Displaying publications 761 - 780 of 1059 in total

Abstract:
Sort:
  1. Wen WX, Leong CO
    PLoS One, 2019;14(4):e0215381.
    PMID: 31022191 DOI: 10.1371/journal.pone.0215381
    Immune checkpoint inhibitors have demonstrated effective anti-tumour response in cancer types with high mutation burden (e.g. melanoma) and in subset of cancers with features of genomic instability (e.g. mismatch-repair deficiency). One possible explanation for this effect is the increased expression of immune checkpoint molecules and pre-existing adaptive immune response in these cancers. Given that BRCA1 and BRCA2 are integral in maintaining genomic integrity, we hypothesise that the inactivation of these genes may give rise to breast cancers with such immunogenic phenotype. Therefore, using two large series of publicly available breast cancer datasets, namely that from The Cancer Genome Atlas and Wellcome Trust Institute, we sought to investigate the association between BRCA1- and BRCA2-deficiency with features of genomic instability, expression of PD-L1 and PD-1, landscape of inferred tumour-infiltrating immune cells, and T-cell inflamed signature in breast cancers. Here, we report that BRCA1 and BRCA2-deficient breast cancers were associated with features of genomic instability including increased mutation burden. Interestingly, BRCA1-, but not BRCA2-, deficient breast cancers were associated with increased expression of PD-L1 and PD-1, higher abundance of tumour-infiltrating immune cells, and enrichment of T cell-inflamed signature. The differences in immunophenotype between BRCA1- and BRCA2-deficient breast cancers can be attributed, in part, to PTEN gene mutation. Therefore, features of genomic instability such as that mediated by BRCA1- and BRCA2- deficiency in breast cancer were necessary, but not always sufficient, for yielding T cell-inflamed tumour microenvironment, and by extension, predicting clinical benefit from immunotherapy.
    Matched MeSH terms: Antigens, CD274/immunology; Antigens, CD274/metabolism
  2. Peh SC, Kim LH, Poppema S
    Pathology, 2002 Oct;34(5):446-50.
    PMID: 12408344
    AIMS: Epstein-Barr virus (EBV) is associated with many human malignancies. It is implicated in a pathogenetic role in some of these tumours. Two subtypes, type A and B have been identified on the basis of DNA sequence divergence in the nuclear protein genes (EBNA) 2, 3, 4 and 6. They differ in their transforming efficiency and prevalence pattern in different geographical locations. We aimed to identify the virus subtype infection pattern in our EBV-associated diseases.

    METHODS: Paraffin-embedded tissue from 38 lymphomas (17 Hodgkin's, 14 Burkitt's, four T cell and 3 B cell non-Hodgkin's lymphomas) and 14 nasopharyngeal carcinomas (NPC) were studied, with 12 reactive lymph nodes and tonsils as normal control. EBER in situ hybridisation was performed to confirm EBV association in the tumour cells. A nested polymerase chain reaction (PCR) protocol was employed using two pairs of consensus primers which flanked a 105-bp deletion in the type A virus. U2 region encoding for EBNA-2 was chosen as the target of amplification, with cell lines B95.8 and AG876 serving as positive controls for types A and B virus, respectively.

    RESULTS: All cases showed presence of type A virus, consistently detected with nested PCR protocol but not with single step PCR. There was no type B virus or mix infections detected.

    CONCLUSIONS: Nested PCR technique has successfully increased the sensitivity of EBV subtype detection, and type A virus is the prevalent strain associated with human diseases in Malaysia.

