Displaying publications 61 - 80 of 151 in total

Abstract:
Sort:
  1. Hakami AAH, Wabaidur SM, Ali Khan M, Abdullah Alothman Z, Rafatullah M, Siddiqui MR
    Molecules, 2020 Oct 06;25(19).
    PMID: 33036289 DOI: 10.3390/molecules25194564
    Lower dye concentrations and the presence of several dyes along with other matrices in environmental samples restrict their determination. Herein, a highly sensitive and rapid ultra-performance tandem mass spectrometric method was developed for simultaneous determination of cationic dyes, namely methylene blue (MB), rhodamine B (RB) and crystal violet (CV), in environmental samples. To preconcentrate environmental samples, solid-phase extraction cartridges were developed by using hydrogen peroxide modified pistachio shell biomass (MPSB). The surface morphological and chemical functionalities of MPSB were well characterized. The developed method was validated considering different validation parameters. In terms of accuracy and precision, the %RSD for all three dyes at all four concentration points was found to be between 1.26 and 2.76, while the accuracy reported in terms of the recovery was found to be 98.02%-101.70%. The recovery was found to be in the range of 98.11% to 99.55%. The real sample analysis shows that MB, RB, and CV were found in the ranges of 0.39-5.56, 0.32-1.92 and 0.27-4.36 μg/mL, respectively.
  2. Karthikeyan V, Gnanamoorthy G, Varun Prasath P, Narayanan V, Sagadevan S, Umar A, et al.
    J Nanosci Nanotechnol, 2020 Sep 01;20(9):5759-5764.
    PMID: 32331175 DOI: 10.1166/jnn.2020.17898
    Herein, we report the facile synthesis, characterization and visible-light-driven photocatalytic degradation of perforated curly Zn0.1Ni0.9O nanosheets synthesized by hydrothermal process. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies confirmed the cubic phase crystalline structure and growth of high density perforated curly Zn0.1Ni0.9O nanosheets, respectively. As a photocatalyst, using methylene blue (MB) as model pollutant, the synthesized nanosheets demonstrated a high degradation efficiency of ~76% in 60 min under visible light irradiation. The observed results suggest that the synthesized Zn0.1Ni0.9O nanosheets are attractive photocatalysts for the degradation of toxic organic waste in the water under visible light.
  3. Gnanamoorthy G, Muthukumaran M, Varun Prasath P, Karthikeyan V, Narayanan V, Sagadevan S, et al.
    J Nanosci Nanotechnol, 2020 09 01;20(9):5426-5432.
    PMID: 32331114 DOI: 10.1166/jnn.2020.17814
    Photocatalysts provide excellent potential for the full removal of organic chemical pollutants as an environmentally friendly technology. It has been noted that under UV-visible light irradiation, nanostructured semiconductor metal oxides photocatalysts can degrade different organic pollutants. The Sn6SiO8/rGO nanocomposite was synthesized by a hydrothermal method. The Sn6SiO8 nanoparticles hexagonal phase was confirmed by XRD and functional groups were analyzed by FT-IR spectroscopy. The bandgap of Sn6SiO8 nanoparticles (NPs) and Sn6SiO8/GO composites were found to be 2.7 eV and 2.5 eV, respectively. SEM images of samples showed that the flakes like morphology. This Sn6SiO8/rGO nanocomposite was testing for photocatalytic dye degradation of MG under visible light illumination and excellent response for the catalysts. The enhancement of photocatalytic performance was mainly attributed to the increased light absorption, charge separation efficiency and specific surface area, proved by UV-vis DRS. Further, the radical trapping experiments revealed that holes (h+) and superoxide radicals (·O-₂) were the main active species for the degradation of MG, and a possible photocatalytic mechanism was discussed.
  4. Muthiah B, Muthukrishnan L, Anita Lett J, Sagadevan S, Kesavan S, Vennila S, et al.
    J Nanosci Nanotechnol, 2020 10 01;20(10):6326-6333.
