Displaying publications 741 - 760 of 812 in total

Abstract:
Sort:
  1. Cheng AL, Cornelio G, Shen L, Price T, Yang TS, Chung IJ, et al.
    Clin Colorectal Cancer, 2017 06;16(2):e73-e88.
    PMID: 27780749 DOI: 10.1016/j.clcc.2016.08.005
    BACKGROUND: In patients with KRAS wild-type (wt) metastatic colorectal cancer (mCRC), outcomes with first-line chemotherapies are improved by adding weekly cetuximab. The APEC study investigated first-line once-every-2-weeks cetuximab plus chemotherapy for patients with KRAS wt mCRC; additional biomarker subgroups were also analyzed.

    PATIENTS AND METHODS: APEC was a nonrandomized phase 2 trial conducted in the Asia-Pacific region. Patients (n = 289) received once-every-2-weeks cetuximab with investigator's choice of chemotherapy (FOLFOX or FOLFIRI). The primary end point was best confirmed overall response rate (BORR); progression-free survival (PFS) and overall survival (OS) were secondary end points. Early tumor shrinkage (ETS) and depth of response (DpR) were also evaluated.

    RESULTS: In the KRAS wt population, BORR was 58.8%, median PFS 11.1 months, and median OS 26.8 months. Expanded RAS mutational analysis revealed that patients with RAS wt mCRC had better outcomes (BORR = 64.7%; median PFS = 13.0 months; median OS = 28.4 months). The data suggest that ETS and DpR may be associated with survival outcomes in the RAS wt population. Although this study was not designed to formally assess differences in outcome between treatment subgroups, efficacy results appeared similar for patients treated with FOLFOX and FOLFIRI. There were no new safety findings; in particular, grade 3/4 skin reactions were within clinical expectations.

    CONCLUSION: The observed activity and safety profile is similar to that reported in prior first-line pivotal studies involving weekly cetuximab, suggesting once-every-2-weeks cetuximab is effective and tolerable as first-line therapy and may represent an alternative to weekly administration.

    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  2. Lertjanyakun V, Chaiyakunapruk N, Kunisawa S, Imanaka Y
    Pharmacoeconomics, 2018 09;36(9):1113-1124.
    PMID: 29707743 DOI: 10.1007/s40273-018-0660-3
    BACKGROUND: Exemestane (EXE), exemestane + everolimus (EXE + EVE), toremifene (TOR), and fulvestrant (FUL) are second-line endocrine therapies for postmenopausal hormone receptor-positive (HR +)/human epidermal growth factor receptor 2-negative (HER2 -) metastatic breast cancer (mBC) in Japan. Although the efficacy of these therapies has been shown in recent studies, cost-effectiveness has not yet been determined in Japan.

    OBJECTIVE: This study aimed to examine the cost-effectiveness of second-line endocrine therapies for the treatment of postmenopausal women with HR + and HER2 - mBC.

    METHODS: A Markov model was developed to analyze the cost-effectiveness of the therapies over a 15-year time horizon from a public healthcare payer's perspective. The efficacy and utility parameters were determined via a systematic search of the literature. Direct medical care costs were used. A discount rate of 2% was applied for costs and outcomes. Subgroup analysis was performed for non-visceral metastasis. A series of sensitivity analyses, including probabilistic sensitivity analysis (PSA) and threshold analysis were performed.

    RESULTS: Base-case analyses estimated incremental cost-effectiveness ratios (ICERs) of 3 million and 6 million Japanese yen (JPY)/quality-adjusted life year (QALY) gained for TOR and FUL 500 mg relative to EXE, respectively. FUL 250 mg and EXE + EVE were dominated. The overall survival (OS) highly influenced the ICER. With a willingness-to-pay (WTP) threshold of 5 million JPY/QALY, the probability of TOR being cost-effective was the highest. Subgroup analysis in non-visceral metastasis revealed 0.4 and 10% reduction in ICER from the base-case results of FUL5 500 mg versus EXE and TOR versus EXE, respectively, while threshold analysis indicated EVE and FUL prices should be reduced 73 and 30%, respectively.

    CONCLUSION: As a second-line therapy for postmenopausal women with HR +/HER2 - mBC, TOR may be cost-effective relative to other alternatives and seems to be the most favorable choice, based on a WTP threshold of 5 million JPY/QALY. FUL 250 mg is expected to be as costly and effective as EXE. The cost-effectiveness of EXE + EVE and FUL 500 mg could be improved by a large price reduction. However, the results are highly sensitive to the hazard ratio of OS. Policy makers should carefully interpret and utilize these findings.

