Displaying publications 61 - 80 of 288 in total

Abstract:
Sort:
  1. Chellappan DK, Dharwal V, Paudel KR, Jha NK, MacLoughlin R, Oliver BG, et al.
    Future Med Chem, 2021 08;13(15):1249-1251.
    PMID: 34184585 DOI: 10.4155/fmc-2021-0097
  2. Chellappan DK, Prasher P, Saravanan V, Vern Yee VS, Wen Chi WC, Wong JW, et al.
    Chem Biol Interact, 2022 Jan 05;351:109706.
    PMID: 34662570 DOI: 10.1016/j.cbi.2021.109706
    The challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases. In this review, we have discussed and summarized the current scenario and recent developments in targeted delivery of proteins and peptide-based drugs to the lungs. Moreover, we have also highlighted the advantages of pulmonary drug delivery over conventional drug delivery approaches for peptide-based drugs, in terms of efficacy, retention time and other important pharmacokinetic parameters. The review also highlights the future perspectives and the impact of targeted drug delivery on peptide-based drugs in the coming decade.
  3. Chellappan DK, Hansbro PM, Dua K, Hsu A, Gupta G, Ng ZY, et al.
    Pharm Nanotechnol, 2017;5(4):250-254.
    PMID: 28786351 DOI: 10.2174/2211738505666170808094635
    BACKGROUND: Vesicular systems like nanotechnology and liposomes are gaining tremendous attention lately in the field of respiratory diseases. These formulations enhance bioavailability of the drug candidate, which could be achieved through a novel drug delivery mechanism. Moreover, the therapeutic potential achieved through these systems is highly controllable over long durations of time providing better efficacy and patient compliance.

    OBJECTIVE: The objective of this paper is to review the recent literature on vesicular drug delivery systems containing curcumin.

    METHODS: We have collated and summarized various recent attempts made to develop different controlled release drug delivery systems containing curcumin which would be of great interest for herbal, formulation and biological scientists. There are several vesicular nanotechnological techniques involving curcumin which have been studied recently, targeting pulmonary diseases.

    RESULTS: Different vesicular systems containing curcumin are being studied for their therapeutic potential in different respiratory diseases. There has been a renewed interest in formulations containing curcumin recently, primarily owing to the broad spectrum therapeutic potential of this miracle substance. Various types of formulations, containing curcumin, targeting different bodily systems have recently emerged and, nevertheless, the search for newer frontiers with this drug goes on.

    CONCLUSION: This mini review, in this direction, tries to highlight the key research interventions employing vesicular systems of drug delivery with curcumin.

