Displaying publications 61 - 80 of 142 in total

Abstract:
Sort:
  1. Al-Anazi M, Al-Najjar BO, Khairuddean M
    Molecules, 2018 Dec 05;23(12).
    PMID: 30563058 DOI: 10.3390/molecules23123203
    Human Epidermal Growth Factor Receptor-1 (EGFR), a transmembrane tyrosine kinase receptor (RTK), has been associated with several types of cancer, including breast, lung, ovarian, and anal cancers. Thus, the receptor was targeted by a variety of therapeutic approaches for cancer treatments. A series of chalcone derivatives are among the most highly potent and selective inhibitors of EGFR described to date. A series of chalcone derivatives were proposed in this study to investigate the intermolecular interactions in the active site utilizing molecular docking and molecular dynamics simulations. After a careful analysis of docking results, compounds 1a and 1d were chosen for molecular dynamics simulation study. Extensive hydrogen bond analysis throughout 7 ns molecular dynamics simulation revealed the ability of compounds 1a and 1d to retain the essential interactions needed for the inhibition, especially MET 93. Finally, MM-GBSA calculations highlight on the capability of the ligands to bind strongly within the active site with binding energies of -44.04 and -56.6 kcal/mol for compounds 1a and 1d, respectively. Compound 1d showed to have a close binding energy with TAK-285 (-66.17 kcal/mol), which indicates a high chance for compound 1d to exhibit inhibitory activity, thus recommending to synthesis it to test its biological activity. It is anticipated that the findings reported here may provide very useful information for designing effective drugs for the treatment of EGFR-related cancer disease.
    Matched MeSH terms: Drug Design*
  2. Naaz F, Ahmad F, Lone BA, Pokharel YR, Fuloria NK, Fuloria S, et al.
    Bioorg Chem, 2020 01;95:103519.
    PMID: 31884140 DOI: 10.1016/j.bioorg.2019.103519
    A set of two series of 1,3,4-oxadiazole (11a-n) and 1,2,4-Triazole (12a, c, e, g, h, j-n) based topsentin analogues were prepared by replacing imizadole moiety of topsentin through a multistep synthesis starting from indole. All the compounds synthesized were submitted for single dose (10 µM) screening against a NCI panel of 60-human cancer cell lines. Among all cancer cell lines, colon (HCC-2998) and Breast (MCF-7, T-47D) cancer cell lines were found to be more susceptible for this class of compounds. Among the compounds tested, compounds 11a, 11d, 11f, 12e and 12h, were exhibited good anti-proliferative activity against various cancer cell lines. Compounds 11d, 12e and 12h demonstrated better activity with IC50 2.42 µM, 3.06 µM, and 3.30 µM respectively against MCF-7 human cancer cell line than that of the standard drug doxorubicin IC50 6.31 µM. Furthermore, 11d induced cell cycle arrest at G0/G1 phase and also disrupted mitochondrial membrane potential with reducing cell migration potential of MCF-7 cells in dose dependent manner. In vitro microtubule polymerization assays found that compound 11d disrupt tubulin dynamics by inhibiting tubulin polymerization with IC50 3.89 μM compared with standard nocodazole (IC50 2.49 μM). In silico docking studies represented that 11d was binding at colchicine binding site of β-tubulin. Compound 11d emerged as lead molecule from the library of compounds tested and this may serve as a template for further drug discovery.
    Matched MeSH terms: Drug Design*
  3. Mohammed AAM, Suaifan GARY, Shehadeh MB, Okechukwu PN
    Eur J Med Chem, 2020 Sep 15;202:112513.