    Matched MeSH terms: Breast Neoplasms/drug therapy
  3. Subramaniam M, Liew SK, In L, Awang K, Ahmed N, Nagoor NH
    Drug Des Devel Ther, 2018;12:1053-1063.
    PMID: 29750018 DOI: 10.2147/DDDT.S141925
    Background: Drug combination therapy to treat cancer is a strategic approach to increase successful treatment rate. Optimizing combination regimens is vital to increase therapeutic efficacy with minimal side effects.

    Materials and methods: In the present study, we evaluated the in vitro cytotoxicity of double and triple combinations consisting of 1'S-1'-acetoxychavicol acetate (ACA), Mycobacterium indicus pranii (MIP) and cisplatin (CDDP) against 14 various human cancer cell lines to address the need for more effective therapy. Our data show synergistic effects in MCF-7 cells treated with MIP:ACA, MIP:CDDP and MIP:ACA:CDDP combinations. The type of interaction between MIP, ACA and CDDP was evaluated based on combination index being <0.8 for synergistic effect. Identifying the mechanism of cell death based on previous studies involved intrinsic apoptosis and nuclear factor kappa B (NF-κB) and tested in Western blot analysis. Inactivation of NF-κB was confirmed by p65 and IκBα, while intrinsic apoptosis pathway activation was confirmed by caspase-9 and Apaf-1 expression.

    Results: All combinations confirmed intrinsic apoptosis activation and NF-κB inactivation.

    Conclusion: Double and triple combination regimens that target induction of the same death mechanism with reduced dosage of each drug could potentially be clinically beneficial in reducing dose-related toxicities.

    Matched MeSH terms: Breast Neoplasms/drug therapy*
  4. Ahmad Hidayat AF, Chan CK, Mohamad J, Abdul Kadir H
    Biomed Pharmacother, 2018 Aug;104:806-816.
    PMID: 29860114 DOI: 10.1016/j.biopha.2018.05.073
    Dioscorea bulbifera, also known as air potato, has been cultivated as food crop mainly in tropical countries in Asia and Australia. The tubers are edible and have often been used in Traditional Chinese Medicine (TCM) and Ayurvedic medicine to treat cancer, diabetes, thyroid disease, and inflammation. This study aimed to investigate the effects of D. bulbifera on HCT116 human colorectal carcinoma cells and to unravel the plausible mechanisms underlying its apoptotic effects. The ethanol crude and fractions (hexane, ethyl acetate and water) of D. bulbifera were subjected to cell viability MTT assay against various cancer cell lines. The lowest IC50 of the extract and fractions on selected cancer cells were selected for further apoptosis assay and western blot analysis. HCT116 cancer cells were treated with D. bulbifera and stained with Annexin/PI or Hoechst 33342/PI for preliminary confirmation of apoptosis. The dissipation of mitochondria membrane potential (MMP) was determined by flow cytometry. The protein expressions of apoptosis-related proteins such as Bcl-2 family, caspases, Fas, PARP, ERK1/2 and JNK were detected by western blot analysis. Moreover, the HCT116 cells were treated with UO126 and SP600125 inhibitors to verify the involvement of ERK1/2 and JNK protein expressions in inducing apoptotic cell death. Based on the result, D. bulbifera ethyl acetate fraction (DBEAF) exhibited the most compelling cytotoxicity on HCT116 cells with an IC50 of 37.91 ± 1.30 µg/mL. The induction of apoptosis was confirmed by phosphatidylserine externalization and chromatin condensation. Depolarization of MMP further conferred the induction of apoptosis was through the regulation of Bcl-2 family proteins. Activation of caspase cascades (caspase-3, -9, -8 and -10) was elicited followed by the observation of cleaved PARP accumulation in DBEAF-treated cells. Furthermore, death receptor, Fas was activated upon exposure to DBEAF. Collective apoptotic evidences suggested the involvement of intrinsic and extrinsic pathways by DBEAF in HCT116 cells. Interestingly, the attenuation of ERK1/2 phosphorylation accompanied by the activation of JNK was detected in DBEAF-treated cells. In conclusion, the findings revealed that DBEAF induced apoptosis through intrinsic and extrinsic pathways involving ERK1/2 and JNK.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  5. Kamalidehghan B, Ghafouri-Fard S, Motevaseli E, Ahmadipour F
    Drug Des Devel Ther, 2018;12:1119-1133.
    PMID: 29765202 DOI: 10.2147/DDDT.S156826
    Background: Inhibition of prostate cancer stem cells (PCSCs) is an efficient curative maintenance protocol for the prevention of prostate cancer. The objectives of this study were to assess the efficiency of koenimbin, a major biologically active component of Murraya koenigii (L) Spreng, in the suppression of PC-3 cells and to target PC-3-derived cancer stem cells (CSCs) through apoptotic and CSC signaling pathways in vitro.