  4. Chellappan DK, Paudel KR, Tan NW, Cheong KS, Khoo SSQ, Seow SM, et al.
    Mitochondrion, 2022 Nov;67:15-37.
    PMID: 36176212 DOI: 10.1016/j.mito.2022.09.003
    Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
  5. Chellappan DK, Panneerselvam J, Madheswaran T, Chellian J, Ambar Jeet Singh BJ, Jia Yee N, et al.
    Minerva Med, 2018 06;109(3):254-255.
    PMID: 29849021 DOI: 10.23736/S0026-4806.18.05462-9
  6. Chellappan DK, Chellian J, Rahmah NSN, Gan WJ, Banerjee P, Sanyal S, et al.
    Diabetes Metab Syndr Obes, 2023;16:2187-2223.
    PMID: 37521747 DOI: 10.2147/DMSO.S390741
    Diabetes mellitus (DM) is a chronic metabolic disorder recognized as a major health problem globally. A defective insulin activity contributes to the prevalence and expansion of DM. Treatment of DM is often hampered by limited options of conventional therapies and adverse effects associated with existing procedures. This has led to a spike in the exploration for potential therapeutic agents from various natural resources for clinical applications. The marine environment is a huge store of unexplored diversity of chemicals produced by a multitude of organisms. To date, marine microorganisms, microalgae, macroalgae, corals, sponges, and fishes have been evaluated for their anti-diabetic properties. The structural diversity of bioactive metabolites discovered has shown promising hypoglycaemic potential through in vitro and in vivo screenings via various mechanisms of action, such as PTP1B, α-glucosidase, α-amylase, β-glucosidase, and aldose reductase inhibition as well as PPAR alpha/gamma dual agonists activities. On the other hand, hypoglycaemic effect is also shown to be exerted through the balance of antioxidants and free radicals. This review highlights marine-derived chemicals with hypoglycaemic effects and their respective mechanisms of action in the management of DM in humans.
  7. Chin LH, Hon CM, Chellappan DK, Chellian J, Madheswaran T, Zeeshan F, et al.
    Eur J Pharmacol, 2020 Jul 15;879:173139.
    PMID: 32343971 DOI: 10.1016/j.ejphar.2020.173139
    Chronic airway inflammatory diseases are characterized by persistent proinflammatory responses in the respiratory tract. Although, several treatment strategies are currently available, lifelong therapy is necessary for most of these diseases. In recent years, phytophenols, namely, flavonoids, derived from fruits and vegetables have been gaining tremendous interest and have been extensively studied due to their low toxicological profile. Naringenin is a bioflavonoid abundantly found in citrus fruits. This substance has shown notable therapeutic potential in various diseases due to its promising diverse biological activities. In this review, we have attempted to review the published studies from the available literature, discussing the molecular level mechanisms of naringenin in different experimental models of airway inflammatory diseases including asthma, chronic obstructive pulmonary disease (COPD), lung cancer, pulmonary fibrosis and cystic fibrosis. Current evidences have proposed that the anti-inflammatory properties of naringenin play a major role in ameliorating inflammatory disease states. In addition, naringenin also possesses several other biological properties. Despite the proposed mechanisms suggesting remarkable therapeutic benefits, the clinical use of naringenin is, however, hampered by its low solubility and bioavailability. Furthermore, this review also discusses on the studies that utilise nanocarriers as a drug delivery system to address the issue of poor solubility.
  8. Chong WC, Chellappan DK, Shukla SD, Peterson GM, Patel RP, Jha NK, et al.
    Viruses, 2021 Jul 18;13(7).
    PMID: 34372603 DOI: 10.3390/v13071397
    The recent coronavirus disease 2019 (COVID-19) outbreak has drawn global attention, affecting millions, disrupting economies and healthcare modalities. With its high infection rate, COVID-19 has caused a colossal health crisis worldwide. While information on the comprehensive nature of this infectious agent, SARS-CoV-2, still remains obscure, ongoing genomic studies have been successful in identifying its genomic sequence and the presenting antigen. These may serve as promising, potential therapeutic targets in the effective management of COVID-19. In an attempt to establish herd immunity, massive efforts have been directed and driven toward developing vaccines against the SARS-CoV-2 pathogen. This review, in this direction, is aimed at providing the current scenario and future perspectives in the development of vaccines against SARS-CoV-2.
  9. Corrie L, Gulati M, Singh SK, Kapoor B, Khursheed R, Awasthi A, et al.
    Life Sci, 2021 Sep 01;280:119753.
    PMID: 34171379 DOI: 10.1016/j.lfs.2021.119753
    Polycystic ovarian syndrome (PCOS) is the primary cause of female infertility affecting several women worldwide. Changes in hormonal functions such as hyperandrogenism are considered a significant factor in developing PCOS in women. In addition, many molecular pathways are involved in the pathogenesis of PCOS in women. To have better insights about PCOS, it is data from clinical studies carried on women suffering from PCOS should be collected. However, this approach has several implications, including ethical considerations, cost involved and availability of subject. Moreover, during the early drug development process, it is always advisable to use non-human models mimicking human physiology as they are less expensive, readily available, have a shorter gestation period and less risk involved. Many animal models have been reported that resemble the PCOS pathways in human subjects. However, the models developed on rats and mice are more preferred over other rodent/non-rodent models due to their closer resemblance with human PCOS development mechanism. The most extensively reported PCOS models for rats and mice include those induced by using testosterone, letrozole and estradiol valerate. As the pathophysiology of PCOS is complex, none of the explored models completely surrogates the PCOS related conditions occurring in women. Hence, there is a need to develop an animal model that can resemble the pathophysiology of PCOS in women. The review focuses on various animal models explored to understand the pathophysiology of PCOS. The article also highlights some environmental and food-related models that have been used to induce PCOS.
  10. Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, et al.
    Chem Biol Interact, 2022 Dec 01;368:110238.
    PMID: 36306865 DOI: 10.1016/j.cbi.2022.110238
    Polysaccharides (PS) represent a broad class of polymer-based compounds that have been extensively researched as therapeutics and excipients for drug delivery. As pharmaceutical carriers, PS have mostly found their use as adsorbents, suspending agents, as well as cross-linking agents for various formulations such as liposomes, nanoparticles, nanoemulsions, nano lipid carriers, microspheres etc. This is due to inherent properties of PS such as porosity, steric stability and swellability, insolubility in pH. There have been emerging reports on the use of PS as therapeutic agent due to its anti-inflammatory and anti-oxidative properties for various diseases. In particular, for Crohn's disease, ulcerative colitis and inflammatory bowel disease. However, determining the dosage, treatment duration and effective technology transfer of these therapeutic moieties have not occurred. This is due to the fact that PS are still at a nascent stage of development to a full proof therapy for a particular disease. Recently, a combination of polysaccharide which act as a prebiotic and a probiotic have been used as a combination to treat various intestinal and colorectal (CRC) related diseases. This has proven to be beneficial, has shown good in vivo correlation and is well reported. The present review entails a detailed description on the role of PS used as a therapeutic agent and as a formulation pertaining to gastrointestinal diseases.
  11. Corrie L, Kaur J, Awasthi A, Vishwas S, Gulati M, Saini S, et al.
    Pharmaceutics, 2022 Nov 06;14(11).
    PMID: 36365213 DOI: 10.3390/pharmaceutics14112395
    The study was initiated with two major purposes: investigating the role of isomalt (GIQ9) as a pharmaceutical carrier for solid self-nanoemulsifying drug delivery systems (S-SNEDDSs) and improving the oral bioavailability of lipophilic curcumin (CUN). GIQ9 has never been explored for solidification of liquid lipid-based nanoparticles such as a liquid isotropic mixture of a SNEDDS containing oil, surfactant and co-surfactant. The suitability of GIQ9 as a carrier was assessed by calculating the loading factor, flow and micromeritic properties. The S-SNEDDSs were prepared by surface adsorption technique. The formulation variables were optimized using central composite design (CCD). The optimized S-SNEDDS was evaluated for differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), microscopy, dissolution and pharmacokinetic studies. The S-SNEDDS showed a particle size, zeta potential and PDI of 97 nm, -26.8 mV and 0.354, respectively. The results of DSC, XRD, FTIR and microscopic studies revealed that the isotropic mixture was adsorbed onto the solid carrier. The L-SNEDDS and S-SNEDDS showed no significant difference in drug release, indicating no change upon solidification. The optimized S-SNEDDS showed 5.1-fold and 61.7-fold enhancement in dissolution rate and oral bioavailability as compared to the naïve curcumin. The overall outcomes of the study indicated the suitability of GIQ9 as a solid carrier for SNEDDSs.
  12. Corrie L, Gulati M, Kaur J, Awasthi A, Vishwas S, Ramanunny AK, et al.
    Curr Drug Res Rev, 2023;15(3):272-285.
    PMID: 36683365 DOI: 10.2174/2589977515666230120140543
    BACKGROUND: Curcumin (CRM) is known to possess various therapeutic properties, such as anti-inflammatory and antidiabetic properties, and is, therefore, considered to be an effective therapeutic.