    Matched MeSH terms: Epstein-Barr Virus Nuclear Antigens/analysis; Epstein-Barr Virus Nuclear Antigens/genetics
  3. Fatimah SS, Tan GC, Chua K, Fariha MM, Tan AE, Hayati AR
    Microvasc Res, 2013 Mar;86:21-9.
    PMID: 23261754 DOI: 10.1016/j.mvr.2012.12.004
    Particular attention has been directed towards human amnion mesenchymal stem cells (HAMCs) due to their accessibility, availability and immunomodulatory properties. Therefore, the aim of the present study was to determine the temporal changes of stemness and angiogenic gene expressions of serial-passage HAMCs.
    Matched MeSH terms: Antigens, Differentiation/biosynthesis; Antigens, Differentiation/genetics
  4. Rahman SK, Ansari MA, Gaur P, Ahmad I, Chakravarty C, Verma DK, et al.
    Viruses, 2021 04 21;13(5).
    PMID: 33919410 DOI: 10.3390/v13050726
    To establish a productive infection in host cells, viruses often use one or multiple host membrane glycoproteins as their receptors. For Influenza A virus (IAV) such a glycoprotein receptor has not been described, to date. Here we show that IAV is using the host membrane glycoprotein CD66c as a receptor for entry into human epithelial lung cells. Neuraminidase (NA), a viral spike protein, binds to CD66c on the cell surface during IAV entry into the host cells. Lung cells overexpressing CD66c showed an increase in virus binding and subsequent entry into the cell. Upon comparison, CD66c demonstrated higher binding capacity than other membrane glycoproteins (EGFR and DC-SIGN) reported earlier to facilitate IAV entry into host cells. siRNA mediated knockdown of CD66c from lung cells inhibited virus binding on cell surface and entry into cells. Blocking CD66c by antibody on the cell surface resulted in decreased virus entry. We found that CD66c is a specific glycoprotein receptor for influenza A virus that did not affect entry of non-IAV RNA virus (Hepatitis C virus). Finally, IAV pre-incubated with recombinant CD66c protein when administered intranasally in mice showed decreased cytopathic effects in mice lungs. This publication is the first to report CD66c (Carcinoembryonic cell adhesion molecule 6 or CEACAM6) as a glycoprotein receptor for Influenza A virus.
    Matched MeSH terms: Antigens, CD/genetics; Antigens, CD/metabolism*
  5. Nur Fariha MM, Chua KH, Tan GC, Lim YH, Hayati AR
    Cell Biol Int, 2012;36(12):1145-53.
    PMID: 22957758 DOI: 10.1042/CBI20120044
    Cell-based therapy using stem cells has emerged as one of the pro-angiogenic methods to enhance blood vessel growth and sprouting in ischaemic conditions. This study investigated the endogenous and induced angiogenic characteristics of hCDSC (human chorion-derived stem cell) using QPCR (quantitative PCR) method, immunocytochemistry and fibrin-matrigel migration assay. The results showed that cultured hCDSC endogenously expressed angiogenic-endogenic-associated genes (VEGF, bFGF, PGF, HGF, Ang-1, PECAM-1, eNOS, Ve-cad, CD34, VEGFR-2 and vWF), with significant increase in mRNA levels of PGF, HGF, Ang-1, eNOS, VEGFR-2 and vWF following induction by bFGF (basic fibroblast growth factor) and VEGF (vascular endothelial growth factor). These enhanced angiogenic properties suggest that induced hCDSC provides a stronger angiogenic effect for the treatment of ischaemia. After angiogenic induction, hCDSC showed no reduction in the expression of the stemness genes, but had significantly higher levels of mRNA of Oct-4, Nanog (3), FZD9, ABCG-2 and BST-1. The induced cells were positive for PECAM-1 (platelet/endothelial cell adhesion molecule 1) and vWF (von Willebrand factor) with immunocytochemistry staining. hCDSC also showed endothelial migration behaviour when cultured in fibrin-matrigel construct and were capable of forming vessels in vivo after implanting into nude mice. These data suggest that hCDSC could be the cells of choice in the cell-based therapy for pro-angiogenic purpose.
    Matched MeSH terms: Antigens, CD31/analysis; Antigens, CD31/genetics
  6. Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, et al.
    Lancet, 2020 12 05;396(10265):1817-1828.
    PMID: 33278935 DOI: 10.1016/S0140-6736(20)32531-9
    BACKGROUND: Pembrolizumab monotherapy showed durable antitumour activity and manageable safety in patients with metastatic triple-negative breast cancer. We aimed to examine whether the addition of pembrolizumab would enhance the antitumour activity of chemotherapy in patients with metastatic triple-negative breast cancer.