    PMID: 32384982 DOI: 10.1166/jnn.2020.17897
    Biosynthesis of nanoparticles has now become a novel trend in addressing some of the environmental issues by adopting eco-friendly approaches in manoeuvring nanoparticles for various applications. Plants and micro-organisms have been the potential sources of the biological mode of synthesizing nanoparticles as part of their bioremediation process. This principle has been harnessed for synthesizing nanoparticles either extra or intracellularly. In this line of phyto-mediated synthesis, eucalyptus buds have been used for synthesizing gold nanoparticles (Au NPs) under optimized laboratory conditions. The UV-visible spectrum of the Au NPs showed typical surface plasmon resonance at 550 nm (λmax) with a crystalline phase measuring <100 nm in size and monodispersed as revealed from XRD, FESEM, and AFM analyses. The biological role of phytochemical concoction in reducing and stabilizing the Au NPs was clearly identified from FT-IR studies. The antimicrobial effect of the Au NPs against clinically important pathogens viz. Staphylococcus sp., Pseudomonas sp., Bacillus sp. and E. coli determined using the disk diffusion method showed no significant antibacterial effect at all concentrations. Cytotoxicity studies were carried using Vero and HEp-2 cell lines and the 50% inhibition concentration (IC50) was determined to be 1.25 mg and 0.625 mg/mL respectively. Au NPs with potential antimicrobial and anti-proliferative effects could found profound implications in the field of nanomedicine once the toxicity in vivo has been investigated.
  5. Khan A, Ashher F, Khanam F, Rahman M, Khan M, Paul SK, et al.
    PMID: 29621969 DOI: 10.2174/1871526518666180405154337
    Widal agglutination test is arguably the most widely used laboratory investigation for diagnosis of Typhoid, especially in developing countries where blood culture is often inaccessible. However, the interpretation of the test still remains a controversial topic particularly in the context of endemic regions such as Bangladesh, as agglutination test is often found positive in varied and higher titrations among a large percentage of healthy population. Paired Widal tests are often not feasible, hence single unpaired test has to be used for screening and diagnosis. Even specific chemotherapy is administered frequently based on single Widal test. Therefore it is very important to establish baseline value of Widal test and re-evaluate in regular intervals to ensure standard cutoff points are as accurate and updated as possible in particular demographics Objective: The study aimed at investigating the normal range of baseline titre for Anti TO, TH, AO, AH, BO agglutinins among healthy participants, with a view to inform policy makers and clinicians on the updated cut off values for screening and diagnosis of typhoid fever in the context of Bangladesh.

    METHODS: A cross sectional study was carried out in the Department of Microbiology of Mymensing Medical College, Mymensingh, Bangladesh in two time points, one was from February 2013 to September2013 and another was from March to April, 2015 . A total of 3161 adult (18-45 years) male job seekers to Malaysia attending for health check up were invited to the study and out of them 2925 could be finally enrolled. A single blood sample was collected and Widal test was carried out according to kit manufacturer's instructions and interpreted using standard guidelines.

    RESULTS: The significant baseline titers for Anti TO, TH, AO, AH, BO agglutinins among the participants were found to be 1:80 for each respectively. A titer of 1: 40 was observed for BH antigen Conclusion: In case of singular Widal test, base line values for normal range should be revised and set 1:80 for all the antigens (TO, TH, AO, AH, BO, BH), except BH, for which it should be 1:40. Further studies in different geological and demographic groups are required to ascertain the use of right context and cut off values for screening and diagnostic purposes.

  6. Iqbal J, Ahmad RB, Khan M, Fazal-E-Amin, Alyahya S, Nizam Nasir MH, et al.
    PLoS One, 2020;15(4):e0229785.