    PMID: 32623216 DOI: 10.1016/j.ejmech.2020.112513
    Herein we report the design, synthesis and biological evaluation of structurally modified ciprofloxacin, norfloxacin and moxifloxacin standard drugs, featuring amide functional groups at C-3 of the fluoroquinolone scaffold. In vitro antimicrobial testing against various Gram-positive bacteria, Gram-negative bacteria and fungi revealed potential antibacterial and antifungal activity. Hybrid compounds 9 (MIC 0.2668 ± 0.0001 mM), 10 (MIC 0.1358 ± 00025 mM) and 13 (MIC 0.0898 ± 0.0014 mM) had potential antimicrobial activity against a fluoroquinolone-resistant Escherichia coli clinical isolate, compared to ciprofloxacin (MIC 0.5098 ± 0.0024 mM) and norfloxacin (MIC 0.2937 ± 0.0021 mM) standard drugs. Interestingly, compound 10 also exerted potential antifungal activity against Candida albicans (MIC 0.0056 ± 0.0014 mM) and Penicillium chrysogenum (MIC 0.0453 ± 0.0156 mM). Novel derivatives and standard fluoroquinolone drugs exhibited near-identical cytotoxicity levels against L6 muscle cell-line, when measured using the MTT assay.
    Matched MeSH terms: Drug Design*
  4. Anasir MI, Ramanathan B, Poh CL
    Viruses, 2020 03 26;12(4).
    PMID: 32225021 DOI: 10.3390/v12040367
    Dengue virus (DENV) presents a significant threat to global public health with more than 500,000 hospitalizations and 25,000 deaths annually. Currently, there is no clinically approved antiviral drug to treat DENV infection. The envelope (E) glycoprotein of DENV is a promising target for drug discovery as the E protein is important for viral attachment and fusion. Understanding the structure and function of DENV E protein has led to the exploration of structure-based drug discovery of antiviral compounds and peptides against DENV infections. This review summarizes the structural information of the DENV E protein with regards to DENV attachment and fusion. The information enables the development of antiviral agents through structure-based approaches. In addition, this review compares the potency of antivirals targeting the E protein with the antivirals targeting DENV multifunctional enzymes, repurposed drugs and clinically approved antiviral drugs. None of the current DENV antiviral candidates possess potency similar to the approved antiviral drugs which indicates that more efforts and resources must be invested before an effective DENV drug materializes.
    Matched MeSH terms: Drug Design*
  5. Tan WS, Ho KL
    World J Gastroenterol, 2014 Sep 7;20(33):11650-70.
    PMID: 25206271 DOI: 10.3748/wjg.v20.i33.11650
    Hepatitis B virus (HBV) has killed countless lives in human history. The invention of HBV vaccines in the 20(th) century has reduced significantly the rate of the viral infection. However, currently there is no effective treatment for chronic HBV carriers. Newly emerging vaccine escape mutants and drug resistant strains have complicated the viral eradication program. The entire world is now facing a new threat of HBV and human immunodeficiency virus co-infection. Could phage display provide solutions to these life-threatening problems? This article reviews critically and comprehensively the innovative and potential applications of phage display in the development of vaccines, therapeutic agents, diagnostic reagents, as well as gene and drug delivery systems to combat HBV. The application of phage display in epitope mapping of HBV antigens is also discussed in detail. Although this review mainly focuses on HBV, the innovative applications of phage display could also be extended to other infectious diseases.
    Matched MeSH terms: Drug Design*
  6. Wong CF, Yuen KH, Peh KK
    Int J Pharm, 1999 Feb 01;178(1):11-22.
    PMID: 10205621
    Controlled release buccal patches were fabricated using Eudragit NE40D and studied. Various bioadhesive polymers, namely hydroxypropylmethyl cellulose, sodium carboxymethyl cellulose and Carbopol of different grades, were incorporated into the patches, to modify their bioadhesive properties as well as the rate of drug release, using metoprolol tartrate as the model drug. The in-vitro drug release was determined using the USP 23 dissolution test apparatus 5 with slight modification, while the bioadhesive properties were evaluated using texture analyzer equipment with chicken pouch as the model tissue. The incorporation of hydrophilic polymers was found to affect the drug release as well as enhance the bioadhesiveness. Although high viscosity polymers can enhance the bioadhesiveness of the patches, they also tend to cause non-homogeneous distribution of the polymers and drug, resulting in non-predictable drug-release rates. Of the various bioadhesive polymers studied, Cekol 700 appeared to be most satisfactory in terms of modifying the drug release and enhancement of the bioadhesive properties.
    Matched MeSH terms: Drug Design*
  7. Gautam V, Nimmanpipug P, Zain SM, Rahman NA, Lee VS
    Molecules, 2021 Jul 27;26(15).