    METHODS: In this randomised, placebo-controlled, double-blind, phase 3 trial, done in 209 sites in 29 countries, we randomly assigned patients 2:1 with untreated locally recurrent inoperable or metastatic triple-negative breast cancer using a block method (block size of six) and an interactive voice-response system with integrated web-response to pembrolizumab (200 mg) every 3 weeks plus chemotherapy (nab-paclitaxel; paclitaxel; or gemcitabine plus carboplatin) or placebo plus chemotherapy. Randomisation was stratified by type of on-study chemotherapy (taxane or gemcitabine-carboplatin), PD-L1 expression at baseline (combined positive score [CPS] ≥1 or <1), and previous treatment with the same class of chemotherapy in the neoadjuvant or adjuvant setting (yes or no). Eligibility criteria included age at least 18 years, centrally confirmed triple-negative breast cancer; at least one measurable lesion; provision of a newly obtained tumour sample for determination of triple-negative breast cancer status and PD-L1 status by immunohistochemistry at a central laboratory; an Eastern Cooperative Oncology Group performance status score 0 or 1; and adequate organ function. The sponsor, investigators, other study site staff (except for the unmasked pharmacist), and patients were masked to pembrolizumab versus saline placebo administration. In addition, the sponsor, the investigators, other study site staff, and patients were masked to patient-level tumour PD-L1 biomarker results. Dual primary efficacy endpoints were progression-free survival and overall survival assessed in the PD-L1 CPS of 10 or more, CPS of 1 or more, and intention-to-treat populations. The definitive assessment of progression-free survival was done at this interim analysis; follow-up to assess overall survival is continuing. For progression-free survival, a hierarchical testing strategy was used, such that testing was done first in patients with CPS of 10 or more (prespecified statistical criterion was α=0·00411 at this interim analysis), then in patients with CPS of 1 or more (α=0·00111 at this interim analysis, with partial alpha from progression-free survival in patients with CPS of 10 or more passed over), and finally in the intention-to-treat population (α=0·00111 at this interim analysis). This study is registered with ClinicalTrials.gov, NCT02819518, and is ongoing.

    FINDINGS: Between Jan 9, 2017, and June 12, 2018, of 1372 patients screened, 847 were randomly assigned to treatment, with 566 patients in the pembrolizumab-chemotherapy group and 281 patients in the placebo-chemotherapy group. At the second interim analysis (data cutoff, Dec 11, 2019), median follow-up was 25·9 months (IQR 22·8-29·9) in the pembrolizumab-chemotherapy group and 26·3 months (22·7-29·7) in the placebo-chemotherapy group. Among patients with CPS of 10 or more, median progression-free survival was 9·7 months with pembrolizumab-chemotherapy and 5·6 months with placebo-chemotherapy (hazard ratio [HR] for progression or death, 0·65, 95% CI 0·49-0·86; one-sided p=0·0012 [primary objective met]). Median progression-free survival was 7·6 and 5·6 months (HR, 0·74, 0·61-0·90; one-sided p=0·0014 [not significant]) among patients with CPS of 1 or more and 7·5 and 5·6 months (HR, 0·82, 0·69-0·97 [not tested]) among the intention-to-treat population. The pembrolizumab treatment effect increased with PD-L1 enrichment. Grade 3-5 treatment-related adverse event rates were 68% in the pembrolizumab-chemotherapy group and 67% in the placebo-chemotherapy group, including death in <1% in the pembrolizumab-chemotherapy group and 0% in the placebo-chemotherapy group.

    INTERPRETATION: Pembrolizumab-chemotherapy showed a significant and clinically meaningful improvement in progression-free survival versus placebo-chemotherapy among patients with metastatic triple-negative breast cancer with CPS of 10 or more. These findings suggest a role for the addition of pembrolizumab to standard chemotherapy for the first-line treatment of metastatic triple-negative breast cancer.

    FUNDING: Merck Sharp & Dohme Corp, a subsidiary of Merck & Co, Inc.

    Matched MeSH terms: Antigens, CD274/drug effects; Antigens, CD274/metabolism
  7. Li HB, You QS, Xu LX, Sun LX, Abdul Majid AS, Xia XB, et al.
    Cell Physiol Biochem, 2017;43(5):2117-2132.
    PMID: 29065394 DOI: 10.1159/000484231
    BACKGROUND/AIMS: The aim of the present study is to investigate the effect of long non-coding RNA-MALAT1 (LncRNA-MALAT1) on retinal ganglion cell (RGC) apoptosis mediated by the PI3K/Akt signaling pathway in rats with glaucoma.

