Displaying publications 61 - 80 of 142 in total

Abstract:
Sort:
  1. Vinuthinee N, Azreen-Redzal A, Juanarita J, Zunaina E
    Int Med Case Rep J, 2015;8:47-50.
    PMID: 25709507 DOI: 10.2147/IMCRJ.S75198
    We report a rare case of sling shot injury that presented with a gunshot-like wound with preseptal cellulitis, in a toddler. An 11-month-old Malay child presented with a gunshot-like wound over the forehead following sling shot injury. On examination, he had a deep circular laceration wound over the forehead, measuring 2.0 cm in diameter, with minimal bleeding. There was no obvious foreign body seen inside the wound and no palpable foreign body surrounding the wound. The gunshot-like wound was associated with left preseptal cellulitis. A skull X-ray showed a white opaque foreign body in the left frontal bone. Computed tomography (CT) scan of orbit and brain revealed a left comminuted fracture of the left orbital roof, and left frontal brain contusion with prelesional edema. Wound exploration was performed and revealed a 0.5 cm unshattered marble embedded in the left frontal bone. The marble and bone fragments were removed. The left preseptal cellulitis responded well to intravenous antibiotic and topical antibiotic.
    Matched MeSH terms: Calcium Carbonate
  2. Shamshuddin J, Panhwar Q, Shazana M, Elisa A, Fauziah C, Naher U
    Sains Malaysiana, 2016;45:383-392.
    Acid sulfate soils are generally not suitable for the crop production unless they are efficiently improved. A study was conducted to improve the productivity of acid sulfate soils for rice cultivation using ground magnesium limestone (GML), basalt and organic fertilizer. The study was conducted on rice in laboratory, glasshouse and field. The pH of acid sulfate soils was low and exchangeable Al was very high which affected rice growth. The application of GML and basalt increased soil pH and reduced Al toxicity. GML required to ameliorate the soils for rice cultivation was 4 t ha-1. Basalt in combination with organic fertilizer was a good soil amendment, but required to be applied a few months ahead of rice cultivation. Due to GML or basalt application, rice plants grew well even though water pH was below 5. The highest rice yield obtained was 4.0 t ha-1 season-1 for Sulfaquepts and it was 7.5 t ha-1 season-1 for Sulfosaprists. In general, the application of GML or basalt in combination with organic fertilizer improved the productivity of acid sulfate soils and consequently enhanced rice yield.
    Matched MeSH terms: Calcium Carbonate
  3. Shamsuria O, Fadilah AS, Asiah AB, Rodiah MR, Suzina AH, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:174-5.
    PMID: 15468874
    The aim of this study was to evaluate the in vitro cytotoxicity of biomaterials; Hydroxyapatite (HA), Natural coral (NC) and Polyhydroxybutarate (PHB). Three different materials used in this study; HA (Ca10(PO4)6(OH)2), NC (CaCO3) and PHB (Polymer) were locally produced by the groups of researcher from Universiti Sains Malaysia. The materials were separately extracted in the complete culture medium (100mg/ml) for 72h and introduced to the osteoblast cells CRL-1543. The viability of osteoblast CRL-1543 cultivated with these extraction materials after 72h incubation period was compared to negative control with neutral red assay by using spectrophotometer at 540nm. The results showed the non-cytotoxicity of the materials. After 72h of incubation period, HA showed 123% viable cells, NC was 99.43% and PHB was 176.75%. In this study, cytotoxicity test dealt mainly with the substances that leached out from the biomaterial. The results obtained showed that the materials were not toxic and also promoted cells growth in the sense of biofunctionality.
    Matched MeSH terms: Calcium Carbonate/toxicity*
  4. Kamba SA, Ismail M, Hussein-Al-Ali SH, Ibrahim TA, Zakaria ZA
    Molecules, 2013 Aug 30;18(9):10580-98.
    PMID: 23999729 DOI: 10.3390/molecules180910580
    Drug delivery systems are designed to achieve drug therapeutic index and enhance the efficacy of controlled drug release targeting with specificity and selectivity by successful delivery of therapeutic agents at the desired sites without affecting the non-diseased neighbouring cells or tissues. In this research, we developed and demonstrated a bio-based calcium carbonate nanocrystals carrier that can be loaded with anticancer drug and selectively deliver it to cancer cells with high specificity by achieving the effective osteosarcoma cancer cell death without inducing specific toxicity. The results showed pH sensitivity of the controlled release characteristics of the drug at normal physiological pH 7.4 with approximately 80% released within 1,200 min but when exposed pH 4.8 the corresponding 80% was released in 50 min. This study showed that the DOX-loaded CaCO₃ nanocrystals have promising applications in delivery of anticancer drugs.