    Materials and methods: The antiproliferative activity of koenimbin was examined using MTT, and the apoptotic detection was carried out by acridine orange/propidium iodide (AO/PI) double-staining and multiparametric high-content screening (HCS) assays. Caspase bioluminescence assay, reverse transcription polymerase chain reaction (RT-PCR), and immunoblotting were conducted to confirm the expression of apoptotic-associated proteins. Cell cycle analysis was investigated using flow cytometry. Involvement of nuclear factor-kappa B (NF-κB) was analyzed using HCS assay. Aldefluor™ and prostasphere formation examinations were used to evaluate the impact of koenimbin on PC-3 CSCs in vitro.

    Results: Koenimbin remarkably inhibited cell proliferation in a dose-dependent manner. Koenimbin induced nuclear condensation, formation of apoptotic bodies, and G0/G1 phase arrest of PC-3 cells. Koenimbin triggered the activation of caspase-3/7 and caspase-9 and the release of cytochrome c, decreased anti-apoptotic Bcl-2 and HSP70 proteins, increased pro-apoptotic Bax proteins, and inhibited NF-κB translocation from the cytoplasm to the nucleus, leading to the activation of the intrinsic apoptotic pathway. Koenimbin significantly (P<0.05) reduced the aldehyde dehydrogenase-positive cell population of PC-3 CSCs and the size and number of PC-3 CSCs in primary, secondary, and tertiary prostaspheres in vitro.

    Conclusion: Koenimbin has chemotherapeutic potential that may be employed for future treatment through decreasing the recurrence of cancer, resulting in the improvement of cancer management strategies and patient survival.

    Matched MeSH terms: Prostatic Neoplasms/drug therapy*
  6. Ong YS, Saiful Yazan L, Ng WK, Abdullah R, Mustapha NM, Sapuan S, et al.
    Nanomedicine (Lond), 2018 07;13(13):1567-1582.
    PMID: 30028248 DOI: 10.2217/nnm-2017-0322
    AIM: To investigate the enhancement of anticancer activity of thymoquinone (TQ) by the use of nanostructured lipid carrier (NLC) in 4T1 tumor-bearing female BALB/c mice.

    MATERIAL & METHODS: TQ was incorporated into NLC (TQNLC) by using high pressure homogenization. TQNLC and TQ were orally administered to the mice.

    RESULTS & CONCLUSION: TQNLC and TQ are potential chemotherapeutic drugs as they exhibited anticancer activity. The use of NLC as a carrier has enhanced the therapeutic property of TQ by increasing the survival rate of mice. The antimetastasis effect of TQNLC and TQ to the lungs was evidence by downregulation of MMP-2. TQNLC and TQ induced apoptosis via modulation of Bcl-2 and caspase-8 in the intrinsic apoptotic pathway.

    Matched MeSH terms: Breast Neoplasms/drug therapy
  7. Beh CY, How CW, Foo JB, Foong JN, Selvarajah GT, Rasedee A
    Drug Des Devel Ther, 2017;11:771-782.
    PMID: 28352153 DOI: 10.2147/DDDT.S123939
    Tamoxifen (TAM) has been used in the treatment of breast cancers and is supplemented with erythropoietin (EPO) to alleviate the cancer-related anemia. The purported deleterious effects caused by the use of EPO with chemotherapeutic agents in the treatment of cancer-related anemia vary across studies and remain controversial. The use of nanoparticles as a drug delivery system has the potential to improve the specificity of anticancer drugs. In this study, we simultaneously incorporated two pharmacological active ingredients in one nanocarrier to develop EPO-conjugated TAM-loaded lipid nanoparticles (EPO-TAMNLC), a targeted delivery system, to enhance the cytotoxic activity while reducing the side effects of the ingredients. The effect of temperature in modulating the thermodynamic parameters associated with the binding of EPO and TAMNLC was assessed using isothermal titration calorimetry, while the unfolding of EPO structure was determined using fluorescence-quenching approach. The association efficiency of EPO and TAMNLC was 55.43%. Unlike binding of albumin to TAMNLC, the binding of EPO to TAMNLC occurred through endothermic and entropy-driven reaction. The EPO-TAMNLC formulation was stable because of the hydrophobic interaction and the high free energy, suggesting the spontaneity of the interactions between EPO and TAMNLC. The EPO-TAMNLC enhanced the in vitro cytotoxicity of TAM to MCF-7 cells. The EPO surface-functionalized TAMNLC could sequentially deliver EPO and TAM as well as improving site-specific delivery of these therapeutic compounds.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  8. Lee HM, Patel V, Shyur LF, Lee WL
    Phytomedicine, 2016 Nov 15;23(12):1535-1544.
    PMID: 27765374 DOI: 10.1016/j.phymed.2016.09.005
    BACKGROUND: Oral cancer is the sixth most common cancer worldwide and 90% of oral malignancies are caused by oral squamous cell carcinoma (OSCC). Curcumin, a phytocompound derived from turmeric (Curcuma longa) was observed to have anti-cancer activity which can be developed as an alternative treatment option for OSCC. However, OSCC cells with various clinical-pathological features respond differentially to curcumin treatment.

