Displaying publications 61 - 80 of 133 in total

Abstract:
Sort:
  1. Subramaniam S, Raman J, Sabaratnam V, Heng CK, Kuppusamy UR
    Int J Med Mushrooms, 2017;19(10):849-859.
    PMID: 29256840 DOI: 10.1615/IntJMedMushrooms.2017024355
    This study was conducted to evaluate the mycochemical composition and antiglycemic and antioxidant activities of Ganoderma neo-japonicum hot aqueous extracts, prepared at different boiling durations, and polysaccharides isolated from them. Ground basidiocarps of G. neo-japonicum were double-boiled at 100°C for 0.5, 3, or 4 hours, and the antiglycemic activity was assessed by α-amylase and α-glucosidase enzyme inhibition assays. The antioxidant capacity of the crude hot aqueous extracts (AE-1, AE-2, AE-3) was assessed by DPPH and ABTS radical scavenging and ferric-reducing antioxidant power assays. The total phenolics, protein, and sugar in the crude extracts were also determined. The hot aqueous extract (AE-3) containing a significant amount of total sugar and having enhanced antiglycemic and antioxidant activities was selected for polysaccharide isolation. The isolated crude polysaccharide was separated and purified using diethylaminoethyl-cellulose-52 and Sepharose 6B column chromatography. Fourier transform infrared spectroscopy studies of the purified polysaccharide fraction (PF) showed the presence of typical bands corresponding to polysaccharides. The estimated β-glucan concentration in the PF was 39.26%. In general, the PF exhibited significantly lower antioxidant activity than AE-3. Nevertheless, its potency in inhibiting carbohydratehydrolyzing enzymes may have potential in the management of diabetes mellitus.
    Matched MeSH terms: Antioxidants/isolation & purification*
  2. Keong CY, B V, Daker M, Hamzah MY, Mohamad SA, Lan J, et al.
    Int J Med Mushrooms, 2016;18(2):141-54.
    PMID: 27279536 DOI: 10.1615/IntJMedMushrooms.v18.i2.50
    This study investigated antioxidant and anti-inflammatory properties, and the direct cytotoxic effect of Lignosus rhinocerotis fractions, especially the polysaccharide fraction, on nasopharyngeal carcinoma cells. L. rhinocerotis crude extract was obtained through hot water extraction. The precipitate saturated with 30% ammonium sulfate was purified with ion-exchanged chromatography. Gel permeation chromatography multiangle laser light scattering analysis equipped with light scattering and UV signals revealed two district groups of polymers. A total of four peaks were observed in the total carbohydrate test. Fraction C, which was the second region of the second peak eluted with 0.3 M NaOH, showed the highest integrated molecular weight, whereas fraction E had the lowest integrated molecular weight of 19,790 Da. Fraction A contained the highest β-D-glucan content. Enzymatic analysis showed that most of the polysaccharide fractions contained β-1-3 and β-1-6 skeletal backbones. The peak eluted with 0.6 M NaOH was separated in fraction D (flask 89-92) and fraction E (93-96). The results showed that fraction E expressed higher antioxidant activities than fraction D whereas fraction D expressed higher chelating activity than fraction E. The extract saturated with 30% ammonium sulfate exhibited higher reducing power than the extract saturated with 100% ammonium sulfate. Fractions D and E significantly inhibited the secretion of tumor necrosis factor-α in lipopolysaccharide-stimulated RAW 264.7 macrophages in a dose-dependent manner. There was no apparent difference in the viability of cells exposed or unexposed to L. rhinocerotis fractions.
    Matched MeSH terms: Antioxidants/isolation & purification
  3. Zolkiffly SZI, Stanslas J, Abdul Hamid H, Mehat MZ
    J Ethnopharmacol, 2021 Oct 28;279:114309.
    PMID: 34119609 DOI: 10.1016/j.jep.2021.114309
    ETHNOPHARMACOLOGICAL RELEVANCE: Ficus deltoidea Jack (FD) is widely consumed in traditional medicine as a treatment for various diseases in Malaysia. Each part of the plant such as its leave, stem, fruit and root are used traditionally to treat different types of diseases. Vitexin and isovitexin are bioactive compounds abundantly found in the leaves of FD that possessed many pharmacological properties including neuroprotection. Nonetheless, its effects on key events in neuroinflammation are unknown.

    AIM OF THE STUDY: To determine the inhibitory properties of FD aqueous extract on pro-inflammatory mediators involved in lipopolysaccharide (LPS)-induced microglial cells.