    Matched MeSH terms: Calcium Carbonate/chemistry
  5. Hashim N, Sabudin S, Ibrahim S, Zin NM, Bakar SH, Fazan F
    Med J Malaysia, 2004 May;59 Suppl B:103-4.
    PMID: 15468839
    Hydroxyapatite (HA; Ca10(PO4)6(OH)2), is one of the significant implant materials used in Orthopaedics and Dental applications. However, synthetically produced HA may not be stable under ionic environment, which it will unavoidably encounter during its applications. In this paper, the in vitro effects of three HA materials derived from different resources, i.e. commercial HA (HAC), synthesised HA from pure chemicals (HAS) and synthesised HA from kapur sireh; derived traditionally from natural limestone (HAK), were studied. The HA disc samples were prepared and immersed in simulated body fluid (SBF) for 31-day period. The evaluation conducted focuses on the changes of the pH and the Calcium ion (Ca-ion) and Phosphate ion (P-ion) concentrations in the SBF solution, as well as the XRD and SEM data representing the reactions on the HA materials. From the XRD, it was found that HAK has the smallest crystallite sizes, which in turn affect the pH of the SBF during immersion. The Ca and P-ion concentrations generally decrease over time at different rates for different HA. Upon 1-day immersion in SBF, apatite growth was observed onto all three surfaces, which became more pronounced after 3-day immersion. However, the appetites formed were observed to be different in shapes and sizes. The reasons for the difference in the apatite-crystals and their subsequent effects on cells are still being investigated.
    Matched MeSH terms: Calcium Carbonate
  6. Kamba AS, Ismail M, Ibrahim TA, Zakaria ZA, Gusau LH
    Biomed Res Int, 2014;2014:391869.
    PMID: 25028650 DOI: 10.1155/2014/391869
    Bones are the most frequent site for breast cancer cells to settle and spread (metastasise); bone metastasis is considered to have a substantial impact on the quality of patients with common cancers. However, majority of breast cancers develop insensitivity to conventional chemotherapy which provides only palliation and can induce systemic side effects. In this study we evaluated the effect of free Dox and CaCO3/Dox nanocrystal on MCF-7 breast cancer using MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide), neural red, and lactate dehydrogenase colorimetric assays while DNA fragmentation and BrdU genotoxicity were also examined. Apoptogenic protein Bax, cytochrome C, and caspase-3 protein were analysed. Morphological changes of MCF-7 were determined using contrast light microscope and scanning and transmission electron microscope (SEM and TEM). The findings of the analysis revealed higher toxicity of CaCO3/Dox nanocrystal and effective cells killing compared to free Dox, morphological changes such as formation of apoptotic bodies, membrane blebbing, and absent of microvilli as indicated by the SEM analysis while TEM revealed the presence of chromatin condensation, chromosomal DNA fragmentation, cell shrinkage, and nuclear fragmentation. Results of TUNEL assay verified that most of the cells undergoes apoptosis by internucleosomal fragmentation of genomic DNA whereas the extent of apoptotic cells was calculated using the apoptotic index (AI). Therefore, the biobased calcium carbonate nanocrystals such as Dox carriers may serve as an alternative to conventional delivery system.
    Matched MeSH terms: Calcium Carbonate/pharmacology*
  7. Rosdan S, Al-Salihi KA, Suzina AH, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:111-2.
    PMID: 15468843
    The main objective of the study was to determine the biodegradability, resorption and osteoconductivity potency of coral implant. Coral blocks (CORAGRAF) were prepared from sea coral Porites species. The blocks were implanted in the right mandible of rabbit model. Implants were harvested at 2 and 4 weeks intervals and subjected for light and scanning electron microscopy. Dense hydroxyapatite (DHA) was implanted in the left mandible as a control. The results of this study demonstrated that CORAGRAF is a good implant material that can accelerates bone healing and be resorbed in an acceptable time. The mechanisms of the resorption seemed to be the same (crumbling process), a first step where the edge of the coral become powdery then a second step which could be phagocytosis and dissolution in extracellular fluid.
    Matched MeSH terms: Calcium Carbonate*
  8. Jamuna, K., Noorsal, K., Zakaria, F.A., Hussin, Z.H.
    ASM Science Journal, 2010;4(1):41-47.