    PMID: 34361694 DOI: 10.3390/molecules26154540
    Extracellular signal-regulated kinases 1 and 2 (ERK1/2) play key roles in promoting cell survival and proliferation through the phosphorylation of various substrates. Remarkable antitumour activity is found in many inhibitors that act upstream of the ERK pathway. However, drug-resistant tumour cells invariably emerge after their use due to the reactivation of ERK1/2 signalling. ERK1/2 inhibitors have shown clinical efficacy as a therapeutic strategy for the treatment of tumours with mitogen-activated protein kinase (MAPK) upstream target mutations. These inhibitors may be used as a possible strategy to overcome acquired resistance to MAPK inhibitors. Here, we report a class of repeat proteins-designed ankyrin repeat protein (DARPin) macromolecules targeting ERK2 as inhibitors. The structural basis of ERK2-DARPin interactions based on molecular dynamics (MD) simulations was studied. The information was then used to predict stabilizing mutations employing a web-based algorithm, MAESTRO. To evaluate whether these design strategies were successfully deployed, we performed all-atom, explicit-solvent molecular dynamics (MD) simulations. Two mutations, Ala → Asp and Ser → Leu, were found to perform better than the original sequence (DARPin E40) based on the associated energy and key residues involved in protein-protein interaction. MD simulations and analysis of the data obtained on these mutations supported our predictions.
    Matched MeSH terms: Drug Design*
  8. Lee BK, Tiong KH, Chang JK, Liew CS, Abdul Rahman ZA, Tan AC, et al.
    BMC Genomics, 2017 01 25;18(Suppl 1):934.
    PMID: 28198666 DOI: 10.1186/s12864-016-3260-7
    BACKGROUND: The drug discovery and development pipeline is a long and arduous process that inevitably hampers rapid drug development. Therefore, strategies to improve the efficiency of drug development are urgently needed to enable effective drugs to enter the clinic. Precision medicine has demonstrated that genetic features of cancer cells can be used for predicting drug response, and emerging evidence suggest that gene-drug connections could be predicted more accurately by exploring the cumulative effects of many genes simultaneously.

    RESULTS: We developed DeSigN, a web-based tool for predicting drug efficacy against cancer cell lines using gene expression patterns. The algorithm correlates phenotype-specific gene signatures derived from differentially expressed genes with pre-defined gene expression profiles associated with drug response data (IC50) from 140 drugs. DeSigN successfully predicted the right drug sensitivity outcome in four published GEO studies. Additionally, it predicted bosutinib, a Src/Abl kinase inhibitor, as a sensitive inhibitor for oral squamous cell carcinoma (OSCC) cell lines. In vitro validation of bosutinib in OSCC cell lines demonstrated that indeed, these cell lines were sensitive to bosutinib with IC50 of 0.8-1.2 μM. As further confirmation, we demonstrated experimentally that bosutinib has anti-proliferative activity in OSCC cell lines, demonstrating that DeSigN was able to robustly predict drug that could be beneficial for tumour control.

    CONCLUSIONS: DeSigN is a robust method that is useful for the identification of candidate drugs using an input gene signature obtained from gene expression analysis. This user-friendly platform could be used to identify drugs with unanticipated efficacy against cancer cell lines of interest, and therefore could be used for the repurposing of drugs, thus improving the efficiency of drug development.

    Matched MeSH terms: Drug Design*
  9. Hussain MA, Ashraf MU, Muhammad G, Tahir MN, Bukhari SNA
    Curr Pharm Des, 2017;23(16):2377-2388.
    PMID: 27779081 DOI: 10.2174/1381612822666160928143328
    The therapy of various diseases by the drugs entrapped in calixarene derivatives is gaining attraction of researchers nowadays. Calixarenes are macrocyclic nano-baskets which belong to cavitands class of host-guest chemistry. They are the marvelous hosts with distinct hydrophobic three dimensional cavities to entrap and encapsulate biologically active guest drugs. Calixarene and its derivatives develop inclusion complexes with various types of drugs and vitamins for their sustained/targeted release. Calixarene and its derivatives are used as carriers for anti-cancer, anti-convulsant, anti-hypertensive, anthelmentic, anti-inflammatory, antimicrobial and antipsychotic drugs. They are the important biocompatible receptors to improve solubility, chemical reactivity and decrease cytotoxicity of poorly soluble drugs in supramolecular chemistry. This review focuses on the calixarene and its derivatives as the state-of-the-art in host-guest interactions for important drugs. We have also critically evaluated calixarenes for the development of prodrugs.
