sizes have an inherent stability against creaming, sedimentation, flocculation, and coalescence. O/W emulsions varying in manufacturing process were prepared. The preparation and characterization of O/W nanoemulsions with average diameters of as low as 62.99 nm from palm oil esters were carried out. This was achieved using rotor-stator homogenizer and ultrasonic cavitation. Ultrasonic cell was utilized for the emulsification of palm oil esters and water in the presence of mixed surfactants, Tween 80 and Span 80 emulsions with a mean droplet size of 62.99 nm and zeta potential value at -37.8 mV. Results were comparable with emulsions prepared with rotor-stator homogenizer operated at 6000 rpm for 5 min. The stability of the emulsions was evaluated through rheology measurement properties. This included non-Newtonian viscosity, elastic modulus G', and loss modulus G″. A highly stable emulsion was prepared using ultrasonic cavitation comprising a very small particle size with higher zeta potential value and G' > G″ demonstrating gel-like behavior.
    Matched MeSH terms: Water/chemistry
  12. Lee XJ, Lee LY, Foo LP, Tan KW, Hassell DG
    J Environ Sci (China), 2012;24(9):1559-68.
    PMID: 23520862
    The present work covers the preparation of carbon-based nanosorbents by ethylene decomposition on stainless steel mesh without the use of external catalyst for the treatment of water containing nickel ions (Ni2+). The reaction temperature was varied from 650 to 850 degrees C, while reaction time and ethylene to nitrogen flow ratio were maintained at 30 min and 1:1 cm3/min, respectively. Results show that nanosorbents synthesised at a reaction temperature of 650 degrees C had the smallest average diameter (75 nm), largest BET surface area (68.95 m2/g) and least amount of impurity (0.98 wt.% Fe). A series of batch-sorption tests were performed to evaluate the effects of initial pH, initial metal concentration and contact time on Ni2+ removal by the nanosorbents. The equilibrium data fitted well to Freundlich isotherm. The kinetic data were best correlated to a pseudo second-order model indicating that the process was of chemisorption type. Further analysis by the Boyd kinetic model revealed that boundary layer diffusion was the controlling step. This primary study suggests that the prepared material with Freundlich constants compared well with those in the literature, is a promising sorbent for the sequestration of Ni2+ in aqueous solutions.
    Matched MeSH terms: Water/chemistry*
  13. Yee LK, Abbas Z, Jusoh MA, Yeow YK, Meng CE
    Sensors (Basel), 2011;11(4):4073-85.
    PMID: 22163837 DOI: 10.3390/s110404073
    This paper presents the development of a PC-based microwave five-port reflectometer for the determination of moisture content in oil palm fruits. The reflectometer was designed to measure both the magnitude and phase of the reflection coefficient of any passive microwave device. The stand-alone reflectometer consists of a PC, a microwave source, diode detectors and an analog to digital converter. All the measurement and data acquisition were done using Agilent VEE graphical programming software. The relectometer can be used with any reflection based microwave sensor. In this work, the application of the reflectometer as a useful instrument to determine the moisture content in oil palm fruits using monopole and coaxial sensors was demonstrated. Calibration equations between reflection coefficients and moisture content have been established for both sensors. The equation based on phase measurement of monopole sensor was found to be accurate within 5% in predicting moisture content in the fruits when compared to the conventional oven drying method.
    Matched MeSH terms: Water/analysis*
  14. Das Arulsamy A, Kregar Z, Eleršič K, Modic M, Subramani US
    Phys Chem Chem Phys, 2011 Sep 7;13(33):15175-81.