    METHODS: Vitexin and isovitexin in the extract were quantified via high performance liquid chromatography (HPLC). The extract was evaluated for its cytotoxicity activity via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Pre-treatment with the extract on LPS-induced microglial cells was done to determine its antioxidant and anti-neuroinflammatory properties by measuring the level of reactive oxygen species (ROS), nitric oxide (NO), tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) via 2'-7'-dichlorofluorescin diacetate (DCFDA) assay, Griess assay and Western blot respectively.

    RESULTS: The extract at all tested concentrations (0.1 μg/mL, 1 μg/mL, 10 μg/mL, 100 μg/mL) were not cytotoxic as the percentage viability of microglial cells were all above ~80%. At the highest concentration (100 μg/mL), the extract significantly reduced the formation of ROS, NO, TNF-α, IL-1β and IL-6 in microglial cells induced by LPS.

    CONCLUSION: The extract showed neuroprotective effects by attenuating the levels of pro-inflammatory and cytotoxic factors in LPS-induced microglial cells, possibly by mediating the nuclear factor-kappa B (NF-κB) signalling pathway.

    Matched MeSH terms: Antioxidants/isolation & purification
  4. Ab Aziz NA, Salim N, Zarei M, Saari N, Yusoff FM
    Prep Biochem Biotechnol, 2021;51(1):44-53.
    PMID: 32701046 DOI: 10.1080/10826068.2020.1789991
    The study was conducted to determine anti-tyrosinase and antioxidant activities of the extracted collagen hydrolysate (CH) derived from Malaysian jellyfish, Rhopilema hispidum. Collagen was extracted using 1:1 (w:v) 0.1 M NaOH solution at temperature 25 °C for 48 hr followed by treatment of 1:2 (w:v) distilled water for another 24 hr and freeze-dried. The extracted collagen was hydrolyzed using papain at optimum temperature, pH and enzyme/substrate ratio [E/S] of 60 °C, 7.0 and 1:50, respectively. CH was found to exhibit tyrosinase inhibitory activity, DPPH radical scavenging and metal ion-chelating assays up to 64, 28, and 83%, respectively, after 8 hr of hydrolysis process. The molecular weight of CH was found <10 kDa consisting of mainly Gly (19.219%), Glu (10.428%), and Arg (8.848%). The UV-visible spectrum analysis showed a major and minor peak at 218 and 276 nm, accordingly. The FTIR spectroscopy confirmed the amide groups in CH. The SEM images demonstrated spongy and porous structure of CH. In the cytotoxicity study, CH has no cytotoxicity against mouse embryonic 3T3 fibroblast cell line with IC50 value >500 µg/ml. Results revealed that the CH generated from this study has a potential to be developed as active ingredient in cosmeceutical application.
    Matched MeSH terms: Antioxidants/isolation & purification*
  5. Siow HL, Gan CY
    Food Chem, 2013 Dec 15;141(4):3435-42.
    PMID: 23993504 DOI: 10.1016/j.foodchem.2013.06.030
    Antioxidative and antihypertensive bioactive peptides were successfully derived from Parkia speciosa seed using alcalase. The effects of temperature (25 and 50 °C), substrate-to-enzyme ratio (S/E ratio, 20 and 50), and incubation time (0.5, 1, 2 and 5h) were evaluated based on 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and angiotensin-converting enzyme (ACE) assays. Bioactive peptide extracted at a hydrolysis condition of: temperature=50 °C, S/E ratio=50 and incubation time=2h, exhibited the highest DPPH radical scavenging activity (2.9 mg GAE/g), reducing power (11.7 mM) and %ACE-inhibitory activity (80.2%). The sample was subsequently subjected to fractionation and the peptide fraction of <10 kDa showed the strongest bioactivities. A total of 29 peptide sequences from peptide fraction of <10 kDa were identified as the most potent contributors to the bioactivities. These novel bioactive peptides were suggested to be beneficial to nutraceutical and food industries.
    Matched MeSH terms: Antioxidants/isolation & purification
  6. Ahmed AS, Ahmed Q, Saxena AK, Jamal P
    Pak J Pharm Sci, 2017 Jan;30(1):113-126.
