Displaying publications 61 - 80 of 216 in total

Abstract:
Sort:
  1. Elsayed EA, Farid MA, El-Enshasy HA
    BMC Biotechnol, 2019 07 16;19(1):46.
    PMID: 31311527 DOI: 10.1186/s12896-019-0546-2
    BACKGROUND: Natamycin is an antifungal polyene macrolide antibiotic with wide applications in health and food industries. Currently, it is the only antifungal food additive with the GRAS status (Generally Regarded as Safe).

    RESULTS: Natamycin production was investigated under the effect of different initial glucose concentrations. Maximal antibiotic production (1.58 ± 0.032 g/L) was achieved at 20 g/L glucose. Under glucose limitation, natamycin production was retarded and the produced antibiotic was degraded. Higher glucose concentrations resulted in carbon catabolite repression. Secondly, intermittent feeding of glucose improved natamycin production due to overcoming glucose catabolite regulation, and moreover it was superior to glucose-beef mixture feeding, which overcomes catabolite regulation, but increased cell growth on the expense of natamycin production. Finally, the process was optimized in 7.5 L stirred tank bioreactor under batch and fed-batch conditions. Continuous glucose feeding for 30 h increased volumetric natamycin production by about 1.6- and 1.72-folds in than the batch cultivation in bioreactor and shake-flasks, respectively.

    CONCLUSIONS: Glucose is a crucial substrate that significantly affects the production of natamycin, and its slow feeding is recommended to alleviate the effects of carbon catabolite regulation as well as to prevent product degradation under carbon source limitation. Cultivation in bioreactor under glucose feeding increased maximal volumetric enzyme production by about 72% from the initial starting conditions.

    Matched MeSH terms: Batch Cell Culture Techniques/methods*
  2. El Enshasy HA, Elsayed EA, Suhaimi N, Malek RA, Esawy M
    BMC Biotechnol, 2018 11 09;18(1):71.
    PMID: 30413198 DOI: 10.1186/s12896-018-0481-7
    BACKGROUND: Pectinase enzymes present a high priced category of microbial enzymes with many potential applications in various food and oil industries and an estimated market share of $ 41.4 billion by 2020.

    RESULTS: The production medium was first optimized using a statistical optimization approach to increase pectinase production. A maximal enzyme concentration of 76.35 U/mL (a 2.8-fold increase compared with the initial medium) was produced in a medium composed of (g/L): pectin, 32.22; (NH4)2SO4, 4.33; K2HPO4, 1.36; MgSO4.5H2O, 0.05; KCl, 0.05; and FeSO4.5H2O, 0.10. The cultivations were then carried out in a 16-L stirred tank bioreactor in both batch and fed-batch modes to improve enzyme production, which is an important step for bioprocess industrialization. Controlling the pH at 5.5 during cultivation yielded a pectinase production of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL after 126 h.

    CONCLUSIONS: Statistical medium optimization improved volumetric pectinase productivity by about 2.8 folds. Scaling-up the production process in 16-L semi-industrial stirred tank bioreactor under controlled pH further enhanced pectinase production by about 4-folds. Finally, bioreactor fed-batch cultivation using constant carbon source feeding increased maximal volumetric enzyme production by about 16.5-folds from the initial starting conditions.

