Displaying publications 61 - 80 of 995 in total

Abstract:
Sort:
  1. Chew ST, Gallagher JB
    Sci Rep, 2018 02 07;8(1):2553.
    PMID: 29416101 DOI: 10.1038/s41598-018-20644-2
    The canopies and roots of seagrass, mangrove, and saltmarsh protect a legacy of buried sedimentary organic carbon from resuspension and remineralisation. This legacy's value, in terms of mitigating anthropogenic emissions of CO2, is based on total organic carbon (TOC) inventories to a depth likely to be disturbed. However, failure to subtract allochthonous recalcitrant carbon overvalues the storage service. Simply put, burial of oxidation-resistant organics formed outside of the ecosystem provides no additional protection from remineralisation. Here, we assess whether black carbon (BC), an allochthonous and recalcitrant form of organic carbon, is contributing to a significant overestimation of blue carbon stocks. To test this supposition, BC and TOC contents were measured in different types of seagrass and mangrove sediment cores across tropical and temperate regimes, with different histories of air pollution and fire together with a reanalysis of published data from a subtropical system. The results suggest current carbon stock estimates are positively biased, particularly for low-organic-content sandy seagrass environs, by 18 ± 3% (±95% confidence interval) and 43 ± 21% (±95% CI) for the temperate and tropical regions respectively. The higher BC fractions appear to originate from atmospheric deposition and substantially enrich the relatively low TOC fraction within these environs.
    Matched MeSH terms: Ecosystem
  2. Lau S, Mohamed M, Yen AT, Su'ut S
    Sci Total Environ, 1998 Jun 18;214:113-21.
    PMID: 9646520
    Heavy metals in the aquatic environment have to date come mainly from naturally occurring geochemical materials. However, this has been enhanced by human activity such as gold mining in the case of heavy metal pollution in Sg Sarawak Kanan. The high suspended solid loads in the river have quite efficiently removed most soluble metals from the water and trapped them in the bottom sediment. Three freshwater mollusc species were collected at the point source of the heavy metal pollutants and analysed for the heavy metal contents in their tissues and shells. Two of the mollusc species (Brotia costula and Melanoides tuberculata) are purely freshwater species while the Clithon sp. nr retropictus is able to survive in fresh and brackish water environments. The Brotia costula and the Clithon sp. are the edible species which are sold in the market. Accumulation of As, Cu, Fe, Se and Zn in all the three mollusc species were determined and the level of As in the tissues of Brotia costula and the Clithon sp. was much higher than the permissible level for human consumption. The mollusc species also demonstrated different preferences for the uptake of different metals. Variations in the heavy metal contents in the shell and tissues of the same species were also observed.
    Matched MeSH terms: Ecosystem
  3. Haruna Ahmed O, Aainaa Hasbullah N, Ab Majid NM
    ScientificWorldJournal, 2010 Oct 12;10:1988-95.
    PMID: 20953548 DOI: 10.1100/tsw.2010.196
    The world's tropical rainforests are decreasing at an alarming rate as they are converted to agricultural land, pasture, and plantations. Decreasing tropical forests affect global warming. As a result, afforestation progams have been suggested to mitigate this problem. The objective of this study was to determine the carbon and phosphorus accumulation of a rehabilitated forest of different ages. The size of the study area was 47.5 ha. Soil samples were collected from the 0-, 6-, 12-, and 17-year-old rehabilitated forest. Twenty samples were taken randomly with a soil auger at depths of 0-20 and 20-40 cm. The procedures outlined in the Materials and Methods section were used to analyze the soil samples for pH, total C, organic matter, total P, C/P ratio, yield of humic acid (HA), and cation exchange capacity (CEC). The soil pH decreased significantly with increasing age of forest rehabilitation regardless of depth. Age did not affect CEC of the rehabilitated forest. Soil organic matter (SOM), total C, and total P contents increased with age. However, C/P ratio decreased with time at 0-20 cm. Accumulation of HA with time and soil depth was not consistent. The rehabilitated forest has shown signs of being a C and P sink.