    PMID: 28603121
    Inhibition of intestinal α-amylase and α-glucosidase is an important strategy to regulate diabetes mellitus (DM). Antioxidants from plants are widely regarded in the prevention of diabetes. Fruits of Elettaria cardamomum (L.) Maton (Zingiberaceae) and Piper cubeba L. f. (Piperaceae) and flowers of Plumeria rubra L. (Apocynaceae) are traditionally used to cure DM in different countries. However, the role of these plants has been grossly under reported and is yet to receive proper scientific evaluation with respect to understand their traditional role in the management of diabetes especially as digestive enzymes inhibitors. Hence, methanol and aqueous extracts of the aforementioned plants were evaluated for their in vitro α-glucosidase and α-amylase inhibition at 1 mg/mL and quantification of their antioxidant properties (DPPH, FRAP tests, total phenolic and total flavonoids contents). In vitro optimization studies for the extracts were also performed to enhance in vitro biological activities. The % inhibition of α-glucosidase by the aqueous extracts of the fruits of E. cardamomum, P. cubeba and flowers of P. rubra were 10.41 (0.03), 95.19 (0.01), and -2.92 (0.03), while the methanol extracts exhibited % inhibition 13.73 (0.02), 92.77 (0.01), and -0.98 (0.01), respectively. The % inhibition of α-amylase by the aqueous extracts were 82.99 (0.01), 64.35 (0.01), and 20.28 (0.02), while the methanol extracts displayed % inhibition 39.93 (0.01), 31.06 (0.02), and 39.40 (0.01), respectively. Aqueous extracts displayed good in vitro antidiabetic and antioxidant activities. Moreover, in vitro optimization experiments helped to increase the α-glucosidase inhibitory activity of E. cardamomum. Our findings further justify the traditional claims of these plants as folk medicines to manage diabetes, however, through digestive enzymes inhibition effect.
    Matched MeSH terms: Antioxidants/isolation & purification
  7. Saha K, Lajis NH, Israf DA, Hamzah AS, Khozirah S, Khamis S, et al.
    J Ethnopharmacol, 2004 Jun;92(2-3):263-7.
    PMID: 15138010
    Methanol extracts of seven Malaysian medicinal plants were screened for antioxidant and nitric oxide inhibitory activities. Antioxidant activity was measured by using FTC, TBA and DPPH free radical scavenging methods and Griess assay was used for the measurement of nitric oxide inhibition in lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma)-treated RAW 264.7 cells. All the extracts showed strong antioxidant activity comparable to or higher than that of alpha-tocopherol, BHT and quercetin in FTC and TBA methods. The extracts from Leea indica and Spermacoce articularis showed strong DPPH free radical scavenging activity comparable with quercetin, BHT and Vit C. Spermacoce exilis showed only moderate activity but other species were weak as compared to the standards. In the Griess assay Lasianthus oblongus, Chasalia chartacea, Hedyotis verticillata, Spermacoce articularis and Leea indica showed strong inhibitory activity on nitric oxide production in LPS and IFN-gamma-induced RAW 264.7 cells. Extracts from Psychotria rostrata and Spermacoce exilis also inhibited NO production but this was due to their cytotoxic effects upon cells during culture.
    Matched MeSH terms: Antioxidants/isolation & purification
  8. Parthasarathy S, Bin Azizi J, Ramanathan S, Ismail S, Sasidharan S, Said MI, et al.
    Molecules, 2009;14(10):3964-74.
    PMID: 19924042 DOI: 10.3390/molecules14103964
    Studies on the antioxidant and antimicrobial activities of Mitragyna speciosa leaf extracts are lacking. In this study the antioxidant properties of water, methanolic and alkaloid M. speciosa leaf extracts were evaluated using the DPPH (2,2-diphenyl-1- picrylhydrazyl) radical scavenging method. The amount of total phenolics and flavanoid contents were also estimated. The DPPH IC(50) values of the aqueous, alkaloid and methanolic extracts were 213.4, 104.81 and 37.08 microg/mL, respectively. The total phenolic content of the aqueous, alkaloid and methanolic extracts were 66.0 mg, 88.4, 105.6 mg GAE/g, respectively, while the total flavanoid were 28.2, 20.0 and 91.1 mg CAE/g respectively. The antioxidant activities were correlated with the total phenolic content. This result suggests that the relatively high antioxidant activity of the methanolic extract compared to aqueous and alkaloid extract could be possibly be due to its high phenolic content. The aqueous, alkaloid and methanolic extracts were screened for antimicrobial activity. The extracts showed antimicrobial activity against Salmonella typhi and Bacillus subtilis. The minimum inhibitory concentrations (MICs) of extracts determined by the broth dilution method ranged from 3.12 to 6.25 mg/mL. The alkaloid extract was found to be most effective against all of the tested organisms.