    PMID: 32271783 DOI: 10.1371/journal.pone.0229785
    Software development outsourcing is becoming more and more famous because of the advantages like cost abatement, process enhancement, and coping with the scarcity of needed resources. Studies confirm that unfortunately a large proportion of the software development outsourcing projects fails to realize anticipated benefits. Investigations into the failures of such projects divulge that in several cases software development outsourcing projects are failed because of the issues that are associated with requirements engineering process. The objective of this study is the identification and the ranking of the commonly occurring issues of the requirements engineering process in the case of software development outsourcing. For this purpose, contemporary literature has been assessed rigorously, issues faced by practitioners have been identified and three questionnaire surveys have been organized by involving experienced software development outsourcing practitioners. The Delphi technique, cut-off value method and 50% rule have also been employed. The study explores 150 issues (129 issues from literature and 21 from industry) of requirements engineering process for software development outsourcing, groups the 150 issues into 7 identified categories and then extricates 43 customarily or commonly arising issues from the 150 issues. Founded on 'frequency of occurrence' the 43 customarily arising issues have been ranked with respect to respective categories (category-wise ranking) and with respect to all the categories (overall ranking). Categories of the customarily arising issues have also been ranked. The issues' identification and ranking contribute to design proactive software project management plan for dealing with software development outsourcing failures and attaining conjectured benefits of the software development outsourcing.
  7. Solayappan M, Azlan A, Khor KZ, Yik MY, Khan M, Yusoff NM, et al.
    Front Genet, 2021;12:767298.
    PMID: 35154242 DOI: 10.3389/fgene.2021.767298
    Hematological malignancies (HM) are a group of neoplastic diseases that are usually heterogenous in nature due to the complex underlying genetic aberrations in which collaborating mutations enable cells to evade checkpoints that normally safeguard it against DNA damage and other disruptions of healthy cell growth. Research regarding chromosomal structural rearrangements and alterations, gene mutations, and functionality are currently being carried out to understand the genomics of these abnormalities. It is also becoming more evident that cross talk between the functional changes in transcription and proteins gives the characteristics of the disease although specific mutations may induce unique phenotypes. Functional genomics is vital in this aspect as it measures the complete genetic change in cancerous cells and seeks to integrate the dynamic changes in these networks to elucidate various cancer phenotypes. The advent of CRISPR technology has indeed provided a superfluity of benefits to mankind, as this versatile technology enables DNA editing in the genome. The CRISPR-Cas9 system is a precise genome editing tool, and it has revolutionized methodologies in the field of hematology. Currently, there are various CRISPR systems that are used to perform robust site-specific gene editing to study HM. Furthermore, experimental approaches that are based on CRISPR technology have created promising tools for developing effective hematological therapeutics. Therefore, this review will focus on diverse applications of CRISPR-based gene-editing tools in HM and its potential future trajectory. Collectively, this review will demonstrate the key roles of different CRISPR systems that are being used in HM, and the literature will be a representation of a critical step toward further understanding the biology of HM and the development of potential therapeutic approaches.
  8. Arshad S, Tehreem F, Rehab Khan M, Ahmed F, Marya A, Karobari MI
    Int J Dent, 2021;2021:4514598.
    PMID: 34956367 DOI: 10.1155/2021/4514598
    Regenerative endodontics has introduced numerous procedures such as pulp implantation, revascularization, and postnatal stem cell therapy. Revascularization has been successfully implemented clinically nowadays, thus providing dentists with outrageous results. Platelet-rich fibrin (PRF) used either alone or along with bone graft promotes bone growth and vascularization. This matrix promotes migration, cell attachment, and proliferation of osteoblast that leads to bone formation. PRF consists of a packed fibrin complex consisting of leukocytes, cytokines, and glycoproteins such as thrombospondin. The usage of PRF has reported high success rates in surgical cases such as sinus lift procedures, healing of extraction sockets, and management of periapical abscesses. Compared to platelet-rich plasma, PRF is more economical, easy to prepare, and feasible to use in daily clinical practices. Revascularization compromised the induction of a blood clot into the root canal space, which emerged as a clinical triumph. This further led to platelet concentrates as an autologous scaffold on which revascularization could occur. The applications of PRF in regenerative endodontics are numerous, such as an agent for repairing iatrogenic perforation of the pulpal floor and for the revascularization of immature permanent teeth with necrotic pulps. It acts as a matrix for tissue ingrowth. Evidence of progressive thickening of dentinal walls, root lengthening, regression in the periapical lesion, and apical closure was reported. Further studies are needed to clarify the precise mechanism of action of PRF for dental pulp regeneration both in vitro and in vivo. The current review aims at the present uses of PRF in regenerative endodontics dentistry and its application with future recommendations and limitations.