    OBJECTIVE: A sensitive method for the estimation of CRM in plasma, as well as fecal matter-based solid self-nano emulsifying drug delivery system (S-SNEDDS), has been reported for the first time.

    METHODS: A bioanalytical method was optimized using Box-Behnken Design having 13 runs and 3 responses. The optimized method was developed using methanol and water (70:30 v/v) with a flow rate of 1 mL/min. Quercetin was used as an internal standard. A specificity test was also performed for the developed CRM solid self-nano emulsifying drug delivery system.

    RESULTS: The retention time of CRM was found to be 14.18 minutes. The developed method was validated and found to be linear in the range of 50-250 ng/mL with an R2 of 0.999. Accuracy studies indicated that CRM had a percentage recovery of less than 105% and more than 95%, respectively. Precision studies were carried out for inter, intraday, and inter-analyst precision, and the %RSD was found to be less than 2%. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 3.37 ng/mL and 10.23 ng/mL, respectively. Stability studies for shortterm, long term and freeze-thaw cycles showed a %RSD of less than 2%, indicating the stability of CRM in the plasma matrix. Moreover, the blank fecal microbiota extract slurry did not show any peak at the retention time of CRM in a CRM-loaded solid nanoemulsifying drug delivery system containing fecal microbiota extract indicating its specificity.

    CONCLUSION: Hence, the developed method can have clinical implications as it helps estimate CRM in blood samples and also provides a simple and sensitive method for the estimation of plant-based flavonoids along with fecal microbiota extract formulations.