    HYPOTHESIS: Intracellular copper levels have been reported to correlate with tumor pathogenesis and affect the sensitivity of cancer cells to cytotoxic chemotherapy. We hypothesized that intracellular copper levels may affect the sensitivity of oral cancer cells to curcumin.

    METHODS: We analysed the correlation between intracellular copper levels and response to curcumin treatment in a panel of OSCC cell lines derived from oral cancer patients. Exogenous copper was supplemented in curcumin insensitive cell lines to observe the effect of copper on curcumin-mediated inhibition of cell viability and migration, as well as induction of oxidative stress and apoptosis. Protein markers of cell migration and oxidative stress were also analysed using Western blotting.

    RESULTS: Concentrations of curcumin which inhibited 50% OSCC cell viability (IC50) was reduced up to 5 times in the presence of 250 µM copper. Increased copper level in curcumin-treated OSCC cells was accompanied by the induction of intracellular ROS and increased level of Nrf2 which regulates oxidative stress responses in cells. Supplemental copper also inhibited migration of curcumin-treated cells with enhanced level of E-cadherin and decreased vimentin, indications of suppressed epithelial-mesenchymal transition. Early apoptosis was observed in combined treatment but not in treatment with curcumin or copper alone.

    CONCLUSION: Supplement of copper significantly enhanced the inhibitory effect of curcumin treatment on migration and viability of oral cancer cells. Together, these findings provide molecular insight into the role of copper in overcoming insensitivity of oral cancer cells to curcumin treatment, suggesting a new strategy for cancer therapy.

    Matched MeSH terms: Mouth Neoplasms/drug therapy*
  9. Badran MM, Alomrani AH, Harisa GI, Ashour AE, Kumar A, Yassin AE
    Biomed Pharmacother, 2018 Oct;106:1461-1468.
    PMID: 30119220 DOI: 10.1016/j.biopha.2018.07.102
    In the present study, docetaxel (DTX)-loaded poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) nanoparticles were successfully prepared and coated with chitosan (CS). The prepared nanoparticles (NPs) were evaluated for their particle size, zeta potential, particle morphology, drug entrapment efficiency (EE%), and in vitro drug release profile. The anticancer activity of DTX-loaded NPs was assessed in human HT29 colon cancer cell line utilizing MTT assay. The pharmacokinetics of DTX-loaded NPs was monitored in Wistar rats in comparison to DTX solution. The prepared NPs exhibited particle sizes in the range 177.1 ± 8.2-287.6 ± 14.3 nm. CS decorated NPs exhibited a significant increase in particle size and a switch of zeta potential from negative to positive. In addition, high EE% values were obtained for CS coated PCL NPs and PLGA NPs as 67.1 and 76.2%, respectively. Moreover, lowering the rate of DTX in vitro release was achieved within 48 h by using CS coated NPs. Furthermore, a tremendous increase in DTX cytotoxicity was observed by CS-decorated PLGA NPs compared to all other NPs including DTX-free-NPs and pure DTX. The in vivo study revealed significant enhancement in DTX bioavailability from CS-decorated PLGA NPs with more than 4-fold increase in AUC compared to DTX solution. In conclusion, CS-decorated PLGA NPs are a considerable DTX-delivery carrier with magnificent antitumor efficacy.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  10. Mohamed SIA, Jantan I, Nafiah MA, Seyed MA, Chan KM
    BMC Complement Altern Med, 2018 Aug 06;18(1):232.
    PMID: 30081891 DOI: 10.1186/s12906-018-2296-4
    BACKGROUND: Dendritic cells (DCs) are unique antigen presenting cells (APC) which play a pivotal role in immunotherapy and induction of an effective immune response against tumors. In the present study, 80% ethanol extract of Phyllanthus amarus was used to generate tumor lysate (TLY) derived from HCT 116 and MCF-7 cancer cell lines via induction of apoptosis. Monocyte-derived DCs were generated ex vivo from the adherent population of peripheral blood mononuclear cells (PBMCs). The generated TLY were used to impulse DCs to investigate its effect on their cellular immune functions including antigen presentation capacity, phagocytic activity, chemotaxis capacity, T-cell proliferation and cytokines release.