    MyJurnal
    Introducing CO2 flux as the carbonate source had an effect on the carbonate content of carbonate apatite (CAp) synthesized by solid state reaction. The reactants were CaCO3 and beta-tricalcium phosphate (β-TCP) and the heat treatment in air was performed at 1250ºC followed by instant cooling in CO2 flux for temperatures ranging from 800ºC room temperature (RT) . The influence of CO2 flux at various temperature drop differences in the cooling process (1250ºC RT, 1250ºC–500ºC, 1250ºC–600ºC, 1250ºC–700ºC, and 1250ºC–800ºC) was tested to optimize the carbonation degree and subsequent effects on the physical and mechanical properties of CAp. Thermally treated samples revealed an increasing degree of carbonation, achieving a maximum of 5.2 wt% at the highest (1250ºC RT) and a minimum of 2.7 wt% at the lowest (1250ºC–800ºC) temperature drop differences, respectively. This showed that the carbonate content was correlated with the increase in exposure to CO2 flux. However, consistent compressive strength, tensile strength, density and porosity were observed against increasing temperature drop differences which indicated that the degree of carbonation exerted no influence on the physical and mechanical properties of CAp. This method enabled the synthesis of solid state CAp simply by exposing calcium phosphate mixtures to CO2 flux. It also allowed the control of carbonate content for desired medical applications.
    Matched MeSH terms: Calcium Carbonate
  9. Lai FC
    Sains Malaysiana, 2015;44:1599-1607.
    Cement industries globally produced about 2.282 billion ton/year and 25 billion tons of concrete are produced yearly
    all over the world, necessary measures are to be taken to reduce energy use along with the prevention of environmental
    degradation, depletion of the limited resources and contribute 7% to global warming effects due to the release of carbon
    dioxide to the atmosphere. Cement additives quality improver polymer (CAQIP) was developed from synthesized polymer,
    waste materials derived from petro-chemical and palm oil waste for production of sustainable cement. Industrial scale
    trial in a local cement plants by dosing 0.009%-0.690% CAQIP significant improved productivity, 8.3-27.5% efficiency in
    saving, 24.73-86.36% clinkering energy and 7.7-21.57% grinding energy in the production of Ordinary Portland Cement
    and sustainable cement. Strength quality improved 7.31-34.8% (2 day) and 3.85-57.58% (28 day). Carbon dioxide and
    others toxic gases emission was reduced 21.90-90.0% by replacing clinker with waste material such as fly ash (25-
    35%), out-spec clinker (50-100%) and limestone waste (5-25%). The developed CAQIP significant improved productivity,
    quality strength, reduced CO2
    emission, grinding & clinkering energy and enhanced production of sustainable cement
    and concrete in Malaysia.
    Matched MeSH terms: Calcium Carbonate
  10. Moharir KN, Pande CB, Gautam VK, Singh SK, Rane NL
    Environ Res, 2023 Jul 01;228:115832.
    PMID: 37054834 DOI: 10.1016/j.envres.2023.115832
    The Damoh district, which is located in the central India and characterized by limestone, shales, and sandstone compact rock. The district has been facing groundwater development challenges and problems for several decades. To facilitate groundwater management, it is crucial to monitoring and planning based on geology, slope, relief, land use, geomorphology, and the types of the basaltic aquifer in the drought-groundwater deficit area. Moreover, the majority of farmers in the area are heavily dependent on groundwater for their crops. Therefore, delineation of groundwater potential zones (GPZ) is essential, which is defined based on various thematic layers, including geology, geomorphology, slope, aspect, drainage density, lineament density, topographic wetness index (TWI), topographic ruggedness index (TRI), and land use/land cover (LULC). The processing and analysis of this information were carried out using Geographic Information System (GIS) and Analytic Hierarchy Process (AHP) methods. The validity of the results was trained and tested using Receiver Operating Characteristic (ROC) curves, which showed training and testing accuracies of 0.713 and 0.701, respectively. The GPZ map was classified into five classes such as very high, high, moderate, low, and very low. The study revealed that approximately 45% of the area falls under the moderate GPZ, while only 30% of the region is classified as having a high GPZ. The area receives high rainfall but has very high surface runoff due to no proper developed soil and lack of water conservation structures. Every summer season show a declined groundwater level. In this context, results of study area are useful to maintain the groundwater under climate change and summer season. The GPZ map plays an important role in implementing artificial recharge structures (ARS), such as percolation ponds, tube wells, bore wells, cement nala bunds (CNBs), continuous contour trenching (CCTs), and others for development of ground level. This study is significant for developing sustainable groundwater management policies in semi-arid regions, that are experiencing climate change. Proper groundwater potential mapping and watershed development policies can help mitigate the effects of drought, climate change, and water scarcity, while preserving the ecosystem in the Limestone, Shales, and Sandstone compact rock region. The results of this study are essential for farmers, regional planners, policy-makers, climate change experts, and local governments, enabling them to understand the groundwater development possibilities in the study area.