  13. Corrie L, Singh H, Gulati M, Vishwas S, Chellappan DK, Gupta G, et al.
    PMID: 38507103 DOI: 10.1007/s00210-024-03029-3
    The gut microbiome is involved in the pathogenesis of many diseases including polycystic ovarian syndrome (PCOS). Modulating the gut microbiome can lead to eubiosis and treatment of various metabolic conditions. However, there is no proper study assessing the delivery of microbial technology for the treatment of such conditions. The present study involves the development of guar gum-pectin-based solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing curcumin (CCM) and fecal microbiota extract (FME) for the treatment of PCOS. The optimized S-SNEDDS containing FME and CCM was prepared by dissolving CCM (25 mg) in an isotropic mixture consisting of Labrafil M 1944 CS, Transcutol P, and Tween-80 and solidified using lactose monohydrate, aerosil-200, guar gum, and pectin (colon-targeted CCM solid self-nanoemulsifying drug delivery system [CCM-CT-S-SNEDDS]). Pharmacokinetic and pharmacodynamic evaluation was carried out on letrozole-induced female Wistar rats. The results of pharmacokinetic studies indicated about 13.11 and 23.48-fold increase in AUC of CCM-loaded colon-targeted S-SNEDDS without FME (CCM-CT-S-SNEDDS (WFME)) and CCM-loaded colon-targeted S-SNEDDS with FME [(CCM-CT-S-SNEDDS (FME)) as compared to unprocessed CCM. The pharmacodynamic study indicated excellent recovery/reversal in the rats treated with CCM-CT-S-SNEDDS low and high dose containing FME (group 13 and group 14) in a dose-dependent manner. The developed formulation showcasing its improved bioavailability, targeted action, and therapeutic activity in ameliorating PCOS can be utilized as an adjuvant therapy for developing a dosage form, scale-up, and technology transfer.
  14. Datsyuk JK, Paudel KR, Rajput R, Kokkinis S, El Sherkawi T, Singh SK, et al.
    Chem Biol Interact, 2023 Nov 01;385:110737.
    PMID: 37774998 DOI: 10.1016/j.cbi.2023.110737
    Chronic respiratory diseases like asthma and Chronic Obstructive Pulmonary Disease (COPD) have been a burden to society for an extended period. Currently, there are only preventative treatments in the form of mono- or multiple-drug therapy available to patients who need to utilize it daily. Hence, throughout the years there has been a substantial amount of research in understanding what causes inflammation in the context of these diseases. For example, the transcription factor NFκB has a pivotal role in causing chronic inflammation. Subsequent research has been exploring ways to block the activation of NFκB as a potential therapeutic strategy for many inflammatory diseases. One of the possible ways through which this is probable is the utilisation of decoy oligodeoxynucleotides, which are synthetic, short, single-stranded DNA fragments that mimic the consensus binding site of a targeted transcription factor, thereby functionally inactivating it. However, limitations to the implementation of decoy oligodeoxynucleotides include their rapid degradation by intracellular nucleases and the lack of targeted tissue specificity. An advantageous approach to overcome these limitations involves using nanoparticles as a vessel for drug delivery. In this review, all of those key elements will be explored as to how they come together as an application to treat chronic inflammation in respiratory diseases.
  15. De Rubis G, Paudel KR, Manandhar B, Singh SK, Gupta G, Malik R, et al.
    Nutrients, 2023 Feb 17;15(4).
    PMID: 36839377 DOI: 10.3390/nu15041019
    Chronic obstructive pulmonary disease (COPD) is an irreversible inflammatory respiratory disease characterized by frequent exacerbations and symptoms such as cough and wheezing that lead to irreversible airway damage and hyperresponsiveness. The primary risk factor for COPD is chronic cigarette smoke exposure, which promotes oxidative stress and a general pro-inflammatory condition by stimulating pro-oxidant and pro-inflammatory pathways and, simultaneously, inactivating anti-inflammatory and antioxidant detoxification pathways. These events cause progressive damage resulting in impaired cell function and disease progression. Treatments available for COPD are generally aimed at reducing the symptoms of exacerbation. Failure to regulate oxidative stress and inflammation results in lung damage. In the quest for innovative treatment strategies, phytochemicals, and complex plant extracts such as agarwood essential oil are promising sources of molecules with antioxidant and anti-inflammatory activity. However, their clinical use is limited by issues such as low solubility and poor pharmacokinetic properties. These can be overcome by encapsulating the therapeutic molecules using advanced drug delivery systems such as polymeric nanosystems and nanoemulsions. In this study, agarwood oil nanoemulsion (agarwood-NE) was formulated and tested for its antioxidant and anti-inflammatory potential in cigarette smoke extract (CSE)-treated BCi-NS1.1 airway basal epithelial cells. The findings suggest successful counteractivity of agarwood-NE against CSE-mediated pro-inflammatory effects by reducing the expression of the pro-inflammatory cytokines IL-1α, IL-1β, IL-8, and GDF-15. In addition, agarwood-NE induced the expression of the anti-inflammatory mediators IL-10, IL-18BP, TFF3, GH, VDBP, relaxin-2, IFN-γ, and PDGF. Furthermore, agarwood-NE also induced the expression of antioxidant genes such as GCLC and GSTP1, simultaneously activating the PI3K pro-survival signalling pathway. This study provides proof of the dual anti-inflammatory and antioxidant activity of agarwood-NE, highlighting its enormous potential for COPD treatment.