    Matched MeSH terms: Batch Cell Culture Techniques/instrumentation; Batch Cell Culture Techniques/methods*
  3. Muhammad SA, Nordin N, Hussin P, Mehat MZ, Abu Kasim NH, Fakurazi S
    PLoS One, 2020;15(9):e0238449.
    PMID: 32886713 DOI: 10.1371/journal.pone.0238449
    Treatment of osteoarthritis (OA) is still a major clinical challenge due to the limited inherent healing capacity of cartilage. Recent studies utilising stem cells suggest that the therapeutic benefits of these cells are mediated through the paracrine mechanism of bioactive molecules. The present study evaluates the regenerative effect of stem cells from human exfoliated deciduous teeth (SHED) conditioned medium (CM) on OA chondrocytes. The CM was collected after the SHED were cultured in serum-free medium (SFM) for 48 or 72 h and the cells were characterised by the expression of MSC and pluripotency markers. Chondrocytes were stimulated with interleukin-1β and treated with the CM. Subsequently, the expression of aggrecan, collagen type 2 (COL 2), matrix metalloproteinase-13 (MMP-13), nuclear factor-kB (NF-kB) and the level of inflammatory and anti-inflammatory markers were evaluated. SHED expressed mesenchymal stromal cell surface proteins but were negative for haematopoietic markers. SHED also showed protein expression of NANOG, OCT4 and SOX2 with differential subcellular localisation. Treatment of OA chondrocytes with CM enhanced anti-inflammation compared to control cells treated with SFM. Furthermore, the expression of MMP-13 and NF-kB was significantly downregulated in stimulated chondrocytes incubated in CM. The study also revealed that CM increased the expression of aggrecan and COL 2 in OA chondrocytes compared to SFM control. Both CM regenerate extracellular matrix proteins and mitigate increased MMP-13 expression through inhibition of NF-kB in OA chondrocytes due to the presence of bioactive molecules. The study underscores the potential of CM for OA treatment.
    Matched MeSH terms: Cell Culture Techniques/methods
  4. Yamin, S., Shuhaimi, M., Arbakariya, A., Khalilah, A. K., Anas, O., Yazid, A. M., et al.
    MyJurnal
    The use of component from Ganoderma lucidum as prebiotic source is interesting as the G. lucidum itself was known for more than a decade in the traditional Chinese medicine. In this work, Ganoderma lucidum crude polysaccharides (GLCP) and Polysaccharide-fraction number 2 (PF-2) were used as carbon sources in the fermentation with Bifidobacterium sp. The results showed the potential of prebiotic effect of the G. lucidum extract in batch-culture fermentation based on increment in the growth of bacteria used (0.4 – 1.5 log10 CFU/mL) after 18h fermentation. Fermentation was further done using faecal materials as bacterial inocula and bacterial growth changes were examined using real-time PCR. The results showed the ability of GLCP and PF-2 to support the growth of Bifidobacterium genus with 0.3 and 0.7 log10 cells/ml increased, respectively. Interestingly, Lactobacillus which is known as beneficial bacterial genus also showed growth increment with 0.7 and 1 log10 cells/ml increased. The competition for carbon sources thus inhibits the growth of potentially harmful genus, Salmonella (0.3 and 0.5 log10 cells/ml) in comparison to the control.
    Matched MeSH terms: Batch Cell Culture Techniques
  5. Salin N, Ishak AK, Abdul Rahman S, Ali M, Nawawi HM, Said MS, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:67-8.
    PMID: 19024987
    Bone formation is an active process whereby osteoblasts are found on the surface of the newly formed bone. Adhesion to extracellular matrix is essential for the development of bone however not all surfaces are suitable for osteoblast adhesion and don't support osteoblastic functions. The objective of this study was to test the suitability of a collagen based microcarrier which would support osteoblastic functions.
    Matched MeSH terms: Cell Culture Techniques*
  6. Suzuki K, Aziz FAA, Honjo M, Nishimura T, Masuda K, Minoura A, et al.
    Microbiol Resour Announc, 2018 Nov;7(18).
    PMID: 30533775 DOI: 10.1128/MRA.01009-18
    A batch culture was enriched on phenol with trichloroethene-contaminated aquifer soil as an inoculum. Cupriavidus sp. strain P-10 was isolated from the culture using a diluted plating method. Here, we report the draft genome sequence and annotation of strain P-10, which provides insights into the metabolic processes of phenol degradation.
    Matched MeSH terms: Batch Cell Culture Techniques
  7. Yap WH, Teoh ML, Tang YQ, Goh BH
    Biochem Mol Biol Educ, 2021 09;49(5):685-691.
    PMID: 34291546 DOI: 10.1002/bmb.21562