  9. Khan S, Ali Khan M, Zafar A, Javed MF, Aslam F, Musarat MA, et al.
    Materials (Basel), 2021 Dec 22;15(1).
    PMID: 35009186 DOI: 10.3390/ma15010039
    The object of this research is concrete-filled steel tubes (CFST). The article aimed to develop a prediction Multiphysics model for the circular CFST column by using the Artificial Neural Network (ANN), the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Gene Expression Program (GEP). The database for this study contains 1667 datapoints in which 702 are short CFST columns and 965 are long CFST columns. The input parameters are the geometric dimensions of the structural elements of the column and the mechanical properties of materials. The target parameters are the bearing capacity of columns, which determines their life cycle. A Multiphysics model was developed, and various statistical checks were applied using the three artificial intelligence techniques mentioned above. Parametric and sensitivity analyses were also performed on both short and long GEP models. The overall performance of the GEP model was better than the ANN and ANFIS models, and the prediction values of the GEP model were near actual values. The PI of the predicted Nst by GEP, ANN and ANFIS for training are 0.0416, 0.1423, and 0.1016, respectively, and for Nlg these values are 0.1169, 0.2990 and 0.1542, respectively. Corresponding OF values are 0.2300, 0.1200, and 0.090 for Nst, and 0.1000, 0.2700, and 0.1500 for Nlg. The superiority of the GEP method to the other techniques can be seen from the fact that the GEP technique provides suitable connections based on practical experimental work and does not rely on prior solutions. It is concluded that the GEP model can be used to predict the bearing capacity of circular CFST columns to avoid any laborious and time-consuming experimental work. It is also recommended that further research should be performed on the data to develop a prediction equation using other techniques such as Random Forest Regression and Multi Expression Program.
  10. Bukhari MM, Ghazal TM, Abbas S, Khan MA, Farooq U, Wahbah H, et al.
    Comput Intell Neurosci, 2022;2022:3606068.
    PMID: 35126487 DOI: 10.1155/2022/3606068
    Smart applications and intelligent systems are being developed that are self-reliant, adaptive, and knowledge-based in nature. Emergency and disaster management, aerospace, healthcare, IoT, and mobile applications, among them, revolutionize the world of computing. Applications with a large number of growing devices have transformed the current design of centralized cloud impractical. Despite the use of 5G technology, delay-sensitive applications and cloud cannot go parallel due to exceeding threshold values of certain parameters like latency, bandwidth, response time, etc. Middleware proves to be a better solution to cope up with these issues while satisfying the high requirements task offloading standards. Fog computing is recommended middleware in this research article in view of the fact that it provides the services to the edge of the network; delay-sensitive applications can be entertained effectively. On the contrary, fog nodes contain a limited set of resources that may not process all tasks, especially of computation-intensive applications. Additionally, fog is not the replacement of the cloud, rather supplement to the cloud, both behave like counterparts and offer their services correspondingly to compliance the task needs but fog computing has relatively closer proximity to the devices comparatively cloud. The problem arises when a decision needs to take what is to be offloaded: data, computation, or application, and more specifically where to offload: either fog or cloud and how much to offload. Fog-cloud collaboration is stochastic in terms of task-related attributes like task size, duration, arrival rate, and required resources. Dynamic task offloading becomes crucial in order to utilize the resources at fog and cloud to improve QoS. Since this formation of task offloading policy is a bit complex in nature, this problem is addressed in the research article and proposes an intelligent task offloading model. Simulation results demonstrate the authenticity of the proposed logistic regression model acquiring 86% accuracy compared to other algorithms and confidence in the predictive task offloading policy by making sure process consistency and reliability.
  11. Yenn TW, Arslan Khan M, Amiera Syuhada N, Chean Ring L, Ibrahim D, Tan WN
    Steroids, 2017 Dec;128:68-71.