    METHODS: RGCs were isolated and cultured, and monoclonal antibodies (anti-rat Thy-1, Brn3a and RBPMS) were examined by immunocytochemistry. An overexpression vector MALAT1-RNA activation (RNAa), gene knockout vector MALAT1-RNA interference (RNAi), and control vector MALAT1-negative control (NC) were constructed. A chronic high intraocular pressure (IOP) rat model of glaucoma was established by episcleral vein cauterization. The RGCs were divided into the RGC control, RGC pressure, RGC pressure + MALAT1-NC, RGC pressure + MALAT1-RNAi and RGC pressure + MALAT1-RNAa groups. Sixty Sprague-Dawley (SD) rats were randomly divided into the normal, high IOP, high IOP + MALAT1-NC, high IOP + MALAT1-RNAa and high IOP + MALAT1-RNAi groups. qRT-PCR and western blotting were used to detect the expression levels of LncRNA-MALAT1 and PI3K/Akt. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and flow cytometry were used to detect RGC apoptosis.

    RESULTS: Immunocytochemistry revealed that the cultured RGCs reached 90% purity. Compared with the RGC pressure + MALAT1-NC group, the RGC pressure + MALAT1-RNAa group exhibited elevated expression levels of MALAT1, lower total protein levels of PI3K and Akt and decreased RGC apoptosis, while these expression levels were reversed in the RGC pressure + MALAT1-RNAi group. RGC numbers and PI3K/Akt expression levels in the high IOP model groups were lower than those in the normal group. In the high IOP + MALAT1-RNAa group, the mRNA and protein expression levels of PI3K/Akt were reduced but higher than those in the other three high IOP model groups. Additionally, RGC numbers in the high IOP + MALAT1-RNAa group were lower than those in the normal group but higher than those in the other three high IOP model groups.

    CONCLUSION: Our study provides evidence that LncRNA-MALAT1 could inhibit RGC apoptosis in glaucoma through activation of the PI3K/Akt signaling pathway.

    Matched MeSH terms: Antigens, Thy-1/genetics; Antigens, Thy-1/metabolism
  8. Teo WH, Nurul AA, Norazmi MN
    Trop Biomed, 2012 Jun;29(2):239-53.
    PMID: 22735846 MyJurnal
    The Plasmodium falciparum serine repeat antigen (SERA) is one of the promising blood-stage malarial vaccine candidates. In this study, recombinant Mycobacterium bovis bacille Calmette-Guerin (rBCG) expressing the 22 kDa protein (SE22) from the 47 kDa Nterminal domain of serine repeat antigen (SERA), generated in favour of mycobacterium codon usage, elicited specific immune response in BALB/c mice with a mixed Th1/Th2 profile. Immunized sera containing high levels of specific IgG1 and IgG2a against the epitope (as determined by ELISA) were reactive with fixed P. falciparum merozoites as demonstrated by indirect immunofluorescence assay (IFA). Furthermore, the lymphocyte proliferative response to SE22 antigen from rBCG-immunized mice was higher than that of controls. The expression of intracellular cytokines (IL-2, IL-4 and IFNγ) in CD4+- and CD8+-cells was also enhanced following in-vitro stimulation with SE22. These findings indicate that a rBCG-based vaccine candidate expressing a blood-stage antigen of P. falciparum could enhance both humoral and cellular immune responses, thus paving the way for the rational use of rBCG as a vaccine candidate against malaria.
    Matched MeSH terms: Antigens, Protozoan/genetics; Antigens, Protozoan/immunology*
  9. Rahumatullah A, Balachandra D, Noordin R, Baharudeen Z, Lim YY, Choong YS, et al.
    Sci Rep, 2021 01 28;11(1):2502.
    PMID: 33510342 DOI: 10.1038/s41598-021-82125-3
    Antibodies have different chemical properties capable of targeting a diverse nature of antigens. Traditionally, immune antibody libraries are perceived to be disease-specific with a skewed repertoire. The complexity during the generation of a combinatorial antibody library allows for a skewed but diverse repertoire to be generated. Strongyloides stercoralis is a parasite that causes strongyloidiasis, a potentially life-threatening disease with a complex diagnosis that impedes effective control and treatment of the disease. This study describes the isolation of monoclonal antibodies against S. stercoralis NIE recombinant protein using an immune antibody phage display library derived from lymphatic filaria-infected individuals. The isolated antibody clones showed both lambda and kappa light chains gene usage, with diverse amino acid distributions. Structural analysis showed that electropositivity and the interface area could determine the binding affinity of the clones with NIE. The successful identification of S. stercoralis antibodies from the filarial immune library highlights the breadth of antibody gene diversification in an immune antibody library that can be applied for closely related infections.
    Matched MeSH terms: Antigens, Helminth/immunology; Antigens, Helminth/chemistry
  10. Müller-Sienerth N, Shilts J, Kadir KA, Yman V, Homann MV, Asghar M, et al.
    Malar J, 2020 Jan 17;19(1):31.
    PMID: 31952523 DOI: 10.1186/s12936-020-3111-5
    BACKGROUND: Malaria remains a global health problem and accurate surveillance of Plasmodium parasites that are responsible for this disease is required to guide the most effective distribution of control measures. Serological surveillance will be particularly important in areas of low or periodic transmission because patient antibody responses can provide a measure of historical exposure. While methods for detecting host antibody responses to Plasmodium falciparum and Plasmodium vivax are well established, development of serological assays for Plasmodium knowlesi, Plasmodium ovale and Plasmodium malariae have been inhibited by a lack of immunodiagnostic candidates due to the limited availability of genomic information.