    Matched MeSH terms: Calcium Carbonate/analysis
  11. M KS, Alengaram UJ, Ibrahim S, Vello V, Phang SM
    Environ Sci Pollut Res Int, 2024 Apr;31(17):25538-25558.
    PMID: 38478311 DOI: 10.1007/s11356-024-32784-2
    This study investigated the potential use of microalgae as partial cement replacement to heal cracks in cement mortar. Microbially induced calcite (CaCO3) precipitation (MICP) from Arthrospira platensis (A. platensis) (UMACC162) was utilised for crack-healing applications. Microalgae was cultivated in Kosaric Media (KM) together with filtered cement water (FCW), and used as a cement replacement material. The microalgal species was further evaluated for its capacity and adaptability towards large-scale culturing. The results showed that A. platensis could adapt and survive in cement water solution and cement mortar, suggesting the potential for self-healing in cement mortar. Further, the cultured species grown in both conditions (KM and KM & FCW) were harvested and incorporated into the cement mortar as a partial cement replacement material at different levels of 5%, 10%, 20%, and 30% of cement weight. The cement mortars partially replaced with microalgae were cured in water for 28 days. Pre-cracks were induced in the cured mortar with the 75% of their ultimate load. It took just 14 days for the microalgae-incorporated mortar to heal the cracks. The specimens with microalgae cultured in FCW showed a better performance and recovered 59% of their strength, with a maximum healed crack width of 0.7 mm. In terms of water tightness and porosity, they are comparable to the control mortar. The compressive strength measurements indicated the formation of calcite aggregate (crystal) that sealed the surface cracks, which was confirmed by a microstructural analysis. The results also demonstrate that the incorporation of microalgae into cement produced a self-healing effect, providing a new direction for crack healing. Additionally, the investigation indicated that replacing cement with microalgae reduced CO2 emissions by as much as 30%, with a substitution of 30% of microalgae. Exploring microalgae as a cement replacement could reduce carbon emissions and improve the state of the environment.
    Matched MeSH terms: Calcium Carbonate
  12. Kumar S, Thomas BS, Gupta K, Guddattu V, Alexander M
    Niger J Clin Pract, 2018 Aug;21(8):1029-1033.
    PMID: 30074006 DOI: 10.4103/njcp.njcp_341_17
    Aim and objectives: The aim and the objectives were. (1) to assess the efficacy of a desensitizing toothpaste containing 8.0% arginine-calcium carbonate (Colgate® Sensitive Pro-Relief™), (2) to assess the efficacy of a desensitizing toothpaste containing 8.0% arginine-calcium carbonate (Colgate® Sensitive Pro-Relief™) used in combination with iontophoresis, and (3) to compare the effectiveness of the above methods.

    Subjects and Methods: Two groups of 40 patients each having dentinal hypersensitivity were treated using 8% proarginine and iontophoresis. The patients were recalled after 1, 2, and 4 weeks. The scores were tabulated and the results were analyzed using SPSS statistical software.

    Results: Visual analog scale between the two groups showed a significant difference from the 1st week till the 4th week. ANOVA values showed the reduction in the dentinal hypersensitivity in Group 2 using the iontophoresis along with the 8.0% arginine-calcium carbonate toothpaste. The Cochran-Mantel-Haenszel correlation test of the Schiff's dentinal hypersensitivity cross-tabulation showed P < 0.001 which was statistically significant reduction after the 4th week following the application of 8.0% arginine-calcium carbonate along with iontophoresis.

    Conclusion: Iontophoresis, when used along with Colgate® Sensitive Pro-Relief™ toothpaste, can provide additional benefit as this provides a better sealing effect.

    Matched MeSH terms: Calcium Carbonate/therapeutic use*
  13. WAN ZAWIAH WAN ABDULLAH, MD ZAIDI YAHAYA, MOHAMAD YUSOF MASKAT
    Sains Malaysiana, 2012;41:411-418.