  16. De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS, et al.
    PMID: 37991539 DOI: 10.1007/s00210-023-02830-w
    Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties. This picture was generated with BioRender.
  17. De Rubis G, Paudel KR, Liu G, Agarwal V, MacLoughlin R, de Jesus Andreoli Pinto T, et al.
    Toxicol In Vitro, 2023 Oct;92:105660.
    PMID: 37591407 DOI: 10.1016/j.tiv.2023.105660
    Airway remodelling occurs in chronic respiratory diseases (CRDs) such as asthma and chronic obstructive pulmonary disease (COPD). It is characterized by aberrant activation of epithelial reparation, excessive extracellular matrix (ECM) deposition, epithelial-to-mesenchymal transition (EMT), and airway obstruction. The master regulator is Transforming Growth Factor-β (TGF-β), which activates tissue repair, release of growth factors, EMT, increased cell proliferation, and reduced nitric oxide (NO) secretion. Due to its fundamental role in remodelling, TGF-β is an emerging target in the treatment of CRDs. Berberine is a benzylisoquinoline alkaloid with antioxidant, anti-inflammatory, and anti-fibrotic activities whose clinical application is hampered by poor permeability. To overcome these limitations, in this study, berberine was encapsulated in monoolein-based liquid crystalline nanoparticles (BM-LCNs). The potential of BM-LCNs in inhibiting TGF-β-induced remodelling features in human bronchial epithelial cells (BEAS-2B) was tested. BM-LCNs significantly inhibited TGF-β-induced migration, reducing the levels of proteins upregulated by TGF-β including endoglin, thrombospondin-1, basic fibroblast growth factor, vascular-endothelial growth factor, and myeloperoxidase, and increasing the levels of cystatin C, a protein whose expression was downregulated by TGF-β. Furthermore, BM-LCNs restored baseline NO levels downregulated by TGF-β. The results prove the in vitro therapeutic efficacy of BM-LCNs in counteracting TGF-β-induced remodelling features. This study supports the suitability of berberine-loaded drug delivery systems to counteract airway remodelling, with potential application as a treatment strategy against CRDs.
  18. De Rubis G, Paudel KR, Yeung S, Mohamad S, Sudhakar S, Singh SK, et al.
    Pathol Res Pract, 2024 Apr 09;257:155295.
    PMID: 38603841 DOI: 10.1016/j.prp.2024.155295
    Tobacco smoking is a leading cause of preventable mortality, and it is the major contributor to diseases such as COPD and lung cancer. Cigarette smoke compromises the pulmonary antiviral immune response, increasing susceptibility to viral infections. There is currently no therapy that specifically addresses the problem of impaired antiviral response in cigarette smokers and COPD patients, highlighting the necessity to develop novel treatment strategies. 18-β-glycyrrhetinic acid (18-β-gly) is a phytoceutical derived from licorice with promising anti-inflammatory, antioxidant, and antiviral activities whose clinical application is hampered by poor solubility. This study explores the therapeutic potential of an advanced drug delivery system encapsulating 18-β-gly in poly lactic-co-glycolic acid (PLGA) nanoparticles in addressing the impaired antiviral immunity observed in smokers and COPD patients. Exposure of BCi-NS1.1 human bronchial epithelial cells to cigarette smoke extract (CSE) resulted in reduced expression of critical antiviral chemokines (IP-10, I-TAC, MIP-1α/1β), mimicking what happens in smokers and COPD patients. Treatment with 18-β-gly-PLGA nanoparticles partially restored the expression of these chemokines, demonstrating promising therapeutic impact. The nanoparticles increased IP-10, I-TAC, and MIP-1α/1β levels, exhibiting potential in attenuating the negative effects of cigarette smoke on the antiviral response. This study provides a novel approach to address the impaired antiviral immune response in vulnerable populations, offering a foundation for further investigations and potential therapeutic interventions. Further studies, including a comprehensive in vitro characterization and in vivo testing, are warranted to validate the therapeutic efficacy of 18-β-gly-PLGA nanoparticles in respiratory disorders associated with compromised antiviral immunity.
  19. Devkota HP, Paudel KR, Jha NK, Gupta PK, Singh SK, Chellappan DK, et al.
    Nanomedicine (Lond), 2021 11;16(27):2407-2410.
    PMID: 34670398 DOI: 10.2217/nnm-2021-0275
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links