    METHODS: Using the recently completed genome sequences from P. malariae, P. ovale and P. knowlesi, a set of 33 candidate cell surface and secreted blood-stage antigens was selected and expressed in a recombinant form using a mammalian expression system. These proteins were added to an existing panel of antigens from P. falciparum and P. vivax and the immunoreactivity of IgG, IgM and IgA immunoglobulins from individuals diagnosed with infections to each of the five different Plasmodium species was evaluated by ELISA. Logistic regression modelling was used to quantify the ability of the responses to determine prior exposure to the different Plasmodium species.

    RESULTS: Using sera from European travellers with diagnosed Plasmodium infections, antigens showing species-specific immunoreactivity were identified to select a panel of 22 proteins from five Plasmodium species for serological profiling. The immunoreactivity to the antigens in the panel of sera taken from travellers and individuals living in malaria-endemic regions with diagnosed infections showed moderate power to predict infections by each species, including P. ovale, P. malariae and P. knowlesi. Using a larger set of patient samples and logistic regression modelling it was shown that exposure to P. knowlesi could be accurately detected (AUC = 91%) using an antigen panel consisting of the P. knowlesi orthologues of MSP10, P12 and P38.

    CONCLUSIONS: Using the recent availability of genome sequences to all human-infective Plasmodium spp. parasites and a method of expressing Plasmodium proteins in a secreted functional form, an antigen panel has been compiled that will be useful to determine exposure to these parasites.