    Matched MeSH terms: Drug Design*
  10. Javid MT, Rahim F, Taha M, Nawaz M, Wadood A, Ali M, et al.
    Bioorg Chem, 2018 09;79:323-333.
    PMID: 29803079 DOI: 10.1016/j.bioorg.2018.05.011
    Thymidine phosphorylase is an enzyme involved in pyrimidine salvage pathway that is identical to platelet-derived endothelial cell growth factor (PD-ECGF) and gliostatin. It is enormously up regulated in a variety of solid tumors. Furthermore, surpassing of TP level protects tumor cells from apoptosis and helps cell survival. Thus TP is identified as a prime target for developing novel anticancer therapies. A new class of exceptionally potent isatin based oxadiazole (1-30) has been synthesized and evaluated for thymidine phosphorylase inhibitory potential. All analogs showed potent thymidine phosphorylase inhibition when compared with standard 7-Deazaxanthine, 7DX (IC50 = 38.68 ± 1.12 µM). Molecular docking study was performed in order to determine the binding interaction of these newly synthesized compounds, which revealed that these synthesized compounds established stronger hydrogen bonding network with active site of residues as compare to the standard compound 7DX.
    Matched MeSH terms: Drug Design*
  11. Abbas K, Amin M, Hussain MA, Sher M, Bukhari SNA, Jantan I, et al.
    Int J Biol Macromol, 2017 Oct;103:441-450.
    PMID: 28526350 DOI: 10.1016/j.ijbiomac.2017.05.061
    This deals with fabrication of macromolecular prodrugs (MPDs) of salicylic acid (SA) and aspirin (ASP) based on a hydrophilic cellulose ether, hydroxyethyl cellulose (HEC). Degrees of substitution (DS) of SA and ASP per HEC repeating unit (HEC-RU) were achieved ranging from 0.60 to 2.18 and 0.53 to1.50, respectively. The amphiphilic HEC-SA conjugate 2 assembled into nanowire-like structures, while HEC-ASP conjugate 6 formed nanoparticles (diameter 300-00nm) at a water/DMSO interface. After oral administration in rabbit models, conjugates 2 and 6 showed plasma half-life of 6.96 and 7.01h with maximum plasma concentration (Cmax) of 15.27 and 23.01μg L-1, respectively, and each reached peak plasma concentration (tmax) at 4.0h. Immunomodulatory assays (interleukin 6 and tumor necrosis factor-α values) revealed that anti-inflammatory properties of SA and ASP were unaltered in conjugates. Swelling inhibition of 61 and 71% was observed for conjugates 2 and 6, respectively, in a carrageenan induced paw edema test. Cytotoxic profiling (MTT assay) showed that conjugates were safe for administration in the concentration range of 2-10mM up to 24h. Thermal analyses revealed that Tdm values of SA and ASP conjugates were increased by 99 and 154̊C, respectively, indicating extraordinary thermal stability imparted to drugs after MPD formation.
    Matched MeSH terms: Drug Design*
  12. Rehman A, Abbasi MA, Siddiqui SZ, Mohyuddin A, Nadeem S, Shah SA
    Pak J Pharm Sci, 2016 Sep;29(5):1489-1496.
    PMID: 27731801
    New potent organic compounds were synthesized with an aim of good biological activities such as antibacterial and anti-enzymatic. Three series of sulfonamide derivatives were synthesized by treating N-alkyl/aryl substituted amines (2a-f) with 4-chlorobenzensulfonyl chloride (1) to yield N-alkyl/aryl-4-chlorobenzenesulfonamide(3af) that was then derivatized by gearing up with ethyl iodide (4), benzyl chloride (5) and 4-chlorobenzyl chloride (6) using sodium hydride as base to initialize the reaction in a polar aprotic solvent (DMF) to synthesize the derivatives, 7a-f, 8af and 9a-f respectively. Structure elucidation was brought about by IR, 1H-NMR and EIMS spectra for all the synthesized molecules which were evaluated for their antibacterial activities and inhibitory potentials for certain enzymes.