    METHODS: The effect of P. amarus-generated TLY on DCs maturation was evaluated by determination of MHC class I, II and CD 11c expression as well as the co-stimulatory molecules CD 83 and 86 by using flow cytometry. The phagocytic capacity of TLY-pulsed DCs was investigated through FITC-dextran uptake by using flow cytometry. The effect on the cytokines release including IL-12, IL-6 and IL-10 was elucidated by using ELISA. The migration capacity and T cell proliferation activity of pulsed DCs were measured. The relative gene expression levels of cytokines were determined by using qRT-PCR. The major constituents of P. amarus extract were qualitatively and quantitatively analyzed by using validated reversed-phase high performance liquid chromatography (HPLC) methods.

    RESULTS: P. amarus-generated TLY significantly up-regulated the expression levels of MHC class I, CD 11 c, CD 83 and 86 in pulsed DCs. The release of interleukin IL-12 and IL-6 was enhanced by TLY-DCs at a ratio of 1 DC: 3 tumor apoptotic bodies (APO), however, the release of IL-10 was suppressed. The migration ability as well as allogeneic T-cell proliferation activities of loaded DCs were significantly enhanced, but their phagocytic capacity was highly attenuated. The gene expression profiles for IL-12 and IL-6 of DCs showed increase in their mRNA gene expression in TLY pulsed DCs versus unloaded and LPS-treated only DCs.

    CONCLUSION: The effect of P. amarus-generated TLY on the immune effector mechanisms of DCs verified its potential to induce an in vitro anti-tumor immune response against the recognized tumor antigen.

    Matched MeSH terms: Neoplasms/drug therapy
  11. Iwata H, Masuda N, Kim SB, Inoue K, Rai Y, Fujita T, et al.
    Future Oncol, 2019 Jul;15(21):2489-2501.
    PMID: 31140297 DOI: 10.2217/fon-2019-0143
    Aim: To evaluate the efficacy and safety of neratinib as extended adjuvant therapy in patients from Asia based on exploratory analyses of the Phase III ExteNET trial. Patients & methods: A total of 2840 women with early stage HER2-positive breast cancer were randomly assigned to neratinib 240 mg/day or placebo for 1 year after trastuzumab-based adjuvant therapy. Results: A total of 341 patients were from Asia (neratinib, n = 165; placebo, n = 176). 2-year invasive disease-free survival rates were 92.8 and 90.8% with neratinib and placebo, respectively (HR: 0.70; 95% CI: 0.31-1.55), and 5-year rates were 91.9 and 87.2%, respectively (HR: 0.57; 95% CI: 0.27-1.13). Diarrhea was the most common adverse event with neratinib. Conclusion: Extended adjuvant therapy with neratinib reduces disease recurrences in Asian women with HER2-positive breast cancer. Trial registration: Clinicaltrials.gov NCT00878709.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  12. Tiash S, Chowdhury EH
    J Drug Target, 2019 03;27(3):325-337.
    PMID: 30221549 DOI: 10.1080/1061186X.2018.1525388
    Chemotherapy, the commonly favoured approach to treat cancer is frequently associated with treatment failure and recurrence of disease as a result of development of multidrug resistance (MDR) with concomitant over-expression of drug efflux proteins on cancer cells. One of the most widely used drugs, doxorubicin (Dox) is a substrate of three different ATP-binding cassette (ABC) transporters, namely, ABCB1, ABCG2 and ABCC1, predominantly contributing to MDR phenotype in cancer. To silence these transporter-coding genes and thus enhance the therapeutic efficacy of Dox, pH-sensitive carbonate apatite (CA) nanoparticles (NPs) were employed as a carrier system to co-deliver siRNAs against these genes and Dox in breast cancer cells and in a syngeneic breast cancer mouse model. siRNAs and Dox were complexed with NPs by incubation at 37 °C and used to treat cancer cell lines to check cell viability and caspase-mediated signal. 4T1 cells-induced breast cancer mouse model was used for treatment with the complex to confirm their action in tumour regression. Smaller (∼200 nm) and less polydisperse NPs that were taken up more effectively by tumour tissue could enhance Dox chemosensitivity, significantly reducing the tumour size in a very low dose of Dox (0.34 mg/kg), in contrast to the limited effect observed in breast cancer cell lines. The study thus proposes that simultaneous delivery of siRNAs against transporter genes and Dox with the help of CA NPs could be a potential therapeutic intervention in effectively treating MDR breast cancer.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  13. Daddiouaissa D, Amid A, Kabbashi NA, Fuad FAA, Elnour AM, Epandy MAKMS
    J Ethnopharmacol, 2019 May 23;236:466-473.
    PMID: 30853648 DOI: 10.1016/j.jep.2019.03.003
    ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants have been used for ages by indigenous communities around the world to help humankind sustain its health. Graviola (Annona muricata), also called soursop, is a member of the Annonaceae family and is an evergreen plant that is generally distributed in tropical and subtropical areas of the world. Graviola tree has a long history of traditional use due to its therapeutic potential including anti-inflammatory, antimicrobial, antioxidant, insecticide and cytotoxic to tumor cells.