    This study presents an evaluation of integrating virtual laboratory simulations in assessment design of a biotechnology course at Taylor's University in Malaysia before, during and post-COVID recovery phases. The purpose was to investigate how virtual laboratory simulations were integrated as part of the assessments of a practical-embedded course-the aim being to evaluate students' acceptance and perception of using virtual simulation. A total of 46 students, across three different study cohorts (August 2019, March 2020, and August 2020) were evaluated different educational aspects of using virtual laboratory cases in a 4-week course within Animal Biotechnology. Overall, students regarded virtual laboratory simulation useful as part of their learning, and there is a significant increase in the level of acceptance before, during and post-COVID recovery phases. The study showed that across the different study cohorts, students perceived their confidence level in laboratory skills have been enhanced and that they can apply the skills in real-life situation. Interestingly, students (March and August 2020 cohort) who have not been exposed to the related laboratory session still perceived that the simulated activity provides clear explanation and realistic experience. Furthermore, it had been highlighted across the study cohorts that the quiz questions helped to enhance their understanding on the underlying principles of the laboratory techniques. The overall conclusion of this study was that structured simulation-based activities which provide clear instructions and explanation would support significant improvements in students learning.
    Matched MeSH terms: Cell Culture Techniques*
  8. Ishak MF, Chua KH, Asma A, Saim L, Aminuddin BS, Ruszymah BH, et al.
    Int J Pediatr Otorhinolaryngol, 2011 Jun;75(6):835-40.
    PMID: 21543123 DOI: 10.1016/j.ijporl.2011.03.021
    This study was aimed to see the difference between chondrocytes from normal cartilage compared to chondrocytes from microtic cartilage. Specific attentions were to characterize the growth of chondrocytes in terms of cell morphology, growth profile and RT-PCR analysis.
    Matched MeSH terms: Cell Culture Techniques
  9. Ishak MF, Aminuddin BS, Asma A, Lokman BS, Ruszymah BH, Goh BS
    Med J Malaysia, 2008 Jul;63 Suppl A:117-8.
    PMID: 19025013
    Chondrocytes were isolated from normal and microtic human auricular cartilage after ear surgery carried out at Universiti Kebangsaan Malaysia Medical Centre. Chondrocytes were cultured and expanded until passage 4. After reached confluence, cultured chondrocytes at each passage (P1, P2, P3 and P4) were harvested and assigned for growth profile analysis. There was no significant difference in cell viability between both normal and microtic samples (p = 0.84). Both samples showed no significant differences for growth profile parameters in terms of growth rate, population doubling time and total number of cell doubling, except in passage 1, where there is significant difference in cell growth rate (p = 0.004). This preliminary data has indicated that chondrocytes from microtic cartilage has the potential to be used in the reconstruction of human pinna in the future.
    Matched MeSH terms: Cell Culture Techniques
  10. Mok SY, Lim YM, Goh SY
    J Neurosci Methods, 2009 May 15;179(2):284-91.
    PMID: 19428539 DOI: 10.1016/j.jneumeth.2009.02.009
    A device to facilitate high-density seeding of dissociated neural cells on planar multi-electrode arrays (MEAs) is presented in this paper. The device comprises a metal cover with two concentric cylinders-the outer cylinder fits tightly on to the external diameter of a MEA to hold it in place and an inner cylinder holds a central glass tube for introducing a cell suspension over the electrode area of the MEA. An O-ring is placed at the bottom of the inner cylinder and the glass tube to provide a fluid-tight seal between the glass tube and the MEA electrode surface. The volume of cell suspension in the glass tube is varied according to the desired plating density. After plating, the device can be lifted from the MEA without leaving any residue on the contact surface. The device has enabled us to increase and control the plating density of neural cell suspension with low viability, and to prepare successful primary cultures from cryopreserved neurons and glia. The cultures of cryopreserved dissociated cortical neurons that we have grown in this manner remained spontaneously active over months, exhibited stable development and similar network characteristics as reported by other researchers.
    Matched MeSH terms: Cell Culture Techniques
  11. Salehinejad P, Alitheen NB, Nematollahi-Mahani SN, Ali AM, Omar AR, Janzamin E, et al.
    Cytotherapy, 2012 Sep;14(8):948-53.
    PMID: 22587592 DOI: 10.3109/14653249.2012.684377
    BACKGROUND AIMS: Mesenchymal stromal cells (MSC) have been isolated from a number of different tissues, including umbilical cord. Because of the lack of a uniform approach to human umbilical cord matrix-derived mesenchymal (hUCM) cell expansion, we attempted to identify the optimum conditions for the production of a high quantity of hUCM cells by comparing two media.

