AIM OF THE STUDY: The present study was designed to investigate the in vitro anti-inflammatory effect of the smoke condensate using cyclooxygenase -1 (COX-1) and -2 (COX-2) as well as its potential genotoxic effects using the bacterial-based Ames test and the mammalian cells-based micronucleus/cytome and comet assays.
MATERIAL AND METHODS: The smoke was prepared in a similar way to that commonly used traditionally by Sudanese women then condensed using a funnel. Cyclooxygenase assay was used to evaluate its in vitro anti-inflammatory activity. The neutral red uptake assay was conducted to determine the range of concentrations in the mammalian cells-based assays. The Ames, cytome and comet assays were used to assess its potential adverse (long-term) effects.
RESULTS: The smoke condensate did not inhibit the cyclooxygenases at the highest concentration tested. All smoke condensate concentrations tested in the Salmonella/microsome assay induced mutation in both TA98 and TA100 in a dose dependent manner. A significant increase in the frequency of micronucleated cells, nucleoplasmic bridges and nuclear buds was observed in the cytome assay as well as in the % DNA damage in the comet assay.
CONCLUSIONS: The findings indicated a dose dependent genotoxic potential of the smoke condensate in the bacterial and human C3A cells and may pose a health risk to women since the smoke bath is frequently practised. The study highlighted the need for further rigorous assessment of the risks associated with the smoke bath practice.
METHOD: Cell viability and colony formation assays were used to determine the 50% inhibitory concentration (IC50) of Et. O.s, rosmarinic acid, and gemcitabine. Different doses of gemcitabine in combination with Et. O.s or rosmarinic acid were tested against Panc-1 to select the best concentrations which possessed synergistic effects. Elucidation of molecular mechanisms responsible for mediating chemo-sensitivity in Panc-1 was performed using Quantitative Real-time PCR (QPCR), flow cytometry and immunohistochemistry.
RESULTS: Et. O.s was found to significantly sensitise Panc-1 towards gemcitabine by reducing the gene expression of multidrug-resistant protein family (MDR) (MDR-1, MRP-4, and MRP-5) and molecules related to epithelial-mesenchymal transition (ZEB-1 and Snail-1). An induction of the human equilibrate nucleoside transporter-1 (hENT-1) gene was also found in cells treated with Et. O.s-gemcitabine. The Et. O.s-gemcitabine combination induced cellular senescence, cell death and cell cycle arrest in Panc-1. In addition, the inhibition of Notch signalling was demonstrated through the downregulation of Notch 1 intracellular domain in this treatment group. In contrast, rosmarinic acid-gemcitabine combination showed no additional effects on cellular senescence, apoptosis, epithelial mesenchymal transition (EMT) markers, the MRP-4 and MRP-5 multi-drug resistance protein family, hENT-1, and the Notch pathway through Notch 1 intracellular domain.
CONCLUSION: This study provides valuable insights on the use of Et. O.s to complement gemcitabine in targeting pancreatic cancer in vitro, suggesting its potential use as a novel complementary treatment in pancreatic cancer patients.
OBJECTIVES: To develop a novel in vitro skin glycation model as a screening tool for topical formulations with antiglycation properties and to further characterize, at the molecular level, the glycation stress-driven skin ageing mechanism.
METHODS: The glycation model was developed using human reconstituted full-thickness skin; the presence of N(ε) -(carboxymethyl) lysine (CML) was used as evidence of the degree of glycation. Topical application of emulsion containing a well-known antiglycation compound (aminoguanidine) was used to verify the sensitivity and robustness of the model. Cytokine immunoassay, quantitative real-time polymerase chain reaction and histological analysis were further implemented to characterize the molecular mechanisms of skin ageing in the skin glycation model.
RESULTS: Transcriptomic and cytokine profiling analyses in the skin glycation model demonstrated multiple biological changes, including extracellular matrix catabolism, skin barrier function impairment, oxidative stress and subsequently the inflammatory response. Darkness and yellowness of skin tone observed in the in vitro skin glycation model correlated well with the degree of glycation stress.
CONCLUSIONS: The newly developed skin glycation model in this study has provided a new technological dimension in screening antiglycation properties of topical pharmaceutical or cosmeceutical formulations. This study concomitantly provides insights into skin ageing mechanisms driven by glycation stress, which could be useful in formulating skin antiageing therapy in future studies.
Materials and methods: We reviewed four patients with neurofibromatosis with severe PT spinal deformity. Case 1, a 16-year-old male presented with severe PT kyphoscoliosis (scoliosis: 89°, kyphosis: 124°) and thoracic myelopathy. Case 2 was a 14-year-old, skeletally immature male who presented with a PT lordoscoliosis (scoliosis: 85°). Case 3, a 13-year-old male, presented with severe PT kyphoscoliosis (scoliosis: 100°, kyphosis: 95°). Case 4, a 35-year-old gentleman, presented with severe PT kyphoscoliosis (scoliosis: 113°, kyphosis: 103°) and thoracic myelopathy. All patients underwent pre-operative halo-pelvic traction. After a period of traction, all patients underwent posterior spinal fusion (PSF) with autologous bone grafts (local and fibula bone grafts) and recombinant human bone morphogenetic protein-2 (rhBMP-2).
Results: Both patients with thoracic myelopathy regained near normal neurological status after halo-pelvic traction. Following traction, the scoliosis correction rate (CR) ranged from 18.0% to 38.9%, while the kyphosis CR ranged from 14.6% to 37.1%. Following PSF, the scoliosis CR ranged from 24.0% to 58.8%, while the kyphosis CR ranged from 29.1% to 47.4%. The total distraction ranged from 50-70mm. Duration of distraction ranged from 26-95 days. The most common complication encountered during halo-pelvic traction was pin-related e.g. pin tract infection, pin loosening and migration, osteomyelitis, and halo-pelvic strut breakage. No patients had cranial nerve palsies or neurological worsening.
Conclusion: Pre-operative correction of severe PT spinal deformities could be performed safely and effectively with the halo-pelvic device prior to definitive surgery.
METHODS: This is a cross-sectional study in which patients receiving IV alteplase in Hospital Universiti Sains Malaysia, from January 2017 to April 2020 were recruited. Demographical data, National Institutes of Health Stroke Scale (NIHSS) scores, door-to-needle time were recorded. Modified Rankin scale (mRS) scores were evaluated at 90 days after initial therapy. Good and poor functional outcomes were defined as 0-2 and 3-6, respectively.
RESULTS: A total of 30 patients were included in the study with a mean age of 59±11.47 years old. 76.7% of them were male and the rest were female. From the study, onset-toneedle time was 197.47±51.74 minutes, whereas door-toneedle time was 120.93±53.63 minutes. Seventeen (56.3%) patients achieved a favourable score of 0-2 on the mRS at 90 days after treatment. Haemorrhagic transformation occurred in eight (26.7%) of the patients with a mortality rate of 13.3%.
CONCLUSION: 56.7% of our patients showed improvement in the mRS at 90 days post thrombolysis for AIS. Higher baseline NIHSS scores and diabetes mellitus were associated with poorer functional outcomes after thrombolysis.