    PMID: 29104098 DOI: 10.1016/j.steroids.2017.10.016
    The emergence of beta lactamase producing bacterial strains eliminated the use of beta lactam antibiotics as chemotherapeutic alternative. Beta lactam antibiotics can be coupled with non-antibiotic adjuvants to combat these multidrug resistant strains. We study the synergistic antibiotic effect of stigmasterol as adjuvant of ampicillin against clinical isolates. Ampicillin was used in this study as a beta lactam antibiotic model. All test bacteria were beta lactamase producing clinical isolates. The combination showed significantly better antibiotic activity on all bacteria tested. The two test substances have synergistic antibiotic activity, and the effect was observed in both Gram positive and Gram negative bacteria. The synergistic antibiotic effect of stigmasterol and ampicillin was evident by the low fractional inhibitory concentration (FIC) index on Checkerboard Assay. The results suggest that the combination of ampicillin and stigmasterol acts additively in the treatment of infections caused by beta-lactamase producing pathogens. In bacterial growth reduction assay, ampicillin and stigmasterol alone exhibited very weak inhibitory effect on the bacterial growth, relative to ethanol control. Comparatively, combination of stigmasterol-ampicillin greatly reduced the colony counts at least by 98.7%. In conclusion, we found synergistic effects of stigmasterol and ampicillin against beta lactamase producing clinical isolates. This finding is important as it shows potential application of stigmasterol as an antibiotic adjuvant.
  12. Khan M, Nishi SE, Hassan SN, Islam MA, Gan SH
    Pain Res Manag, 2017;2017:7438326.
    PMID: 28827979 DOI: 10.1155/2017/7438326
    Neuropathic pain is a common phenomenon that affects millions of people worldwide. Maxillofacial structures consist of various tissues that receive frequent stimulation during food digestion. The unique functions (masticatory process and facial expression) of the maxillofacial structure require the exquisite organization of both the peripheral and central nervous systems. Neuralgia is painful paroxysmal disorder of the head-neck region characterized by some commonly shared features such as the unilateral pain, transience and recurrence of attacks, and superficial and shock-like pain at a trigger point. These types of pain can be experienced after nerve injury or as a part of diseases that affect peripheral and central nerve function, or they can be psychological. Since the trigeminal and glossopharyngeal nerves innervate the oral structure, trigeminal and glossopharyngeal neuralgia are the most common syndromes following myofascial pain dysfunction syndrome. Nevertheless, misdiagnoses are common. The aim of this review is to discuss the currently available diagnostic procedures and treatment options for trigeminal neuralgia, glossopharyngeal neuralgia, and myofascial pain dysfunction syndrome.
  13. Fazal SA, Khan M, Nishi SE, Alam F, Zarin N, Bari MT, et al.
    Endocr Metab Immune Disord Drug Targets, 2018 Feb 13;18(2):98-109.
    PMID: 29141572 DOI: 10.2174/1871530317666171114122417
    BACKGROUND AND OBJECTIVE: Rheumatoid arthritis (RA) is a predominant inflammatory autoimmune disorder. The incidence and prevalence of RA is increasing with considerable morbidity and mortality worldwide. The pathophysiology of RA has become clearer due to many significant research outputs during the last two decades. Many inflammatory cytokines involved in RA pathophysiology and the presence of autoantibodies are being used as potential biomarkers via the use of effective diagnostic techniques for the early diagnosis of RA. Currently, several disease-modifying anti-rheumatic drugs are being prescribed targeting RA pathophysiology, which have shown significant contributions in improving the disease outcomes.

    DISCUSSION: Even though innovations in treatment strategies and monitoring are helping the patients to achieve early and sustained clinical and radiographic remission, the high cost of drugs and limited health care budgets are restricting the easy access of RA treatment. Both direct and indirect high cost of treatment are creating economic burden for the patients and affecting their quality of life.