    AIM OF THE STUDY: This study aimed to investigate the in vitro antiproliferative effects and apoptotic events of the ionic liquid extract of Graviola fruit (IL-GFE) on MCF-7 breast cancer cells and their cytokinetics behaviour to observe their potential as a therapeutic alternative in cancer treatment.

    MATERIALS AND METHODS: The cell viability assay of the extract was measured using tetrazolium bromide (MTT assay) to observe the effects of Graviola fruit extract. Then the cytokinetics behaviour of MCF-7 cells treated with IL-GFE is observed by plotting the growth curve of the cells. Additionally, the cell cycle distribution and apoptosis mechanism of IL-GFE action on MCF-7 cancer cells were observed by flow cytometry.

    RESULTS: IL-GFE exhibited anti-proliferative activity on MCF-7 with the IC50 value of 4.75 μg/mL, compared to Taxol with an IC50 value of 0.99 μg/mL. IL- GFE also reduced the number of cell generations from 3.71 to 1.67 generations compared to 2.18 generations when treated with Taxol. Furthermore, the anti-proliferative activities were verified when the growth rate was decreased dynamically from 0.0077 h to 1 to 0.0035 h-1. Observation of the IL-GFE-treated MCF-7 under microscope demonstrated detachment of cells and loss of density. The growth inhibition of the cells by extracts was associated with cell cycle arrest at the G0/G1 phase, and phosphatidylserine externalisation confirms the anti-proliferation through apoptosis.

    CONCLUSIONS: ionic liquid Graviola fruit extract affect the cytokinetics behaviour of MCF-7 cells by reducing cell viability, induce apoptosis and cell cycle arrest at the G0/G1 phase.

    Matched MeSH terms: Breast Neoplasms/drug therapy*
  14. Liew AC, Peh KK, Tan BS, Zhao W, Tangiisuran B
    Support Care Cancer, 2019 Dec;27(12):4515-4524.
    PMID: 30911917 DOI: 10.1007/s00520-019-04724-1
    PURPOSE: This observational study aimed to compare the outcome and health-related quality of life (HRQOL) amongst breast cancer patients using Chinese herbal medicine (CHM) and those not using CHM during chemotherapy.

    METHODS: A prospective, non-randomised longitudinal study was conducted in two government integrated hospitals over an 8-month period. Early-stage breast cancer patients who were (1) either already using complementary and alternative medicine (CAM) or not and (2) who were on a regime of 5-fluorouracil, epirubicin, and cyclophosphamide were included in the study. Patients who agreed to receive CHM were assigned to receive individualised CHM prescriptions deemed suitable for the individual at a particular time. Those who were not willing to take Chinese herbal medicines (CHM) were assigned to the non-CHM control group. Blood profile and chemotherapy-induced AE were recorded whilst HRQOL assessment was done using the EORTC QLQ-C30 questionnaire on first, third, and sixth cycles.

    RESULTS: Forty-seven patients [32 female vs. 1 male, p = 0.31; mean year of age: 52.2(SD = 7.6), p = 0.28)}] were recruited during the study period. Demographics of both groups were comparable. Fifty percent of respondents reported using some kind of CAM before chemotherapy. Diet supplements (40.6%) were the most common CAM used by the respondents. The study showed that patients using CHM had significantly less fatigue (p = 0.012), nausea (p = 0.04), and anorexia (p = 0.005) during chemotherapy. There were no significant differences in patients' HRQOL (p = 0.79). There were no AEs reported during the study.

    CONCLUSION: The use of CHM as an adjunct treatment with conventional chemotherapy have been shown to reduce fatigue, nausea, and anorexia in breast cancer patients but did not reduce chemotherapy-associated hematologic toxicity. The sample size of this study was not powered to assess the significance of HRQOL between two groups of patients.