    Matched MeSH terms: Antioxidants/isolation & purification
  9. Azri FA, Selamat J, Sukor R, Yusof NA, Ahmad Raston NH, Nordin N, et al.
    Molecules, 2019 Aug 29;24(17).
    PMID: 31470528 DOI: 10.3390/molecules24173141
    This work presents a simple green synthesis of gold nanoparticles (AuNPs) by using an aqueous extract of Etlingera elatior (torch ginger). The metabolites present in E. elatior, including sugars, proteins, polyphenols, and flavonoids, were known to play important roles in reducing metal ions and supporting the subsequent stability of nanoparticles. The present work aimed to investigate the ability of the E. elatior extract to synthesise AuNPs via the reduction of gold (III) chloride hydrate and characterise the properties of the nanoparticles produced. The antioxidant properties of the E. elatior extract were evaluated by analysing the total phenolic and total flavonoid contents. To ascertain the formation of AuNPs, the synthesised particles were characterised using the ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) microscopy, and dynamic light scattering (DLS) measurement. The properties of the green synthesised AuNPs were shown to be comparable to the AuNPs produced using a conventional reducing agent, sodium citrate. The UV-Vis measured the surface plasmon resonance of the AuNPs, and a band centered at 529 nm was obtained. The FTIR results proved that the extract contained the O-H functional group that is responsible for capping the nanoparticles. The HRTEM images showed that the green synthesized AuNPs were of various shapes and the average of the nanoparticles' hydrodynamic diameter was 31.5 ± 0.5 nm. Meanwhile, the zeta potential of -32.0 ± 0.4 mV indicates the high stability and negative charge of the AuNPs. We further successfully demonstrated that using the green synthesised AuNPs as the nanocomposite to modify the working surface of screen-printed carbon electrode (SPCE/Cs/AuNPs) enhanced the rate of electron transfer and provided a sensitive platform for the detection of Cu(II) ions.
    Matched MeSH terms: Antioxidants/isolation & purification
  10. Azmi NH, Ismail N, Imam MU, Ismail M
    PMID: 23866310 DOI: 10.1186/1472-6882-13-177
    There are reports of improved metabolic outcomes due to consumption of germinated brown rice (GBR). Many of the functional effects of GBR can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of neurodegenerative diseases like Alzheimer's disease (AD). This effect of dietary components is mostly based on their ability to prevent apoptosis, which is believed to link oxidative damage to pathological changes in AD. In view of the rich antioxidant content of GBR, we studied its potential to modulate processes leading up to AD.
    Matched MeSH terms: Antioxidants/isolation & purification
  11. Ngoh YY, Gan CY
    Food Chem, 2016 Jan 1;190:331-7.
    PMID: 26212978 DOI: 10.1016/j.foodchem.2015.05.120
    Antioxidant and α-amylase inhibitor peptides were successfully extracted from Pinto bean protein isolate (PBPI) using Protamex. A factorial design experiment was conducted and the effects of extraction time, pH and temperature were studied. pH 7.5, extraction time of 1h, S/E ratio of 10 (w/w) and temperature of 50 °C gave the highest antioxidant activities (i.e., ABTS scavenging activity (53.3%) and FRAP value (3.71 mM)), whereas pH 6.5 with the same extraction time, S/E ratio and temperature, gave the highest α-amylase inhibitory activity (57.5%). It was then fractioned using membrane ultrafiltration with molecular weight cutoffs of 100, 50, 30, 10 and 3 kDa. Peptide fraction <3 kDa, which exhibited the highest antioxidant activities (i.e., ABTS (42.2%) and FRAP (0.81 mM)) and α-amylase inhibitory activity (62.1%), was then subjected to LCMS and MS/MS analyses. Six sequences were identified for antioxidant peptides, whereas seven peptides for α-amylase inhibitor.
    Matched MeSH terms: Antioxidants/isolation & purification*
  12. Ahmad A, Ramasamy K, Majeed AB, Mani V
    Pharm Biol, 2015 May;53(5):758-66.
    PMID: 25756802 DOI: 10.3109/13880209.2014.942791
    Soybean and its fermented products are the most common source of isoflavones in human food.