    PMID: 21776515 DOI: 10.1039/c1cp20138g
    Hydrogen produced from the photocatalytic splitting of water is one of the reliable alternatives to replace the polluting fossil and the radioactive nuclear fuels. Here, we provide unequivocal evidence for the existence of blue- and red-shifting O-H covalent bonds within a single water molecule adsorbed on the MgO surface as a result of asymmetric displacement polarizabilities. The adsorbed H-O-H on MgO gives rise to one weaker H-O bond, while the other O-H covalent bond from the same adsorbed water molecule compensates this effect with a stronger bond. The weaker bond (nearest to the surface), the interlayer tunneling electrons and the silver substrate are shown to be the causes for the smallest dissociative activation energy on the MgO monolayer. The origin that is responsible to initiate the splitting mechanism is proven to be due to the changes in the polarizability of an adsorbed water molecule, which are further supported by the temperature-dependent static dielectric constant measurements for water below the first-order electronic-phase transition temperature.
    Matched MeSH terms: Water/chemistry*
  15. Muhammad BG, Jaafar MS, Akpa TC
    Radiat Prot Dosimetry, 2010 Sep;141(2):127-33.
    PMID: 20562117 DOI: 10.1093/rpd/ncq162
    Stratified sampling procedure was employed to collect a total of 40 samples; 2 from each stratum, measuring an approximate dimension of 3.25 km(2) of the actual sample site. Appropriate volumes were then evaporated and transferred into clean stainless steel planchets (ISO 9696 and ISO 9697). An eight channel gas-flow proportional counting system connected to a microprocessor loaded with a spreadsheet programme (Quarttro-Pro) and graphic programme (Multiplan) initially calibrated for efficiency was employed to count the background and the prepared samples. A mean efficiency of 33.44 and 41.24 % for the respective alpha and beta sources was obtained. A low background activity was also observed with a mean of 0.165 Bq for alpha and 1.119 Bq for beta. The gross alpha and beta activity concentrations in the water were found to range from 80 +/- 0.05 to 2300 +/- 0.41 Bq m(-3) and 120 +/- 0.08 to 4970 +/- 0.78 Bq m(-3), respectively. This clearly indicate areas of elevated alpha and beta activity concentrations of 37.5 and 47.5 %, respectively when compared with the International Commission for Radiological Protection (1991) maximum acceptable values of 500 Bq m(-3) for alpha and 1000 Bq m(-3) for beta.
    Matched MeSH terms: Water Pollutants, Radioactive/analysis*
  16. How YF, Lee CY
    J Med Entomol, 2010 Nov;47(6):987-95.
    PMID: 21175045
    The effect of temperature and humidity on the survival and water loss of the tropical bed bug, Cimex hemipterus (F.), was studied using two field-collected strains. Insects were exposed to temperatures ranging from 20 to 45 degrees C and relative humidities (RHs) of 33, 75, and 100%. C. hemipterus survived longest under the interaction of low temperature (20 degrees C) and high RH (75-100%). Survival and water loss were significantly affected (P < 0.01) by temperature and RH (either singly, or in interaction). Strain and sex significantly (P < 0.01) influenced bed bug survival, but not on water loss. Eggs, first instars, and adults reached their upper thermal lethal limit within 1 h at 39 degrees C, 44 degrees C, and 46 degrees C, respectively. The survival and water loss profiles showed that starved C. hemipterus started to die after losing 35-45% of their body weights.
    Matched MeSH terms: Water Loss, Insensible/physiology*
  17. Mazaheri H, Lee KT, Bhatia S, Mohamed AR
    Bioresour Technol, 2010 Jan;101(2):745-51.
    PMID: 19740652 DOI: 10.1016/j.biortech.2009.08.042
    Decomposition of oil palm fruit press fiber (FPF) to various liquid products in subcritical water was investigated using a high-pressure autoclave reactor with and without the presence of catalyst. When the reaction was carried in the absence of catalyst, the conversion of solid to liquid products increased from 54.9% at 483 K to 75.8% at 603 K. Simultaneously, the liquid yield increased from 28.8% to 39.1%. The liquid products were sub-categorized to bio-oil (benzene soluble, diethylether soluble, acetone soluble) and water soluble. When 10% ZnCl(2) was added, the conversion increased slightly but gaseous products increased significantly. However, when 10% Na(2)CO(3) and 10% NaOH were added independently, the solid conversion increased to almost 90%. In the presence of catalyst, the liquid products were mainly bio-oil compounds. Although solid conversion increased at higher reaction temperature, but the liquid yield did not increase at higher temperature.