    Matched MeSH terms: Breast Neoplasms/drug therapy*
  15. Md Nesran ZN, Shafie NH, Ishak AH, Mohd Esa N, Ismail A, Md Tohid SF
    Biomed Res Int, 2019;2019:3480569.
    PMID: 31930117 DOI: 10.1155/2019/3480569
    Epigallocatechin-3-gallate (EGCG) is the most abundant bioactive polyphenolic compound among the green tea constituents and has been identified as a potential anticancer agent in colorectal cancer (CRC) studies. This study was aimed to determine the mechanism of actions of EGCG when targeting the endoplasmic reticulum (ER) stress pathway in CRC. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed on HT-29 cell line and normal cell line (3T3) to determine the EGCG toxicity. Next, western blot was done to observe the expression of the related proteins for the ER stress pathway. The Caspase 3/7 assay was performed to determine the apoptosis induced by EGCG. The results demonstrated that EGCG treatment was toxic to the HT-29 cell line. EGCG induced ER stress in HT-29 by upregulating immunoglobulin-binding (BiP), PKR-like endoplasmic reticulum kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2α), activating transcription 4 (ATF4), and inositol-requiring kinase 1 alpha (IRE1α). Apoptosis was induced in HT-29 cells after the EGCG treatment, as shown by the Caspase 3/7 activity. This study indicates that green tea EGCG has the potential to inhibit colorectal cancer cells through the induction of ER stress.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  16. Mydin AR, Dunne MT, Finn MA, Armstrong JG
    Int J Radiat Oncol Biol Phys, 2013 Jan 1;85(1):101-8.
    PMID: 22658512 DOI: 10.1016/j.ijrobp.2012.03.001
    PURPOSE: To assess the survival benefit of early vs late salvage hormonal therapy (HT), we performed a secondary analysis on patients who developed recurrence from Irish Clinical Oncology Research Group 97-01, a randomized trial comparing 4 vs 8 months neoadjuvant HT plus radiation therapy (RT) in intermediate- and high-risk prostate adenocarcinoma.
    METHODS AND MATERIALS: A total of 102 patients from the trial who recurred were analyzed at a median follow-up of 8.5 years. The patients were divided into 3 groups based on the timing of salvage HT: 57 patients had prostate-specific antigen (PSA)≤10 ng/mL and absent distant metastases (group 1, early), 21 patients had PSA>10 ng/mL and absent distant metastases (group 2, late), and 24 patients had distant metastases (group 3, late). The endpoint analyzed was overall survival (OS) calculated from 2 different time points: date of enrolment in the trial (OS1) and date of initiation of salvage HT (OS2). Survival was estimated using Kaplan-Meier curves and a Cox regression model.
    RESULTS: The OS1 differed significantly between groups (P
    Matched MeSH terms: Prostatic Neoplasms/drug therapy*
  17. Farhana A, Koh AE, Tong JB, Alsrhani A, Kumar Subbiah S, Mok PL
    Molecules, 2021 Sep 06;26(17).
    PMID: 34500845 DOI: 10.3390/molecules26175414
    Molecular crosstalk between the cellular epigenome and genome converge as a synergistic driver of oncogenic transformations. Besides other pathways, epigenetic regulatory circuits exert their effect towards cancer progression through the induction of DNA repair deficiencies. We explored this mechanism using a camptothecin encapsulated in β-cyclodextrin-EDTA-Fe3O4 nanoparticles (CPT-CEF)-treated HT29 cells model. We previously demonstrated that CPT-CEF treatment of HT29 cells effectively induces apoptosis and cell cycle arrest, stalling cancer progression. A comparative transcriptome analysis of CPT-CEF-treated versus untreated HT29 cells indicated that genes controlling mismatch repair, base excision repair, and homologues recombination were downregulated in these cancer cells. Our study demonstrated that treatment with CPT-CEF alleviated this repression. We observed that CPT-CEF exerts its effect by possibly affecting the DNA repair mechanism through epigenetic modulation involving genes of HMGB1, APEX1, and POLE3. Hence, we propose that CPT-CEF could be a DNA repair modulator that harnesses the cell's epigenomic plasticity to amend DNA repair deficiencies in cancer cells.
    Matched MeSH terms: Colonic Neoplasms/drug therapy*
  18. Erman M, Biswas B, Danchaivijitr P, Chen L, Wong YF, Hashem T, et al.
    BMC Cancer, 2021 Sep 14;21(1):1021.
    PMID: 34521387 DOI: 10.1186/s12885-021-08738-z
    BACKGROUND: Clinical effectiveness and safety data of pazopanib in patients with advanced or mRCC in real-world setting from Asia Pacific, North Africa, and Middle East countries are lacking.