    METHODS: We compared the ability of Dulbecco's Modified Eagle's Medium/F12 (DMEM/F12) and Alpha Minimum Essential Medium (α-MEM) with Glutamax (GL) (α-MEM/GL) to expand hUCM cells. For this purpose, hUCM cells were cultured in plates containing different culture media supplemented with 10% fetal bovine serum (FBS). Culture dishes were left undisturbed for 10-14 days to allow propagation of the newly formed hUCM cells. The expansion properties, CD marker expression, differentiation potential, population doubling time (PDT) and cell activity were compared between the two groups.

    RESULTS: The hUCM cells harvested from each group were positive for MSC markers, including CD44, CD90 and CD105, while they were negative for the hematopoietic cell surface marker CD34. Differentiation into adipogenic and osteogenic lineages was confirmed for both treatments. Cell activity was higher in the α-MEM/GL group than the DMEM/F12 group. PDT was calculated to be 60 h for the DMEM/F12 group, while for the α-MEM/GL group it was 47 h.

    CONCLUSIONS: Our data reveal that α-MEM/GL with 10% FBS supports hUCM cell growth more strongly than DMEM/F12 with 10% FBS.

    Matched MeSH terms: Cell Culture Techniques*
  12. Haida Z, Syahida A, Ariff SM, Maziah M, Hakiman M
    Sci Rep, 2019 07 02;9(1):9533.
    PMID: 31267036 DOI: 10.1038/s41598-019-46042-w
    A study was conducted to establish in vitro culture conditions for maximum production of biomass and flavonoid content for Ficus deltoidea var. kunstleri, locally named as Mas Cotek, known to have a wide variety of potential beneficial attributes for human health. Size of initial inoculum, cell aggregate and initial pH value have been suggested to influent content of biomass and flavonoid for cell suspension culture in several plant species. In the present study, leaf explants were cultured by cell suspension culture procedures in MSB5 basal medium supplemented with predetermined supplements of 30 g/L sucrose, 2.75 g/L gelrite, 2 mg/L picloram and 1 mg/L kinetin with continuous agitation of 120 rpm in a standard laboratory environment. Establishment of cell suspension culture was accomplished by culturing resulting callus in different initial fresh weight of cells (0.10, 0.25, 0.50, 1.0, and 2.0 g/25 mL of media) using similar basal medium. The results showed that the highest production of biomass (0.65 g/25 mL of media) was recorded from an initial inoculum size of 2.0 g/25 mL media, whereas the highest flavonoid (3.3 mg RE/g DW) was found in 0.5 g/25 mL of media. Cell suspension fractions classified according to their sizes (500-750 µm, 250-500 µm, and <250 µm). Large cell aggregate size (500-750 µm) cultured at pH 5.75 produced the highest cell biomass (0.28 g/25 mL media) and flavonoid content (3.3 mg RE/g DW). The study had established the optimum conditions for the production of total antioxidant and flavonoid content using DPPH and FRAP assays in cell suspension culture of F. deltoidea var. kunstleri.
    Matched MeSH terms: Cell Culture Techniques/methods*
  13. Ariff, A.B., Ooi, T.C., Shamsuddin, Z.H., Halimi, M.S.
    MyJurnal