    Matched MeSH terms: Water/chemistry*
  18. Salman JM, Hameed BH
    J Hazard Mater, 2010 Mar 15;175(1-3):133-7.
    PMID: 19879687 DOI: 10.1016/j.jhazmat.2009.09.139
    Oil palm fronds (OPF) were used to prepare activated carbon (PFAC) using physiochemical activation method, which consisted of potassium hydroxide (KOH) treatment and carbon dioxide gasification. The effects of the preparation variables, which were activation temperature, activation time and chemical impregnation ratios (KOH: char by weight), on the carbon yield and bentazon removal were investigated. Based on the central composite design (CCD), two factor interaction (2FI) and quadratic models were, respectively, employed to correlate the PFAC preparation variables to the bentazon removal and carbon yield. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum conditions for preparing activated carbon from OPF were found as follows: activation temperature of 850 degrees C, activation time of 1h and KOH:char ratio of 3.75:1. The predicted and experimental results for removal of bentazon and yield of PFAC were 99.85%, 20.5 and 98.1%, 21.6%, respectively.
    Matched MeSH terms: Water/chemistry*; Water Pollutants, Chemical/isolation & purification*; Water Pollutants, Chemical/chemistry; Water Pollution; Water Purification/methods*
  19. Tan BL, Mustafa AM
    Asia Pac J Public Health, 2004;16(1):54-63.
    PMID: 18839869
    Alkylphenols and most pesticides, especially organochlorine pesticides are endocrine-disrupting chemicals and they usually mimic the female hormone, estrogen. Using these chemicals in our environment would eventually lead us to consume them somehow in the food web. Several rivers in the State of Selangor, Malaysia were selected to monitor the level of alkylphenols and pesticides contamination for several months. The compounds were extracted from the water samples using liquid-liquid extraction method with dichloromethane and ethyl acetate as the extracting solvents. The alkylphenols and pesticides were analyzed by selected ion monitoring (SIM) mode using the quadrapole detector in Shimadzu QP-5000 gas chromatograph-mass spectrometer (GCMS). Recovery of most alkylphenols and pesticides were in the range of 50% to 120%. Trace amounts of the compounds were detected in the river water samples, mainly in the range of parts per trillion. This technique of monitoring the levels of endocrine-disruptors in river water is consistent and cost effective.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  20. Isa MH, Ibrahim N, Aziz HA, Adlan MN, Sabiani NH, Zinatizadeh AA, et al.
    J Hazard Mater, 2008 Apr 1;152(2):662-8.
    PMID: 17714862
    This study proposed an oil palm by-product as a low-cost adsorbent for the removal of hexavalent chromium [Cr (VI)] from aqueous solution. Adsorption of Cr (VI) by sulphuric acid and heat-treated oil palm fibre was conducted using batch tests. The influence of pH, contact time, initial chromium concentration and adsorbent dosage on the removal of Cr (VI) from the solutions was investigated. The optimum initial pH for maximum uptake of Cr (VI) from aqueous solution was found to be 1.5. The removal efficiency was found to correlate with the initial Cr (VI) concentration, adsorbent dosage as well as the contact time between Cr (VI) and the adsorbent. The adsorption kinetics tested with pseudo first order and pseudo second order models yielded high R(2) values from 0.9254 to 0.9870 and from 0.9936 to 0.9998, respectively. The analysis of variance (ANOVA) showed significant difference between the R(2) values of the two models at 99% confidence level. The Freundlich isotherm (R(2)=0.8778) described Cr (VI) adsorption slightly better than the Langmuir isotherm (R(2)=0.8715). Difficulty in desorption of Cr (VI) suggests the suitability of treated oil palm fibre as a single-use adsorbent for Cr (VI) removal from aqueous solution.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links