    CONCLUSION: The aim of this review is to describe the updated concept of RA pathophysiology and highlight current diagnostic tools used for the early detection as well as prognosis - targeting several biomarkers of RA. Additionally, we explored the updated treatment options with side effects besides discussing the global economic burden.
  14. Ikram R, Jan BM, Ahmad W, Sidek A, Khan M, Kenanakis G
    Materials (Basel), 2022 Nov 21;15(22).
    PMID: 36431754 DOI: 10.3390/ma15228266
    Throughout the world, the construction industry produces significant amounts of by-products and hazardous waste materials. The steel-making industry generates welding waste and dusts that are toxic to the environment and pose many economic challenges. Water-based drilling fluids (WBDF) are able to remove the drill cuttings in a wellbore and maintain the stability of the wellbore to prevent formation damage. To the best of our knowledge, this is the first study that reports the application of welding waste and its derived graphene oxide (GO) as a fluid-loss additive in drilling fluids. In this research, GO was successfully synthesized from welding waste through chemical exfoliation. The examination was confirmed using XRD, FTIR, FESEM and EDX analyses. The synthesized welding waste-derived GO in WBDF is competent in improving rheological properties by increasing plastic viscosity (PV), yield point (YP) and gel strength (GS), while reducing filtrate loss (FL) and mud cake thickness (MCT). This study shows the effect of additives such as welding waste, welding waste-derived GO and commercial GO, and their amount, on the rheological properties of WBDF. Concentrations of these additives were used at 0.01 ppb, 0.1 ppb and 0.5 ppb. Based on the experiment results, raw welding waste and welding waste-derived GO showed better performance compared with commercial GO. Among filtration properties, FL and MCT were reduced by 33.3% and 39.7% with the addition of 0.5 ppb of raw welding-waste additive, while for 0.5 ppb of welding waste-derived GO additive, FL and MCT were reduced by 26.7% and 20.9%, respectively. By recycling industrial welding waste, this research conveys state-of-the-art and low-cost drilling fluids that aid in waste management, and reduce the adverse environmental and commercial ramifications of toxic wastes.
  15. Badawi NM, Bhatia M, Ramesh S, Ramesh K, Kuniyil M, Shaik MR, et al.
    Polymers (Basel), 2023 Jan 22;15(3).
    PMID: 36771872 DOI: 10.3390/polym15030571
    Hydrogel electrolytes for energy storage devices have made great progress, yet they present a major challenge in the assembly of flexible supercapacitors with high ionic conductivity and self-healing properties. Herein, a smart self-healing hydrogel electrolyte based on alginate/poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (alginate/PEDOT:PSS)(A/P:P) was prepared, wherein H2SO4 was employed as a polymeric initiator, as well as a source of ions. PEDOT:PSS is a semi-interpenetrating network (IPN) that has been used in recent studies to exhibit quick self-healing properties with the H₂SO₃ additive, which further improves its mechanical strength and self-healing performance. A moderate amount of PEDOT:PSS in the hydrogel (5 mL) was found to significantly improve the ionic conductivity compared to the pure hydrogel of alginate. Interestingly, the alginate/PEDOT:PSS composite hydrogel exhibited an excellent ability to self-heal and repair its original composition within 10 min of cutting. Furthermore, the graphite conductive substrate-based supercapacitor with the alginate/PEDOT:PSS hydrogel electrolyte provided a high specific capacitance of 356 F g-1 at 100 mV/s g-1. The results demonstrate that the A/P:P ratio with 5 mL PEDOT:PSS had a base sheet resistance of 0.9 Ω/square. This work provides a new strategy for designing flexible self-healing hydrogels for application in smart wearable electronics.
  16. Kumar SSA, Mohammed NB, Alduhaish O, Ramesh K, Ramesh S, Khan M, et al.
    Polymers (Basel), 2023 May 23;15(11).