    Matched MeSH terms: Antioxidants/isolation & purification
  13. Albaayit SF, Abba Y, Rasedee A, Abdullah N
    Drug Des Devel Ther, 2015;9:3507-18.
    PMID: 26203223 DOI: 10.2147/DDDT.S84770
    Clausena excavata is a well-known plant used in folkloric medicine for the treatment of different ailments. This study aimed to determine the in vitro cytoxicity of its leaf solvent extracts as well as the in vivo wound healing and antioxidant activities of the methanolic extracts of C. excavata (MECE). HaCaT (keratocyte) and Vero cell lines were used for evaluation of the in vitro cytotoxic effects, while the in vivo wound healing and antioxidant activities were determined in skin wounds inflicted on rats. Twenty adult male Sprague-Dawley rats were divided into five groups of four animals each. Approximately 3.14 cm(2) excisional wound was inflicted on the nape of each rat following anesthesia. The treatment groups received topical application of MECE at 50 mg/mL (MECE-LD [low dose]), 100 mg/mL (MECE-MD [medium dose]), and 200 mg/mL (MECE-HD [high dose]), while the negative control group was treated with gum acacia in normal saline and the positive control group with intrasite gel. Wound contraction was evaluated on days 5, 10, and 15 after wound infliction, and tissue from wound area was collected at day 15 post-wound infliction for antioxidant enzyme evaluation and histopathological analyses. Generally, Vero cells were more resistant to the cytotoxic effects of the solvent extracts as compared with HaCaT cells. Chloroform (CH) and ethyl acetate (EA) extracts of C. excavata were toxic to HaCaT cells at 200 and 400 µg/mL, but the same concentrations showed higher (P<0.05) viability in Vero cells. There was significantly (P<0.01) greater wound contraction at days 10 and 15 post-wound infliction in all the treatment groups than in the control groups. Histopathologically, the MECE-HD-treated wound showed significantly (P<0.05) lesser inflammatory cell proliferation, degeneration, and distribution of granulation tissue than other groups. Similarly, the degree of collagen maturation, angiogenesis, and collagen distribution were significantly (P<0.05) lower in MECE-HD than in other groups. The MECE-HD, MECE-MD, and intrasite treatment groups showed a significantly (P<0.05) higher number of VEGF-positive and TGF-β1-positive cells in the skin wound than the control groups. The activities of superoxide dismutase and catalase were significantly (P<0.01) higher in the MECE-HD and intrasite treatment groups than in the other groups. Lipid peroxidase activity of the treated groups was significantly (P<0.01) lower than that in the control group. The study showed that MECE is a potent wound healing agent through anti-inflammatory and antioxidant effects that enhanced the rate of wound contraction, re-epithelialization, and collagen deposition. The effect of MECE is suggested to be due to its high polyphenolic compound content.
    Matched MeSH terms: Antioxidants/isolation & purification
  14. Ng HS, Tan GYT, Lee KH, Zimmermann W, Yim HS, Lan JC
    J Biosci Bioeng, 2018 Oct;126(4):507-513.
    PMID: 29764763 DOI: 10.1016/j.jbiosc.2018.04.008
    The α- and γ-mangostins from Garcinia mangostana pericarps (GMP) exhibit antioxidant, anti-bacterial, anti-inflammatory and anti-tumor properties. The extraction yields α- and γ-mangostins are often limited by the presence of the GMP cell walls. Therefore, the extraction and recovery of mangostins from GMP with an Aspergillus niger cellulase-assisted aqueous micellar biphasic system (CA-AMBS) was developed for enhanced yield of mangostins. Effects of the concentration of cellulase, the incubation time and the temperature of the system on the recovery of mangostins were investigated. The optimum condition for the recovery of α- and γ-mangostins was obtained with the addition of 0.5% (w/w) cellulase incubated at 40°C for 2 h. High log partition coefficients of α-mangostins (log Kα 4.79 ± 0.02) and γ-mangostins (log Kγ 4.02 ± 0.02) were achieved. High yields of α-mangostins (73.4%) and γ-mangostins (14.0%) were obtained from the micelle-rich bottom phase with final concentrations of 3.67 mg/mL and 0.70 mg/mL, respectively. The back-extraction of mangostins was performed with the addition of 30% (w/w) of isopropanol and 0.05 M of KCl at pH 9 to the bottom phase of the CA-AMBS. The yields of the α- and γ-mangostins from GMP were considerably enhanced with the CA-AMBS and the direct recovery of mangostins was demonstrated without additional downstream processing steps.