    Matched MeSH terms: Drug Design*
  13. Leong SW, Chia SL, Abas F, Yusoff K
    Eur J Med Chem, 2018 Sep 05;157:716-728.
    PMID: 30138803 DOI: 10.1016/j.ejmech.2018.08.039
    In the present study, a series of forty-five asymmetrical meta-methoxylated diarylpentanoids have been synthesized, characterized and evaluated for their in-vitro anti-cancer potential. Among the forty-five analogs, three compounds (20, 33 and 42) have been identified as lead compounds due to their excellent inhibition against five human cancer cell lines including SW620, A549, EJ28, HT1080 and MCF-7. Structure-activity relationship study on cytotoxicity of tested compounds suggested that the presence of meta-oxygenated phenyl ring played a critical role in enhancing their cytotoxic effects. Compounds 33 and 42 in particular, exhibited strongest cytotoxicity against tested cell lines with the IC50 values ranging from 1.1 to 4.3 μM. Subsequent colony formation assay on SW620 cell line showed that both compounds 33 and 42 possessed strong anti-proliferative activity. In addition, flow cytometry based experiments revealed that these compounds could trigger intracellular ROS production thus inducing G2/M-phase cell arrest and apoptosis. All these results suggested that poly meta-oxygenated diarylpentnoid is a promising scaffold which deserved further modification and investigation in the development of natural product-based anti-cancer drug.
    Matched MeSH terms: Drug Design*
  14. Abdelgawad MA, Musa A, Almalki AH, Alzarea SI, Mostafa EM, Hegazy MM, et al.
    Drug Des Devel Ther, 2021;15:2325-2337.
    PMID: 34103896 DOI: 10.2147/DDDT.S310820
    Introduction: Epidermal growth factor receptor (EGFR) inhibition is an imperative therapeutic approach targeting various types of cancer including colorectal, lung, breast, and pancreatic cancer types. Moreover, cyclooxygenase-2 (COX-2) is frequently overexpressed in different types of cancers and has a role in the promotion of malignancy, apoptosis inhibition, and metastasis of tumor cells. Combination therapy has been emerged to improve the therapeutic benefit against cancer and curb intrinsic and acquired resistance.

    Methods: Three semi-synthetic series of compounds (C1-4, P1-4, and G1-4) were prepared and evaluated biologically as potential dual epidermal growth factor receptor (EGFR) and COX-2 inhibitors. The main phenolic constituents of Amaranthus spinosus L. (p-coumaric, caffeic and gallic) acids have been isolated and subsequently subjected to diazo coupling with various amines to get novel three chemical scaffolds with potential anticancer activities.

    Results: Compounds C4 and G4 showed superior inhibitory activity against EGFR (IC50: 0.9 and 0.5 µM, respectively) and displayed good COX-2 inhibition (IC50: 4.35 and 2.47 µM, respectively). Moreover, the final compounds were further evaluated for their cytotoxic activity against human colon cancer (HT-29), pancreatic cancer (PaCa-2), human malignant melanoma (A375), lung cancer (H-460), and pancreatic ductal cancer (Panc-1) cell lines. Interestingly, compounds C4 and G4 exhibited the highest cytotoxic activity with average IC50 values of 1.5 µM and 2.8 µM against H-460 and Panc-1, respectively. The virtual docking study was conducted to gain proper understandings of the plausible-binding modes of target compounds within EGFR and COX-2 binding sites.

    Discussion: The NMR of prepared compounds showed characteristic peaks that confirmed the structure of the target compounds. The synthesized benzoxazolyl scaffold containing compounds showed inhibitory activities for both COXs and EGFR which are consistent with the virtual docking study.

    Matched MeSH terms: Drug Design*
  15. Abbasi MA, Anwar A, Rehman A, Siddiqui SZ, Rubab K, Shah SAA, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1715-1724.