    PMID: 37299227 DOI: 10.3390/polym15112428
    Globally, researchers have devoted consistent efforts to producing excellent coating properties since coating plays an essential role in enhancing electrochemical performance and surface quality. In this study, TiO2 nanoparticles in varying concentrations of 0.5, 1, 2, and 3 wt.% were added into the acrylic-epoxy polymeric matrix with 90:10 wt.% (90A:10E) ratio incorporated with 1 wt.% graphene, to fabricate graphene/TiO2 -based nanocomposite coating systems. Furthermore, the properties of the graphene/TiO2 composites were investigated by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), ultraviolet-visible (UV-Vis) spectroscopy, water contact angle (WCA) measurements, and cross-hatch test (CHT), respectively. Moreover, the field emission scanning electron microscope (FESEM) and the electrochemical impedance spectroscopy (EIS) tests were conducted to investigate the dispersibility and anticorrosion mechanism of the coatings. The EIS was observed by determining the breakpoint frequencies over a period of 90 days. The results revealed that the TiO2 nanoparticles were successfully decorated on the graphene surface by chemical bonds, which resulted in the graphene/TiO2 nanocomposite coatings exhibiting better dispersibility within the polymeric matrix. The WCA of the graphene/TiO2 coating increased along with the ratio of TiO2 to graphene, achieving the highest CA of 120.85° for 3 wt.% of TiO2. Excellent dispersion and uniform distribution of the TiO2 nanoparticles within the polymer matrix were shown up to 2 wt.% of TiO2 inclusion. Among the coating systems, throughout the immersion time, the graphene/TiO2 (1:1) coating system exhibited the best dispersibility and high impedance modulus values (Z0.01 Hz), exceeding 1010 Ω cm2.
  17. Mohamed Yoosuf AB, Ajmal Khan M, Abdul Aziz MZ, Mansor S, Appalanaido GK, Alshehri S, et al.
    Cureus, 2023 May;15(5):e39600.
    PMID: 37384098 DOI: 10.7759/cureus.39600
    The objective of this research is to conduct a comprehensive bibliometric analysis using the Web of Science Core Collection (WoSCC) to examine the current research topics and trends pertaining to stereotactic-based re-irradiation. A bibliometric search was conducted for re-irradiation-related literature published in English from the WoSCC database from 1991 to 2022, using VOSviewer to visualize the results. The extracted information comprises the publication year, overall citation count, average citation rate, keywords, and research domains. We conducted a literature review to identify trends in research on re-irradiation. A total of 19,891 citations were found in 924 qualifying papers that came from 48 different nations. The number of publications and citations has grown steadily since 2008 with the highest number of publications in the year 2018. Similarly, a substantial increase in the number of citations has increased since 2004 and the citation growth rate has been positive between 2004 and 2019 with a peak in 2013. The top authorship patterns were six authors (111 publications and 2498 citations), whereas the highest number of citations per publication was attained with an authorship pattern of 17 authors (C/P = 41.1). The collaboration patterns analysis showed that the largest proportion of publications emanated from the United States with 363 publications (30.9%), followed by Germany with 102 publications (8.7%), and France with 92 publications (7.8%). The majority of the analyzed studies were focused on the brain (30%), head and neck (13%), lung (12%), and spine (10%) and there have been emerging studies on the use of re-irradiation for lung, prostate, pelvic and liver utilizing stereotactic radiotherapy. The main areas of interest have changed over time and are now based on a multidisciplinary approach that integrates advanced imaging techniques, stereotactic treatment delivery, the toxicity of organs at risk, quality of life, and treatment outcomes.
  18. Liu Y, Naveed RT, Kanwal S, Tahir Khan M, Dalain AF, Lan W
    PLoS One, 2023;18(8):e0289281.