    The exponential fed-batch cultivation of Bacillus sphaericus UPMB10 in 2 l stirred tank fermenter was performed by feeding the initial batch culture with 14 g l-1 of glycerol according to the algorithm aimed at controlling the specific growth rate (μ) of the bacterium. Very high viable cell count (1.14 x 1010 cfu ml-1), which was four times higher as compared to batch cultivation, was achieved in the fed-batch with a controlled μ at 0.4 h-1. In repeated exponential fed-batch cultivation, consisting of four cycles of harvesting and recharging, a final cell concentration of 1.9 x 1011 cfu ml-1 was obtained at the end of the fourth cycle (46 h). Meanwhile, acetylene reduction of cell samples collected from repeated fed-batch cultivation remained unchanged and was maintained at around 20 nmol C2H2 h-1 ml-1 after prolonged cultivation period, and was comparable to those obtained in batch and exponential fed-batch cultivation. Glycerol could be used as a carbon source for high performance cultivation of B. sphaericus, a nitrogen fixing bacterium, in repeated fed-batch cultivation with high cell yield and cell productivity. The productivity (0.68 g l-1 h-1) for repeated fed-batch cultivation increased about 6 times compared to that obtained in conventional batch cultivation (0.11 g l1 h-1). A innovative method in utilizing glycerol for efficient cultivation of nitrogen fixing bacterium could be beneficial to get more understanding and reference in manipulating the integrated plans for sustainable and profitable biodiesel industry.
    Matched MeSH terms: Batch Cell Culture Techniques
  14. Al-Shorgani NKN, Kalil MS, Yusoff WMW, Hamid AA
    Saudi J Biol Sci, 2018 Feb;25(2):339-348.
    PMID: 29472788 DOI: 10.1016/j.sjbs.2017.03.020
    The effect of pH and butyric acid supplementation on the production of butanol by a new local isolate of Clostridium acetobutylicum YM1 during batch culture fermentation was investigated. The results showed that pH had a significant effect on bacterial growth and butanol yield and productivity. The optimal initial pH that maximized butanol production was pH 6.0 ± 0.2. Controlled pH was found to be unsuitable for butanol production in strain YM1, while the uncontrolled pH condition with an initial pH of 6.0 ± 0.2 was suitable for bacterial growth, butanol yield and productivity. The maximum butanol concentration of 13.5 ± 1.42 g/L was obtained from cultures grown under the uncontrolled pH condition, resulting in a butanol yield (YP/
    S
    ) and productivity of 0.27 g/g and 0.188 g/L h, respectively. Supplementation of the pH-controlled cultures with 4.0 g/L butyric acid did not improve butanol production; however, supplementation of the uncontrolled pH cultures resulted in high butanol concentrations, yield and productivity (16.50 ± 0.8 g/L, 0.345 g/g and 0.163 g/L h, respectively). pH influenced the activity of NADH-dependent butanol dehydrogenase, with the highest activity obtained under the uncontrolled pH condition. This study revealed that pH is a very important factor in butanol fermentation by C. acetobutylicum YM1.
    Matched MeSH terms: Batch Cell Culture Techniques
  15. Radzun KA, Wolf J, Jakob G, Zhang E, Stephens E, Ross I, et al.
    PMID: 25984234 DOI: 10.1186/s13068-015-0238-7
    BACKGROUND: Microalgae provide an excellent platform for the production of high-value-products and are increasingly being recognised as a promising production system for biomass, animal feeds and renewable fuels.