    PMID: 29084694
    Heterocyclic molecules have been frequently investigated to possess various biological activities during the last few decades. The present work elaborates the synthesis and enzymatic inhibition potentials of a series of sulfonamides. A series of 1-arylsulfonyl-4-Phenylpiperazine (3a-n) geared up by the reaction of 1-phenylpiperazine (1) and different (un)substituted alkyl/arylsulfonyl chlorides (2a-n), under defined pH control using water as a reaction medium. The synthesized molecules were characterized by 1H-NMR, 13C-NMR, IR and EI-MS spectral data. The enzyme inhibition study was carried on α-glucosidase, lipoxygenase (LOX), acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE) enzymes supported by docking simulation studies and the IC50 values rendered a few of the synthesized molecules as moderate inhibitors of these enzymes where, the compound 3e exhibited comparatively better potency against α-glucosidase enzyme. The synthesized compounds showed weak or no inhibition against LOX, AChE and BChE enzymes.
    Matched MeSH terms: Drug Design*
  16. Abu Bakar A, Akhtar MN, Mohd Ali N, Yeap SK, Quah CK, Loh WS, et al.
    Molecules, 2018 Mar 08;23(3).
    PMID: 29518053 DOI: 10.3390/molecules23030616
    Flavokawain B (1) is a natural chalcone extracted from the roots of Piper methysticum, and has been proven to be a potential cytotoxic compound. Using the partial structure of flavokawain B (FKB), about 23 analogs have been synthesized. Among them, compounds 8, 13 and 23 were found in new FKB derivatives. All compounds were evaluated for their cytotoxic properties against two breast cancer cell lines, MCF-7 and MDA-MB-231, thus establishing the structure-activity relationship. The FKB derivatives 16 (IC50 = 6.50 ± 0.40 and 4.12 ± 0.20 μg/mL), 15 (IC50 = 5.50 ± 0.35 and 6.50 ± 1.40 μg/mL) and 13 (IC50 = 7.12 ± 0.80 and 4.04 ± 0.30 μg/mL) exhibited potential cytotoxic effects on the MCF-7 and MDA-MB-231 cell lines. However, the methoxy group substituted in position three and four in compound 2 (IC50 = 8.90 ± 0.60 and 6.80 ± 0.35 μg/mL) and 22 (IC50 = 8.80 ± 0.35 and 14.16 ± 1.10 μg/mL) exhibited good cytotoxicity. The lead compound FKB (1) showed potential cytotoxicity (IC50 = 7.70 ± 0.30 and 5.90 ± 0.30 μg/mL) against two proposed breast cancer cell lines. It is evident that the FKB skeleton is unique for anticancer agents, additionally, the presence of halogens (Cl and F) in position 2 and 3 also improved the cytotoxicity in FKB series. These findings could help to improve the future drug discovery process to treat breast cancer. A molecular dynamics study of active compounds revealed stable interactions within the active site of Janus kinase. The structures of all compounds were determined by ¹H-NMR, EI-MS, IR and UV and X-ray crystallographic spectroscopy techniques.
    Matched MeSH terms: Drug Design*
  17. Ichimizu S, Watanabe H, Maeda H, Hamasaki K, Nakamura Y, Chuang VTG, et al.
    J Control Release, 2018 05 10;277:23-34.
    PMID: 29530390 DOI: 10.1016/j.jconrel.2018.02.037
    Human serum albumin (HSA) is a superior carrier for delivering extracellular drugs. However, the development of a cell-penetrating HSA remains a great challenge due to its low membrane permeability. We report herein on the design of a series of palmitoyl-poly-arginine peptides (CPPs) and an evaluation of their cell-penetrating effects after forming a complex with HSA for use in intracellular drug delivery. The palmitoyl CPPs forms a stable complex with HSA by anchoring itself to the high affinity palmitate binding sites of HSA. Among the CPPs evaluated, a cyclic polypeptide composed of D-dodecaarginines, palmitoyl-cyclic-(D-Arg)12 was the most effective for facilitating the cellular uptake of HSA by HeLa cells. Such a superior cell-penetrating capability is primarily mediated by macropinocytosis. The effect of the CPP on pharmacological activity was examined using three drugs loaded in HSA via three different methods: a) an HSA-paclitaxel complex, b) an HSA-doxorubicin covalent conjugate and c) an HSA-thioredoxin fusion protein. The results showed that cell-penetrating efficiency was increased with a corresponding and significant enhancement in pharmacological activity. In conclusion, palmitoyl-cyclic-(D-Arg)12/HSA is a versatile cell-penetrating drug delivery system with great potential for use as a nano-carrier for a wide diversity of pharmaceutical applications.