    Matched MeSH terms: Ecosystem
  4. Razia S, Hadibarata T, Lau SY
    Bioprocess Biosyst Eng, 2023 Mar;46(3):341-358.
    PMID: 36602611 DOI: 10.1007/s00449-022-02844-3
    Acidophiles are a group of microorganisms that thrive in acidic environments where pH level is far below the neutral value 7.0. They belong to a larger family called extremophiles, which is a group that thrives in various extreme environmental conditions which are normally inhospitable to other organisms. Several human activities such as mining, construction and other industrial processes release highly acidic effluents and wastes into the environment. Those acidic wastes and wastewaters contain different types of pollutants such as heavy metals, radioactive, and organic, whose have adverse effects on human being as well as on other living organisms. To protect the whole ecosystem, those pollutants containing effluents or wastes must be clean properly before releasing into environment. Physicochemical cleanup processes under extremely acidic conditions are not always successful due to high cost and release of toxic byproducts. While in case of biological methods, except acidophiles, no other microorganisms cannot survive in highly acidic conditions. Therefore, acidophiles can be a good choice for remediation of different types of contaminants present in acidic conditions. In this review article, various roles of acidophilic microorganisms responsible for removing heavy metals and radioactive pollutants from acidic environments were discussed. Bioremediation of various acidic organic pollutants by using acidophiles was also studied. Overall, this review could be helpful to extend our knowledge as well as to do further relevant novel studies in the field of acidic pollutants remediation by applying acidophilic microorganisms.
    Matched MeSH terms: Ecosystem
  5. Razak MR, Aris AZ, Zainuddin AH, Yusoff FM, Balia Yusof ZN, Kim SD, et al.
    Chemosphere, 2023 Feb;313:137377.
    PMID: 36457264 DOI: 10.1016/j.chemosphere.2022.137377
    Per- and polyfluoroalkyl substances (PFAS) are gaining worldwide attention because of their toxicity, bioaccumulative and resistance to biological degradation in the environment. PFAS can be categorised into endocrine disrupting chemicals (EDCs) and identified as possible carcinogenic agents for the aquatic ecosystem and humans. Despite this, only a few studies have been conducted on the aquatic toxicity of PFAS, particularly in invertebrate species such as zooplankton. This study evaluated the acute toxicity of two main PFAS, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), by using freshwater cladocerans (Moina micrura) as bioindicators. This study aimed to assess the adverse effects at different levels of organisations such as organ (heart size and heart rate), individual (individual size and mortality) and population (lethal concentration, LC50). PFOA was shown to be more hazardous than PFOS, with the LC50 values (confidence interval) of 474.7 (350.4-644.5) μg L-1 and 549.6 (407.2-743.9) μg L-1, respectively. As the concentrations of PFOS and PFOA increased, there were declines in individual size and heart rate as compared to the control group. The values of PNECs acquired by using the AF method (PNECAF) for PFOA and PFOS were 0.4747 and 0.5496 μg L-1, respectively. Meanwhile, the PNEC values obtained using the SSD method (PNECSSD) were 1077.0 μg L-1 (PFOA) and 172.5 μg L-1 (PFOS). PNECAF is more protective and conservative compared to PNECSSD. The findings of this study have significant implications for PFOS and PFOA risk assessment in aquatic environments. Thus, it will aid freshwater sustainability and safeguard the human dependency on water resources.
    Matched MeSH terms: Ecosystem
  6. Suhaimi H, Abdul Rahman MI, Ashaari A, Ikhwanuddin M, Wan Rasdi N
    PeerJ, 2024;12:e17092.