    METHODS: PARACHUTE is a phase IV, prospective, non-interventional, observational study. Primary endpoint was the proportion of patients remaining progression free at 12 months. Secondary endpoints were ORR, PFS, safety and tolerability, and relative dose intensity (RDI).

    RESULTS: Overall, 190 patients with a median age of 61 years (range: 22.0-96.0) were included. Most patients were Asian (70%), clear-cell type RCC was the most common (81%), with a favourable (9%), intermediate (47%), poor (10%), and unknown (34%) MSKCC risk score. At the end of the observational period, 78 patients completed the observational period and 112 discontinued the study; 60% of patients had the starting dose at 800 mg. Median RDI was 82%, with 52% of patients receiving  10%) TEAEs related to pazopanib included diarrhoea (30%), palmar-plantar erythrodysesthesia syndrome (15%), and hypertension (14%).

    CONCLUSIONS: Results of the PARACHUTE study support the use of pazopanib in patients with advanced or mRCC who are naive to VEGF-TKI therapy. The safety profile is consistent with that previously reported by pivotal and real-world evidence studies.

    Matched MeSH terms: Kidney Neoplasms/drug therapy*
  19. Rehman K, Zulfakar MH
    Pharm Res, 2017 01;34(1):36-48.
    PMID: 27620176 DOI: 10.1007/s11095-016-2036-8
    PURPOSE: To characterize bigel system as a topical drug delivery vehicle and to establish the immunomodulatory role of imiquimod-fish oil combination against skin cancer and inflammation resulting from chemical carcinogenesis.

    METHODS: Imiquimod-loaded fish oil bigel colloidal system was prepared using a blend of carbopol hydrogel and fish oil oleogel. Bigels were first characterized for their mechanical properties and compared to conventional gel systems. Ex vivo permeation studies were performed on murine skin to analyze the ability of the bigels to transport drug across skin and to predict the release mechanism via mathematical modelling. Furthermore, to analyze pharmacological effectiveness in skin cancer and controlling imiquimod-induced inflammatory side effects, imiquimod-fish oil combination was tested in vitro on epidermoid carcinoma cells and in vivo in Swiss albino mice cancer model.

    RESULTS: Imiquimod-loaded fish oil bigels exhibited higher drug availability inside the skin as compared to individual imiquimod hydrogel and oleogel controls through quasi-Fickian diffusion mechanism. Imiquimod-fish oil combination in bigel enhanced the antitumor effects and significantly reduced serum pro-inflammatory cytokine levels such as tumor necrosis factor-alpha and interleukin-6, and reducing tumor progression via inhibition of vascular endothelial growth factor. Imiquimod-fish oil combination also resulted in increased expression of interleukin-10, an anti-inflammatory cytokine, which could also aid anti-tumor activity against skin cancer.

    CONCLUSION: Imiquimod administration through a bigel vehicle along with fish oil could be beneficial for controlling imiquimod-induced inflammatory side effects and in the treatment of skin cancer.

    Matched MeSH terms: Skin Neoplasms/drug therapy*
  20. Poh Yen K, Stanslas J, Zhang T, Li H, Wang X, Kok Meng C, et al.
    Bioorg Med Chem, 2021 11 01;49:116442.
    PMID: 34600241 DOI: 10.1016/j.bmc.2021.116442
    Acquired paclitaxel (PTX) chemoresistance in triple-negative breast cancer (TNBC) can be inferred from the overexpression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) proteins and the activation of the TLR4/MyD88 cascading signalling pathway. Finding a new inhibitor that can attenuate the activation of this pathway is a novel strategy for reducing PTX chemoresistance. In this study, a series of small molecule compounds were synthesised and tested in combination with PTX against TNBC cells. The trimethoxy-substituted compound significantly decreased MyD88 overexpression and improved PTX activity in MDA-MB-231TLR4+ cells but not in HCCTLR4- cells. On the contrary, the trifluoromethyl-substituted compound with PTX synergistically improved the growth inhibition in both TNBC subtypes. The fluorescence titrations indicated that both compounds could bind with MD2 with good and comparable binding affinities. This was further supported by docking analysis, in which both compounds fit perfectly well and form some critical binding interactions with MD2, an essential lipid-binding accessory to TLR4 involved in activating the TLR-4/MyD88-dependent pathway.
    Matched MeSH terms: Triple Negative Breast Neoplasms/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links