    Matched MeSH terms: Antigens, Protozoan/genetics; Antigens, Protozoan/immunology*
  11. Fahmy O, Khairul-Asri MG, Stenzl A, Gakis G
    Clin. Exp. Metastasis, 2016 10;33(7):629-35.
    PMID: 27380916 DOI: 10.1007/s10585-016-9807-9
    For many decades, no significant improvements could be achieved to prolong the survival in metastatic bladder cancer. Recently, systemic immunotherapy with checkpoint inhibitors (anti-PD-L1/anti-CTLA-4) has been introduced as a novel treatment modality for patients with metastatic bladder cancer. We conducted a systematic review according to the PRISMA statement for data published on the clinical efficacy of checkpoint inhibitors in metastatic bladder cancer. Clinical efficacy of anti PD-L1 therapy was investigated in prospective trials in a total of 155 patients. Patients with positive expression for PD-L1 tended towards better overall response rates (ORR) compared to those with negative expression (34/76 vs 10/73, 45 vs 14 %; p = 0.21). Among patients with PD-L1 positive tumors, those with non-visceral metastases exhibited significantly higher ORR compared to those with visceral metastases (82 vs 28 %; p = 0.001). For anti-CTLA4 therapy, there were no data retrievable on clinical efficacy. Although data on clinical efficacy of checkpoint inhibitors in metastatic bladder cancer are currently limited, the efficacy of these drugs might depend mainly on the metastatic volume and immune system integrity. Patients with PD-L1 positive tumors and non-visceral metastases seem to derive the highest benefit from therapy.
    Matched MeSH terms: Antigens, CD274/antagonists & inhibitors*; Antigens, CD274/genetics
  12. Yee PTI, Tan SH, Ong KC, Tan KO, Wong KT, Hassan SS, et al.
    Sci Rep, 2019 03 18;9(1):4805.
    PMID: 30886246 DOI: 10.1038/s41598-019-41285-z
    Besides causing mild hand, foot and mouth infections, Enterovirus A71 (EV-A71) is associated with neurological complications and fatality. With concerns about rising EV-A71 virulence, there is an urgency for more effective vaccines. The live attenuated vaccine (LAV) is a more valuable vaccine as it can elicit both humoral and cellular immune responses. A miRNA-based vaccine strain (pIY) carrying let-7a and miR-124a target genes in the EV-A71 genome which has a partial deletion in the 5'NTR (∆11 bp) and G64R mutation (3Dp°l) was designed. The viral RNA copy number and viral titers of the pIY strain were significantly lower in SHSY-5Y cells that expressed both let-7a and miR-124a. Inhibition of the cognate miRNAs expressed in RD and SHSY-5Y cells demonstrated de-repression of viral mRNA translation. A previously constructed multiply mutated strain, MMS and the pIY vaccine strain were assessed in their ability to protect 4-week old mice from hind limb paralysis. The MMS showed higher amounts of IFN-γ ex vivo than the pIY vaccine strain. There was absence of EV-A71 antigen in the skeletal muscles and spinal cord micrographs of mice vaccinated with the MMS and pIY strains. The MMS and pIY strains are promising LAV candidates developed against severe EV-A71 infections.
    Matched MeSH terms: Antigens, Viral/analysis; Antigens, Viral/immunology
  13. Hudu SA, Malik YA, Niazlin MT, Harmal NS, Sekawi Z
    Curr Issues Mol Biol, 2014;16:69-78.
    PMID: 24014801
    Hepatitis B virus infection is a serious health problem worldwide, and more than 350 million people are chronic carriers, constituting a major global threat. Southeast Asia and the Western Pacific have the highest levels of endemicity in the world, with an estimated seroprevalence ranging between 2% and 31%. Mutations in the hepatitis B surface antigen (HBsAg) have been reported in many parts of the world but are most common in Asian infants; such mutants have several clinical effects, such as the development of hepatocellular carcinoma. Diagnostic failures by commercial assays have reduced the diagnostic effectiveness of HBsAg detection. For example the substitution of an amino acid in the major hydrophilic region of the S gene reduces the binding of hepatitis B surface antibodies leading to immune escape. The safety of blood transfusion may be compromised by current screening tests due to escape from being neutralised by antibodies induced by HBsAg mutants, and undetectable levels of viral surface protein. Data on the epidemiology of HBsAg mutation in Asia Pacific are scant; however, this manuscript has reviewed the available information on the epidemiology of HBsAg mutation in Asia Pacific.
    Matched MeSH terms: Hepatitis B Surface Antigens/genetics*; Hepatitis B Surface Antigens/isolation & purification
  14. Tan KL, Chia WC, How CW, Tor YS, Show PL, Looi QHD, et al.
    Mol Biotechnol, 2021 Sep;63(9):780-791.
    PMID: 34061307 DOI: 10.1007/s12033-021-00339-2
    The objective of this study is to develop a simple protocol to isolate and characterise small extracellular vesicles (sEVs) from human umbilical cord-derived MSCs (hUC-MSCs). hUC-MSCs were characterised through analysis of morphology, immunophenotyping and multidifferentiation ability. SEVs were successfully isolated by ultrafiltration from the conditioned medium of hUC-MSCs. The sEVs' size distribution, intensity within a specific surface marker population were measured with zetasizer or nanoparticle tracking analysis. The expression of surface and internal markers of sEVs was also assessed by western blotting. Morphology of hUC-MSCs displayed as spindle-shaped, fibroblast-like adherent cells. Phenotypic analysis by flow cytometry revealed that hUC-MSCs expressed MSC surface marker, including CD90, CD73, CD105, CD44 and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. Populations of sEVs with CD9, CD63 and CD81 positive were detected with size distribution in the diameter of 63.2 to 162.5 nm. Typical sEVs biomarkers such as CD9, CD63, CD81, HSP70 and TSG101 were also detected with western blotting. Our study showed that sEVs from hUC-MSCs conditioned medium were successfully isolated and characterised. Downstream application of hUC-MSCs-sEVs will be further explored.
    Matched MeSH terms: Antigens, CD/genetics; Antigens, CD/metabolism
  15. Mahlangu JN, Weldingh KN, Lentz SR, Kaicker S, Karim FA, Matsushita T, et al.
    J Thromb Haemost, 2015 Nov;13(11):1989-98.
    PMID: 26362483 DOI: 10.1111/jth.13141
    BACKGROUND: Vatreptacog alfa, a recombinant human factor VIIa (rFVIIa) analog developed to improve the treatment of bleeds in hemophilia patients with inhibitors, differs from native FVIIa by three amino acid substitutions. In a randomized, double-blind, crossover, confirmatory phase III trial (adept(™) 2), 8/72 (11%) hemophilia A or B patients with inhibitors treated for acute bleeds developed anti-drug antibodies (ADAs) to vatreptacog alfa.