    Kajian ini dijalankan bagi menentukan kesan penambahan kalsium karbonat (CaCO3) dan sukrosa ke atas ekstrak roselle dengan menggunakan Kaedah Respon Permukaan. Sebanyak 21 perlakuan digunakan berdasarkan reka bentuk eksperimen Central Composite Rotatable Design (CCRD). Penentuan nilai pH dan Briks telah dijalankan. Bagi nilai pH, model yang didapati adalah 4.03+0.39x1-8.20x2-0.05x1 2-4.16x2 2-0.02x1x2 dengan nilai x1 adalah kalsium karbonat dan nilai x2 adalah sukrosa. Nilai positif pada kepekatan kalsium menunjukkan penambahan kalsium meningkatkan nilai pH ekstrak roselle. Model untuk Briks adalah 8.91 + 0.23x1 + 2.20x2. Nilai positif pada kepekatan kalsium dan sukrosa menunjukkan penambahan kalsium dan sukrosa meningkatkan nilai Briks ekstrak roselle. Penilaian sensori dengan menggunakan panel terlatih (n=8) menunjukkan penambahan sukrosa meningkatkan penerimaan keseluruhan terhadap ekstrak Roselle. Manakala, kesan penambahan kalsium karbonat telah mengurangkan penerimaan keseluruhan kerana ia merendahkan rasa masam.
    Matched MeSH terms: Calcium Carbonate
  14. Phung CC, Yong YZ, Said MAM, Liew TS
    Zookeys, 2018.
    PMID: 29988791 DOI: 10.3897/zookeys.769.25571
    This paper presents the first land snail species checklist for Gunung Kuang (Kuang Hill), a limestone hill located next to Gunung Kanthan that is recognised as one of the most important limestone hills for its diverse land snail fauna in Kinta Valley. Samplings were carried out at five plots in Gunung Kuang. This survey documented 47 land snail species, in which six species were identified as unique to Gunung Kuang. Approximately half of the land snails from Gunung Kanthan were found in Gunung Kuang. In addition, one of six unique species from Gunung Kanthan was also found in Gunung Kuang. These rich land snail species in Gunung Kuang are similar to other hills in Kinta Valley, but it is relatively lesser than the adjacent Gunung Kanthan. In view of Gunung Kuang's unique land snail species, and its location closest to disturbed Gunung Kanthan, Gunung Kuang should be considered in the conservation management plan for Gunung Kanthan.
    Matched MeSH terms: Calcium Carbonate
  15. Marzuki MEB, Liew TS, Mohd-Azlan J
    Zookeys, 2021;1035:1-113.
    PMID: 33958931 DOI: 10.3897/zookeys.1035.60843
    This study presents a list of land snails and slugs found on limestone hills in the District of Bau, the state of Sarawak in Malaysian Borneo. Systematic and random sampling for land snails was conducted at eight limestone outcrops, namely, Gunung Stulang, Padang Pan, Gunung Kapor, Gunung Lobang Angin, Gunung Doya, Gunung Batu, Bukit Sekunyit and Gunung Sebayat. A total of 122 land snail species was documented with photographs of each species. Of the 122 species collected, 13 are new to science, namely, Acmella bauensissp. nov., Japonia bauensissp. nov., Plectostoma margaretchanaesp. nov., Microcystina arabiisp. nov., Microcystina atonisp. nov., Microcystina pariparisp. nov., Microcystina liratasp. nov., Microcystina oswaldbrakenisp. nov., Microcystina kilatsp. nov., Philalanka jambusanensissp. nov., Everettia microrhytidasp. nov., Everettia minutasp. nov., and Paralaoma sarawakensissp. nov.
    Matched MeSH terms: Calcium Carbonate
  16. Ekanem TB, Ekong MB, Eluwa MA, Igiri AO, Osim EE
    Malays J Med Sci, 2015 12 31;22(4):17-22.
    PMID: 26715904
    BACKGROUND: Calabash chalk, a kaolin-base substance is a common geophagic material mostly consumed by pregnant women. This study investigated its effect on the histomorphology of the foetal cerebral cortex.

    METHODS: Twelve gestating Wistar rats were divided equally into groups 1 and 2. On pregnancy day seven (PD7), group 2 animals were administered 200 mg/kg body weight of calabash chalk suspension, while group 1 animals served as the control and received 1 ml of distilled water, by oral gavages and for 14 days (PD7-PD20). On PD21, the dams were sacrificed, and the foetuses removed, examined for gross malformations, weighed and culled to two foetuses per mother. Their whole brains were excised, weighed and preserved using 10% buffered formalin, and routinely processed by haematoxylin and eosin, and Luxol fast blue methods.