    RESULTS: Here, we describe an automated screen, to enable high-throughput optimisation of 12 nutrients for microalgae production. Its miniaturised 1,728 multiwell format allows multiple microalgae strains to be simultaneously screened using a two-step process. Step 1 optimises the primary elements nitrogen and phosphorous. Step 2 uses Box-Behnken analysis to define the highest growth rates within the large multidimensional space tested (Ca, Mg, Fe, Mn, Zn, Cu, B, Se, V, Si) at three levels (-1, 0, 1). The highest specific growth rates and maximum OD750 values provide a measure for continuous and batch culture.

    CONCLUSION: The screen identified the main nutrient effects on growth, pairwise nutrient interactions (for example, Ca-Mg) and the best production conditions of the sampled statistical space providing the basis for a targeted full factorial screen to assist with optimisation of algae production.

    Matched MeSH terms: Batch Cell Culture Techniques
  16. Peng IC, Yeh CC, Lu YT, Muduli S, Ling QD, Alarfaj AA, et al.
    Biomaterials, 2016 Jan;76:76-86.
    PMID: 26519650 DOI: 10.1016/j.biomaterials.2015.10.039
    Stem cell culture is typically based on batch-type culture, which is laborious and expensive. Here, we propose a continuous harvest method for stem cells cultured on thermoresponsive nanobrush surfaces. In this method, stem cells are partially detached from the nanobrush surface by reducing the temperature of the culture medium below the critical solution temperature needed for thermoresponse. The detached stem cells are harvested by exchange into fresh culture medium. Following this, the remaining cells are continuously cultured by expansion in fresh culture medium at 37 °C. Thermoresponsive nanobrush surfaces were prepared by coating block copolymers containing polystyrene (for hydrophobic anchoring onto culture dishes) with three types of polymers: (a) polyacrylic acid with cell-binding oligopeptides, (b) thermoresponsive poly-N-isopropylacrylamide, and (c) hydrophilic poly(ethyleneglycol)methacrylate. The optimal coating durations and compositions for these copolymers to facilitate adequate attachment and detachment of human adipose-derived stem cells (hADSCs) and embryonic stem cells (hESCs) were determined. hADSCs and hESCs were continuously harvested for 5 and 3 cycles, respectively, via the partial detachment of cells from thermoresponsive nanobrush surfaces.
    Matched MeSH terms: Cell Culture Techniques
  17. Sung TC, Yang JS, Yeh CC, Liu YC, Jiang YP, Lu MW, et al.
    Biomaterials, 2019 Nov;221:119411.
    PMID: 31419657 DOI: 10.1016/j.biomaterials.2019.119411
    Commonly, stem cell culture is based on batch-type culture, which is laborious and expensive. We continuously cultured human pluripotent stem cells (hPSCs) on thermoresponsive dish surfaces, where hPSCs were partially detached on the same thermoresponsive dish by decreasing the temperature of the thermoresponsive dish to be below the lower critical solution temperature for only 30 min. Then, the remaining cells were continuously cultured in fresh culture medium, and the detached stem cells were harvested in the exchanged culture medium. hPSCs were continuously cultured for ten cycles on the thermoresponsive dish surface, which was prepared by coating the surface with poly(N-isopropylacrylamide-co-styrene) and oligovitronectin-grafted poly(acrylic acid-co-styrene) or recombinant vitronectin for hPSC binding sites to maintain hPSC pluripotency. After ten cycles of continuous culture on the thermoresponsive dish surface, the detached cells expressed pluripotency proteins and had the ability to differentiate into cells derived from the three germ layers in vitro and in vivo. Furthermore, the detached cells differentiated into specific cell lineages, such as cardiomyocytes, with high efficiency.
    Matched MeSH terms: Cell Culture Techniques
  18. Sung TC, Su HC, Ling QD, Kumar SS, Chang Y, Hsu ST, et al.
    Biomaterials, 2020 09;253:120060.
    PMID: 32450407 DOI: 10.1016/j.biomaterials.2020.120060