    Matched MeSH terms: Drug Design*
  18. Yehye WA, Abdul Rahman N, Saad O, Ariffin A, Abd Hamid SB, Alhadi AA, et al.
    Molecules, 2016 Jun 28;21(7).
    PMID: 27367658 DOI: 10.3390/molecules21070847
    A new series of multipotent antioxidants (MPAOs), namely Schiff base-1,2,4-triazoles attached to the oxygen-derived free radical scavenging moiety butylated hydroxytoluene (BHT) were designed and subsequently synthesized. The structure-activity relationship (SAR) of the designed antioxidants was established alongside the prediction of activity spectra for substances (PASS). The antioxidant activities of the synthesized compounds 4-10 were tested by the DPPH bioassay. The synthesized compounds 4-10 inhibited stable DPPH free radicals at a level that is 10(-4) M more than the well-known standard antioxidant BHT. Compounds 8-10 with para-substituents were less active than compounds 4 and 5 with trimethoxy substituents compared to those with a second BHT moiety (compounds 6 and 7). With an IC50 of 46.13 ± 0.31 µM, compound 6 exhibited the most promising in vitro inhibition at 89%. Therefore, novel MPAOs containing active triazole rings, thioethers, Schiff bases, and BHT moieties are suggested as potential antioxidants for inhibiting oxidative stress processes and scavenging free radicals, hence, this combination of functions is anticipated to play a vital role in repairing cellular damage, preventing various human diseases and in medical therapeutic applications.
    Matched MeSH terms: Drug Design*
  19. Kar SS, Bhat G V, Rao PP, Shenoy VP, Bairy I, Shenoy GG
    Drug Des Devel Ther, 2016;10:2299-310.
    PMID: 27486307 DOI: 10.2147/DDDT.S104037
    A series of triclosan mimic diphenyl ether derivatives have been synthesized and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The binding mode of the compounds at the active site of enoyl-acyl carrier protein reductase of M. tuberculosis has been explored. Among them, compound 10b was found to possess antitubercular activity (minimum inhibitory concentration =12.5 µg/mL) comparable to triclosan. All the synthesized compounds exhibited low levels of cytotoxicity against Vero and HepG2 cell lines, and three compounds 10a, 10b, and 10c had a selectivity index more than 10. Compound 10b was also evaluated for log P, pKa, human liver microsomal stability, and % protein binding, in order to probe its druglikeness. Based on the antitubercular activity and druglikeness profile, it may be concluded that compound 10b could be a lead for future development of antitubercular drugs.
    Matched MeSH terms: Drug Design*
  20. Ullah F, Othman MB, Javed F, Ahmad Z, Akil HM, Rasib SZ
    Int J Biol Macromol, 2016 Feb;83:376-84.
    PMID: 26597568 DOI: 10.1016/j.ijbiomac.2015.11.040
    A new approach to design multifunctional chitosan based nanohydrogel with enhanced glucose sensitivity, stability, drug loading and release profile are reported. Two approaches were followed for functionalization of chitosan based nanohydrogel with 3-APBA via EDC and 3-APTES. The effective functionalization, structure and morphology of Chitosan based IPN respectively were confirmed by FTIR, SEM and AFM. At physiological conditions, the glucose-induced volume phase transition and release profile of the model drug Alizarin Red with 1,2-diol structure (comparative to insulin as a drug as well as a dye for bio separation) were studied at various glucose concentrations, pH and ionic strengths. The results suggested a new concept for diabetes treatment and diols sensitivity in view of their potential hi-tech applications in self-regulated on-off response to the treatment (drug delivery and bio separation concurrently).
    Matched MeSH terms: Drug Design
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links