    RESULTS: The foetuses showed no morphological change, but their mean body weights was higher (p=0.0001). Histomorphological sections of the cerebral cortex showed hypertrophy and hyperplasia of cells in all the cortical layers, with less demonstrated Nissl and higher (p=0.001) cellular population compared with the control group.

    CONCLUSION: Calabash chalk cause body weight increase and histomorphological changes in the cerebral cortex of foetuses.

    Matched MeSH terms: Calcium Carbonate
  17. Rohaya Othman, Nasharuddin Isa, Sarani Zakaria, Chia CH, Ainun Zuriyati
    Precipitated calcium carbonate fillers were loaded into the lumen of bleached mixed tropical hardwood pulp using polyethylenimine (PEI) and alum. Our results indicated that the addition of (PEI) increased the degree of loading of precipitated calcium carbonate (PCC) into the lumen of fibers. The degree of loading also increased with the addition of alum together with PEI. The mechanical strengths of the produced lumen loaded paper increased with the addition of PEI and alum. Meanwhile the mechanical strength without alum had slightly increased the mechanical strengths of the paper. Electron micrographs revealed that the PCC fillers were successfully loaded into the lumen of the fibers.
    Matched MeSH terms: Calcium Carbonate
  18. Al-Ramahi R
    Saudi J Kidney Dis Transpl, 2012 Mar;23(2):403-8.
    PMID: 22382249
    To determine the medication prescribing patterns in hospitalized patients with chronic kidney disease (CKD) in a Malaysian hospital, we prospectively studied a cohort of 600 patients in two phases with 300 patients in each phase. The first phase was carried out from the beginning of February to the end of May 2007, and the second phase was from the beginning of March to the end of June 2008. Patients with CKD who had an estimated creatinine clearance ≤ 50 mL/min and were older than 18 years were included. A data collection form was used to collect data from the patients' medical records and chart review. All systemic medications prescribed during hospitalization were included. The patients were prescribed 5795 medications. During the first phase, the patients were prescribed 2814 medication orders of 176 different medications. The prescriptions were 2981 of 158 medications during the second phase. The mean number of medications in the first and second phases was 9.38 ± 3.63 and 9.94 ± 3.78 respectively (P-value = 0.066). The top five used medications were calcium carbonate, folic acid/vitamin B complex, metoprolol, lovastatin, and ferrous sulfate. The most commonly used medication classes were mineral supplements, vitamins, antianemic preparations, antibacterials, and beta-blocking agents. This study provides an overview of prescription practice in a cohort of hospitalized CKD patients and indicates possible areas of improvement in prescription practice.
    Matched MeSH terms: Calcium Carbonate/therapeutic use
  19. Rahman RA
    PhytoKeys, 2019;118:65-73.
    PMID: 30863195 DOI: 10.3897/phytokeys.118.32186
    A new species, Microchiritahairulii Rafidah (Gesneriaceae) from limestone hills in Perlis, Peninsular Malaysia, is described and illustrated. Diagnostic characters, description, detailed illustrations, geographical distribution, regional provisional conservation status assessment (Endangered) and ecological observations of the new taxon, as well as an updated key to Microchirita species in Peninsular Malaysia, are provided.
    Matched MeSH terms: Calcium Carbonate
  20. Fadilah A, Zuki AB, Loqman MY, Zamri-Saad M, Al-Salihi KA, Norimah Y, et al.
    Med J Malaysia, 2004 May;59 Suppl B:127-8.
    PMID: 15468851
    The study was carried out with the aim to evaluate natural coral (Porites spp.) implanted in sheep femur microscopically. Twelve adult, male sheep were used in this study. The defect area was implanted with coral and monitored for up to 12 weeks. The sheep were euthanased at 2,4,8, and 12 weeks post-implantation. Microscopically, natural coral implanted into bone tissue have shown gradual resorption and progressively replaced by new bone. At 12 weeks post-implantation, the implanted site was almost completely surrounded by mature bone. The results showed that natural coral was found to be a biodegradable and osteo-conductive biomaterial, which acted as a scaffold for a direct osteoblastic apposition.
    Matched MeSH terms: Calcium Carbonate*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links