    The current differentiation process of human pluripotent stem cells (hPSCs) into cardiomyocytes to enhance the purity of hPSC-derived cardiomyocytes requires some purification processes, which are laborious processes. We developed cell sorting plates, which are prepared from coating thermoresponsive poly(N-isopropylacrylamide) and extracellular matrix proteins. After hPSCs were induced into cardiomyocytes on the thermoresponsive surface coated with laminin-521 for 15 days, the temperature of the cell culture plates was decreased to 8-9 °C to detach the cells partially from the thermoresponsive surface. The detached cells exhibited a higher cardiomyocyte marker of cTnT than the remaining cells on the thermoresponsive surface as well as the cardiomyocytes after purification using conventional cell selection. The detached cells expressed several cardiomyocyte markers, such as α-actinin, MLC2a and NKX2.5. This study suggested that the purification of hPSC-derived cardiomyocytes using cell sorting plates with the thermoresponsive surface is a promising method for the purification of hPSC-derived cardiomyocytes without conventional laborious processes.
    Matched MeSH terms: Cell Culture Techniques
  19. Sung TC, Liu CH, Huang WL, Lee YC, Kumar SS, Chang Y, et al.
    Biomater Sci, 2019 Oct 28.
    PMID: 31656967 DOI: 10.1039/c9bm00817a
    Current xeno-free and chemically defined methods for the differentiation of hPSCs (human pluripotent stem cells) into cardiomyocytes are not efficient and are sometimes not reproducible. Therefore, it is necessary to develop reliable and efficient methods for the differentiation of hPSCs into cardiomyocytes for future use in cardiovascular research related to drug discovery, cardiotoxicity screening, and disease modeling. We evaluated two representative differentiation methods that were reported previously, and we further developed original, more efficient methods for the differentiation of hPSCs into cardiomyocytes under xeno-free, chemically defined conditions. The developed protocol successively differentiated hPSCs into cardiomyocytes, approximately 90-97% of which expressed the cardiac marker cTnT, with beating speeds and sarcomere lengths that were similar to those of a healthy adult human heart. The optimal cell culture biomaterials for the cardiac differentiation of hPSCs were also evaluated using extracellular matrix-mimetic material-coated dishes. Synthemax II-coated and Laminin-521-coated dishes were found to be the most effective and efficient biomaterials for the cardiac differentiation of hPSCs according to the observation of hPSC-derived cardiomyocytes with high survival ratios, high beating colony numbers, a similar beating frequency to that of a healthy adult human heart, high purity levels (high cTnT expression) and longer sarcomere lengths similar to those of a healthy adult human heart.
    Matched MeSH terms: Cell Culture Techniques
  20. Sung TC, Li HF, Higuchi A, Kumar SS, Ling QD, Wu YW, et al.
    Biomaterials, 2020 02;230:119638.
    PMID: 31810728 DOI: 10.1016/j.biomaterials.2019.119638
    Human induced pluripotent stem cells (hiPSCs) were generated on several biomaterials from human amniotic fluid in completely xeno-free and feeder-free conditions via the transfection of pluripotent genes using a nonintegrating RNA Sendai virus vector. The effect of xeno-free culture medium on the efficiency of the establishment of human amniotic fluid stem cells from amniotic fluid was evaluated. Subsequently, the effect of cell culture biomaterials on the reprogramming efficiency was investigated during the reprogramming of human amniotic fluid stem cells into hiPSCs. Cells cultured in laminin-511, laminin-521, and Synthemax II-coated dishes and hydrogels having optimal elasticity that were engrafted with specific oligopeptides derived from vitronectin could be reprogrammed into hiPSCs with high efficiency. The reprogrammed cells expressed pluripotency proteins and had the capability to differentiate into cells derived from all three germ layers in vitro and in vivo. Human iPSCs could be generated successfully and at high efficiency (0.15-0.25%) in completely xeno-free conditions from the selection of optimal cell culture biomaterials.
    Matched MeSH terms: Cell Culture Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links