    Matched MeSH terms: Antioxidants/isolation & purification
  15. Islam MA, Alam F, Solayman M, Khalil MI, Kamal MA, Gan SH
    Oxid Med Cell Longev, 2016;2016:5137431.
    PMID: 27721914
    Cumulatively, degenerative disease is one of the most fatal groups of diseases, and it contributes to the mortality and poor quality of life in the world while increasing the economic burden of the sufferers. Oxidative stress and inflammation are the major pathogenic causes of degenerative diseases such as rheumatoid arthritis (RA), diabetes mellitus (DM), and cardiovascular disease (CVD). Although a number of synthetic medications are used to treat these diseases, none of the current regimens are completely safe. Phytochemicals (polyphenols, carotenoids, anthocyanins, alkaloids, glycosides, saponins, and terpenes) from natural products such as dietary fruits, vegetables, and spices are potential sources of alternative medications to attenuate the oxidative stress and inflammation associated with degenerative diseases. Based on in vitro, in vivo, and clinical trials, some of these active compounds have shown good promise for development into novel agents for treating RA, DM, and CVD by targeting oxidative stress and inflammation. In this review, phytochemicals from natural products with the potential of ameliorating degenerative disease involving the bone, metabolism, and the heart are described.
    Matched MeSH terms: Antioxidants/isolation & purification
  16. Yuen CW, Murugaiyah V, Najimudin N, Azzam G
    J Ethnopharmacol, 2021 Feb 10;266:113418.
    PMID: 32991971 DOI: 10.1016/j.jep.2020.113418
    ETHNOPHARMACOLOGICAL RELEVANCE: Danshen, is a traditional Chinese medicine obtained from the dried root and rhizome of Salvia miltiorrhiza Bunge. It is known to be used for neurological disorder including for Alzheimer's disease (AD). This study uncovers the effect of Danshen water extract on the Alzheimer's disease model of C.elegans.

    MATERIAL AND METHODS: The composition of Danshen water extract was determined using (High Performance Liquid Chromatography (HPLC). Then Thioflavin T assay was used to determined if Danshen water extract could prevent the aggregation of amyloid-β peptide (Aβ). Alzheimer's disease C.elegans model was used to determine the effect of Danshen water extract. Finally, the reactive oxygen species (ROS) was determined using the 2,7-dichlorofuorescein diacetate method.

    RESULTS: In this study, we found that standardized Danshen water extract that contains danshensu (1.26%), salvianolic acid A (0.35%) and salvianolic acid B (2.21%) are able to bind directly to Aβ and prevents it from aggregating. The IC50 for the inhibition of Aβ aggregation by Danshen water extract was 0.5 mg/ml. In the AD model of C.elegans, Danshen water extract managed to alleviates the paralysis phenotype. Furthermore, the administration of Danshen water extract displayed antioxidant properties toward the Aβ-induced oxidative stress.

    CONCLUSIONS: AD is a widespread neurodegenerative disease attributed to the accumulation of extracellular plaques comprising Aβ. Danshen water extract could significantly reduce the progress of paralysis in the AD model of C. elegans, showing promising results with its antioxidant properties. It can be concluded that Danshen water extract could potentially serve as a therapeutic for AD.

    Matched MeSH terms: Antioxidants/isolation & purification
  17. Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Balasubramanian MP
    J Environ Pathol Toxicol Oncol, 2015;34(4):287-98.
    PMID: 26756422
    The aim of the study was to evaluate the protective activity of D-Pinitol against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. The animals were divided into six groups, with each group consisting of six animals. Group I animals served as normal controls and received olive oil vehicle (1.0 ml/kg body weight intraperitoneally). Group II rats served as CCl4 controls, which received 30% CCl4 suspended in olive oil (3.0 ml/kg body weight intraperitoneally) twice a week for 4 weeks. Group III rats were treated with 30% CCl4 suspended in olive oil (3.0 ml/kg body weight intraperitoneally) twice a week for 4 weeks, followed by D-Pinitol (100 mg/kg body weight) given for 28 days intragastrically. Group IV rats received D-Pinitol alone at a concentration of 100 mg/kg body weight for 28 days intragastrically. At the end of the experimental period, serum marker enzymes and lipid peroxidation (LPO) levels were significantly increased in group II animals. On the other hand, D-Pinitol treatment significantly decreased marker enzymes and LPO levels and increased the antioxidant level. CYP expression was also investigated. Therefore, the present study revealed that D-Pinitol acts as a protective agent by decreasing metabolic activation of xenobiotics through its antioxidant nature.