    PMID: 37590276 DOI: 10.1371/journal.pone.0289281
    In today's digitally interconnected world, social media emerges as a powerful tool, offering different opportunities for modern businesses. Not only do organizations use social media for marketing purposes, but they also endeavor to influence consumer psychology and behavior. Although prior studies indicate social media's efficacy in disseminating corporate social responsibility (CSR) communications, there remains a dearth of research addressing the impact of CSR-related messaging from banks on consumers' brand advocacy behavior (CBAB). Our study seeks to bridge this gap, exploring the CSR-CBAB relationship within the banking sector of an emerging economy. Additionally, we investigate the roles of consumers' emotions and values in mediating and moderating their CBAB, introducing two mediating factors, consumer happiness (HP) and admiration (BRAD), and moderating variable altruistic values (ATVL). Data collection involved an adapted questionnaire targeting banking consumers. The structural analysis revealed a positive correlation between a bank's CSR-related social media communications and CBAB. HP and BRAD were identified as mediators in this relationship, while ATVL emerged as a moderator. These findings hold significant theoretical and practical implications. For instance, our research highlights the indispensable role of social media in effectively conveying CSR-related information to banking consumers, subsequently enhancing their advocacy intentions.
  19. Subhan R, Ismail WA, Musharraf S, Khan M, Hafeez R, Alam MK
    Biomed Res Int, 2021;2021:8757859.
    PMID: 34540998 DOI: 10.1155/2021/8757859
    The current scenario of the COVID-19 pandemic has forced dentists to seek different options for delivering healthcare services other than the in-person direct examination in clinical practice. Teledentistry is one of the options for remote patient care and monitoring. Objective. The present survey was conducted to assess the knowledge and perception of the dentists in Pakistan regarding teledentistry as an emergent supportive tool. Materials and Methods. A self-administered, close-ended, and prevalidated survey questionnaire was used, comprising 21 questions, and distributed electronically via e-mail, WhatsApp, and Facebook Messenger to evaluate the knowledge and perception of dentists regarding teledentistry. The data collected was compiled in a systematic manner and analyzed in terms of frequency (yes/no). Results. Out of a total of 350 dentists, 325 responded to the questionnaire, and it was seen that 62.5% of them did not have knowledge about teledentistry prior to COVID-19. 65.8% of dentists considered the practice of teledentistry in nonpandemic situations in the future. Conclusion. In the present study, it was observed that most of the dental professionals had inadequate knowledge about teledentistry before COVID-19, but the awareness and perception regarding teledentistry were currently satisfactory among the dental professionals in Pakistan. This emerging trend gives a positive hope for the implementation of teledentistry in the healthcare setup of Pakistan in the near future, as it will prove to be beneficial for safe dental practice during times of pandemic and even after.
  20. Rehman A, Abbas S, Khan MA, Ghazal TM, Adnan KM, Mosavi A
    Comput Biol Med, 2022 Nov;150:106019.
    PMID: 36162198 DOI: 10.1016/j.compbiomed.2022.106019
    In recent years, the global Internet of Medical Things (IoMT) industry has evolved at a tremendous speed. Security and privacy are key concerns on the IoMT, owing to the huge scale and deployment of IoMT networks. Machine learning (ML) and blockchain (BC) technologies have significantly enhanced the capabilities and facilities of healthcare 5.0, spawning a new area known as "Smart Healthcare." By identifying concerns early, a smart healthcare system can help avoid long-term damage. This will enhance the quality of life for patients while reducing their stress and healthcare costs. The IoMT enables a range of functionalities in the field of information technology, one of which is smart and interactive health care. However, combining medical data into a single storage location to train a powerful machine learning model raises concerns about privacy, ownership, and compliance with greater concentration. Federated learning (FL) overcomes the preceding difficulties by utilizing a centralized aggregate server to disseminate a global learning model. Simultaneously, the local participant keeps control of patient information, assuring data confidentiality and security. This article conducts a comprehensive analysis of the findings on blockchain technology entangled with federated learning in healthcare. 5.0. The purpose of this study is to construct a secure health monitoring system in healthcare 5.0 by utilizing a blockchain technology and Intrusion Detection System (IDS) to detect any malicious activity in a healthcare network and enables physicians to monitor patients through medical sensors and take necessary measures periodically by predicting diseases. The proposed system demonstrates that the approach is optimized effectively for healthcare monitoring. In contrast, the proposed healthcare 5.0 system entangled with FL Approach achieves 93.22% accuracy for disease prediction, and the proposed RTS-DELM-based secure healthcare 5.0 system achieves 96.18% accuracy for the estimation of intrusion detection.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links