    OBJECTIVES: To characterize the formation of anti-vatreptacog alfa ADAs in hemophilia patients with inhibitors.

    METHODS/PATIENTS: This was a post hoc analysis of adept(™) 2. Immunoglobulin isotype determination, specificity analysis of rFVIIa cross-reactive antibodies, epitope mapping of rFVIIa single mutant analogs and pharmacokinetic (PK) profiling were performed to characterize the ADAs.

    RESULTS: Immunoglobulin isotyping indicated that the ADAs were of the immunoglobulin G subtype. In epitope mapping, none of the rFVIIa single mutant analogs (V158D, E296V or M298Q) contained the complete antibody epitope, confirming that the antibodies were specific for vatreptacog alfa. In two patients, for whom PK profiling was performed both before and after the development of ADAs, vatreptacog alfa showed a prolonged elimination phase following ADA development. During the follow-up evaluation, the rFVIIa cross-reactivity disappeared after the last vatreptacog alfa exposure, despite continued exposure to rFVIIa as part of standard care.

    CONCLUSIONS: Results from the vatreptacog alfa phase III trial demonstrate that the specific changes made, albeit relatively small, to the FVIIa molecule alter its clinical immunogenicity.

    Matched MeSH terms: HLA-D Antigens/analysis; HLA-D Antigens/genetics
  16. Man RC, Yong TK, Hwei NM, Halim WHWA, Zahidin AZM, Ramli R, et al.
    Mol Vis, 2017;23:810-822.
    PMID: 29225457
    Various clinical disorders and injuries, such as chemical, thermal, or mechanical injuries, may lead to corneal loss that results in blindness. PURPOSE: The aims of this study were to differentiate human buccal mucosa (BMuc) into corneal epithelial-like cells, to fabricate engineered corneal tissue using buccal mucosal epithelial cells, and to reconstruct a damaged corneal epithelium in a nude rat model.

    Methods: BMuc were subjected to 10 d of induction factors to investigate the potential of cells to differentiate into corneal lineages.

    Results: Corneal stem cell markers β1-integrin, C/EBPδ, ABCG2, p63, and CK3 were upregulated in the gene expression analysis in induced BMuc, whereas CK3 and p63 showed significant protein expression in induced BMuc compared to the uninduced cells. BMuc were then left to reach 80% confluency after differential trypsinization. The cells were harvested and cultivated on a commercially available untreated air-dried amniotic membrane (AM) in a Transwell system in induction medium. The corneal constructs were fabricated and then implanted into damaged rat corneas for up to 8 weeks. A significant improvement was detected in the treatment group at 8 weeks post-implantation, as revealed by slit lamp biomicroscopy analysis. The structure and thickness of the corneal layer were also analyzed using histological staining and time-domain optical coherence tomography scans and were found to resemble a native corneal layer. The protein expression for CK3 and p63 were continuously detected throughout the corneal epithelial layer in the corneal construct.

    Conclusions: In conclusion, human BMuc can be induced to express a corneal epithelial-like phenotype. The addition of BMuc improves corneal clarity, prevents vascularization, increases corneal thickness and stromal alignment, and appears to have no adverse effect on the host after implantation.