    Matched MeSH terms: Antioxidants/isolation & purification
  18. Somasundaram SN, Shanmugam S, Subramanian B, Jaganathan R
    Int J Biol Macromol, 2016 Oct;91:1215-23.
    PMID: 27370748 DOI: 10.1016/j.ijbiomac.2016.06.084
    The present study was aimed to investigate the antioxidant and cytotoxicity activity against HCT-15 of fucoidan from Sargassum cinereum. Purification of fucoidan was done by DEAE cellulose and dialysis. Physicochemical characterization of fucoidan was analysed by calorimetric assay, FT-IR, HPLC and NMR. The extracted fucoidan contains 65.753% of fucose and 3.7±1.54% of sulphate respectively. HPLC results showed that the fucoidan contains the monosaccharide composition such as fucose, galactose, mannose and xylose. Antioxidant effect of fucoidan in Sargassum Cinereum was determined by DPPH. The maximum DPPH activity was found at the concentration of 100μg, where as the crude extract showed the scavenging activity was 63.58±0.56%. Cytotoxicity effect was done by MTT assay. Fucoidan extract caused about 50% of cell death after 24h of incubation with 75±0.9037μg/ml against HCT-15.
    Matched MeSH terms: Antioxidants/isolation & purification
  19. Jamila N, Khairuddean M, Yaacob NS, Kamal NN, Osman H, Khan SN, et al.
    Bioorg Chem, 2014 Jun;54:60-7.
    PMID: 24813683 DOI: 10.1016/j.bioorg.2014.04.003
    Garcinia hombroniana (seashore mangosteen) in Malaysia is used to treat itching and as a protective medicine after child birth. This study was aimed to investigate the bioactive chemical constituents of the bark of G. hombroniana. Ethyl acetate and dichloromethane extracts of G. hombroniana yielded two new (1, 9) and thirteen known compounds which were characterized by the spectral techniques of NMR, UV, IR and EI/ESI-MS, and identified as; 2,3',4,5'-tetrahydroxy-6-methoxybenzophenone(1), 2,3',4,4'-tetrahydroxy-6-methoxybenzophenone (2), 2,3',4,6-tetrahydroxybenzophenone (3), 1,3,6,7-tetrahydroxyxanthone (4), 3,3',4',5,7-pentahydroxyflavone (5),3,3',5,5',7-pentahydroxyflavanone (6), 3,3',4',5,5',7-hexahydroxyflavone (7), 4',5,7-trihydroxyflavanone-7-rutinoside (8), 18(13→17)-abeo-3β-acetoxy-9α,13β-lanost-24E-en-26-oic acid (9), garcihombronane B (10), garcihombronane D (11), friedelan-3-one (12), lupeol (13), stigmasterol (14) and stigmasterol glucoside (15). In the in vitro cytotoxicity against MCF-7, DBTRG, U2OS and PC-3 cell lines, compounds 1 and 9 displayed good cytotoxic effects against DBTRG cancer cell lines. Compounds 1-8 were also found to possess significant antioxidant activities. Owing to these properties, this study can be further extended to explore more significant bioactive components of this plant.
    Matched MeSH terms: Antioxidants/isolation & purification
  20. Kim RP, Bihud V, Bin Mohamad K, Leong KH, Bin Mohamad J, Bin Ahmad F, et al.
    Molecules, 2012 Dec 21;18(1):128-39.
    PMID: 23344192 DOI: 10.3390/molecules18010128
    Eleven compounds:goniomicin A (1), goniomicin B (2), goniomicin C (3), goniomicin D (4), tapisoidin (5), goniothalamin (6), 9-deoxygoniopypyrone (7), pterodondiol (8), liriodenine (9), benzamide (10) and cinnamic acid (11), were isolated from the stem bark of Goniothalamus tapisoides. All compounds were identified by spectroscopic analysis and, for known compounds, by comparison with published data. Goniothalamin (6) exhibited mild cytotoxic activity towards a colon cancer cell line (HT-29), with an IC(50)value of 64.17 ± 5.60 µM. Goniomicin B (2) give the highest antioxidant activity in the DPPH assay among all compounds tested, with an IC(50) of 0.207 µM.
    Matched MeSH terms: Antioxidants/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links