    Matched MeSH terms: Antigens, CD29/genetics; Antigens, CD29/metabolism
  17. Clayton BA, Middleton D, Arkinstall R, Frazer L, Wang LF, Marsh GA
    PLoS Negl Trop Dis, 2016 06;10(6):e0004775.
    PMID: 27341030 DOI: 10.1371/journal.pntd.0004775
    Person-to-person transmission is a key feature of human Nipah virus outbreaks in Bangladesh. In contrast, in an outbreak of Nipah virus in Malaysia, people acquired infections from pigs. It is not known whether this important epidemiological difference is driven primarily by differences between NiV Bangladesh (NiV-BD) and Malaysia (NiV-MY) at a virus level, or by environmental or host factors. In a time course study, ferrets were oronasally exposed to equivalent doses of NiV-BD or NiV-MY. More rapid onset of productive infection and higher levels of virus replication in respiratory tract tissues were seen for NiV-BD compared to NiV-MY, corroborating our previous report of increased oral shedding of NiV-BD in ferrets and suggesting a contributory mechanism for increased NiV-BD transmission between people compared to NiV-MY. However, we recognize that transmission occurs within a social and environmental framework that may have an important and differentiating role in NiV transmission rates. With this in mind, ferret-to-ferret transmission of NiV-BD and NiV-MY was assessed under differing viral exposure conditions. Transmission was not identified for either virus when naïve ferrets were cohoused with experimentally-infected animals. In contrast, all naïve ferrets developed acute infection following assisted and direct exposure to oronasal fluid from animals that were shedding either NiV-BD or NiV-MY. Our findings for ferrets indicate that, although NiV-BD may be shed at higher levels than NiV-MY, transmission risk may be equivalently low under exposure conditions provided by cohabitation alone. In contrast, active transfer of infected bodily fluids consistently results in transmission, regardless of the virus strain. These observations suggest that the risk of NiV transmission is underpinned by social and environmental factors, and will have practical implications for managing transmission risk during outbreaks of human disease.
    Matched MeSH terms: Antigens, Viral/isolation & purification
  18. Tan HY, Yong YK, Andrade BB, Shankar EM, Ponnampalavanar S, Omar SF, et al.
    AIDS, 2015 Feb 20;29(4):421-31.
    PMID: 25565499 DOI: 10.1097/QAD.0000000000000557
    Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is a substantial problem in HIV/TB coinfected patients commencing antiretroviral therapy (ART). The immunopathogenesis of TB-IRIS includes increased production of proinflammatory chemokines and cytokines, including interleukin-18, which is a signature cytokine of the nucleotide-binding domain and leucine-rich repeat pyrin containing protein-3 inflammasome. We compared plasma levels of interleukin-18 and other biomarkers of monocyte/macrophage activation in the prediction and characterization of TB-IRIS.
    Matched MeSH terms: Antigens, Bacterial/immunology
  19. Ismail IH, Boyle RJ, Mah LJ, Licciardi PV, Tang ML
    Pediatr Allergy Immunol, 2014 Nov;25(7):674-84.
    PMID: 25376403 DOI: 10.1111/pai.12303
    Regulatory T cells (Treg) play an essential role in early immune programming and shaping the immune response towards a pro-allergic or tolerant state. We evaluated cord blood Treg and cytokine responses to microbial and non-microbial stimuli in infants at high risk of allergic disease and their associations with development of allergic disease in the first year.
    Matched MeSH terms: Antigens, Bacterial/immunology
  20. Azlin AH, Looi LM, Cheah PL
    Asian Pac J Cancer Prev, 2014;15(9):3959-63.
    PMID: 24935581
    The tumour suppressor genes, p53 and pRb, are known to play important roles in neoplastic transformation. While molecular routes to the uncontrolled growth of hepatocytes, leading to primary liver cancer have generated considerable interest, the roles of p53 and pRb mutations in hepatocellular carcinoma (HCC) and hepatoblastoma (HB) remain to be clarified. We examined the immunohistochemical expression of p53 and pRb gene products in 26 HCC and 9 HB, sampled into tissue microarray blocks. 10 (38%) of 26 HCC showed > 10% tumour nuclear staining for p53 protein, 3 of these also being HbsAg positive. Conversely, none of 9 HB expressed nuclear p53 immunopositivity. Some 24 (92%) HCC and 8 (89%) HB showed loss of pRb nuclear expression. Two of the 26 HCC and one of the 9 HB showed >10% tumour nuclear staining for pRb protein. Our results suggest that p53 does not have an important role in the development of HB but may contribute in HCC. There is also loss of pRb expression in the majority of HCC and HB, supporting loss of pRb gene function in the hepatocarcinogenesis pathway. However, a comparison of the staining profiles of p53 and pRb proteins in HCC and HB did not reveal a consistent pattern to differentiate between the two types of tumours immunohistochemically. Hence the use of p53 and pRB protein expression has no contribution in the situation where there is a diagnostic difficulty in deciding between HCC and HB.
    Matched MeSH terms: Hepatitis B Surface Antigens/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links