    PMID: 38563012 DOI: 10.7717/peerj.17092
    Live foods such as phytoplankton and zooplankton are essential food sources in aquaculture. Due to their small size, they are suitable for newly hatched larvae. Artemia and rotifer are commonly used live feeds in aquaculture; each feed has a limited dietary value, which is unsuitable for all cultured species. Whereas, copepod and cladocerans species exhibit favorable characteristics that make them viable candidates as sources of essential nutrients for hatchery operations. Due to their jerking movements, it stimulates the feeding response of fish larvae, and their various sizes make them suitable for any fish and crustacean. Even though Artemia is the best live feed due to its proficient nutritional quality, the cost is very expensive, which is about half of the production cost. A recent study suggests the use of amphipods and mysids as alternative live feeds in aquaculture. High nutritional value is present in amphipods and mysids, especially proteins, lipids, and essential fatty acids that are required by fish larvae during early development. Amphipods and mysids are considered abundant in the aquatic ecosystem and have been used by researchers in water toxicity studies. However, the culture of amphipods and mysids has been poorly studied. There is only a small-scale culture under laboratory conditions for scientific research that has been performed. Thus, further research is required to find a way to improve the mass culture of amphipods and mysids that can benefit the aquaculture industry. This review article is intended to provide the available information on amphipods and mysids, including reproductive biology, culture method, nutritional value, feed enhancement, and the importance of them as potential live feed in aquaculture. This article is useful as a guideline for researchers, hatchery operators, and farmers.
    Matched MeSH terms: Ecosystem
  7. Alizamir M, Kisi O, Ahmed AN, Mert C, Fai CM, Kim S, et al.
    PLoS One, 2020;15(4):e0231055.
    PMID: 32287272 DOI: 10.1371/journal.pone.0231055
    Soil temperature has a vital importance in biological, physical and chemical processes of terrestrial ecosystem and its modeling at different depths is very important for land-atmosphere interactions. The study compares four machine learning techniques, extreme learning machine (ELM), artificial neural networks (ANN), classification and regression trees (CART) and group method of data handling (GMDH) in estimating monthly soil temperatures at four different depths. Various combinations of climatic variables are utilized as input to the developed models. The models' outcomes are also compared with multi-linear regression based on Nash-Sutcliffe efficiency, root mean square error, and coefficient of determination statistics. ELM is found to be generally performs better than the other four alternatives in estimating soil temperatures. A decrease in performance of the models is observed by an increase in soil depth. It is found that soil temperatures at three depths (5, 10 and 50 cm) could be mapped utilizing only air temperature data as input while solar radiation and wind speed information are also required for estimating soil temperature at the depth of 100 cm.
    Matched MeSH terms: Ecosystem*
  8. Ancrenaz M, Gimenez O, Ambu L, Ancrenaz K, Andau P, Goossens B, et al.
    PLoS Biol, 2005 Jan;3(1):e3.
    PMID: 15630475
    Great apes are threatened with extinction, but precise information about the distribution and size of most populations is currently lacking. We conducted orangutan nest counts in the Malaysian state of Sabah (North Borneo), using a combination of ground and helicopter surveys, and provided a way to estimate the current distribution and size of the populations living throughout the entire state. We show that the number of nests detected during aerial surveys is directly related to the estimated true animal density and that a helicopter is an efficient tool to provide robust estimates of orangutan numbers. Our results reveal that with a total estimated population size of about 11,000 individuals, Sabah is one of the main strongholds for orangutans in North Borneo. More than 60% of orangutans living in the state occur outside protected areas, in production forests that have been through several rounds of logging extraction and are still exploited for timber. The role of exploited forests clearly merits further investigation for orangutan conservation in Sabah.
    Matched MeSH terms: Ecosystem
  9. Pearce DA, Alekhina IA, Terauds A, Wilmotte A, Quesada A, Edwards A, et al.
    Front Microbiol, 2016;7:16.
    PMID: 26909068 DOI: 10.3389/fmicb.2016.00016
    The role of aerial dispersal in shaping patterns of biodiversity remains poorly understood, mainly due to a lack of coordinated efforts in gathering data at appropriate temporal and spatial scales. It has been long known that the rate of dispersal to an ecosystem can significantly influence ecosystem dynamics, and that aerial transport has been identified as an important source of biological input to remote locations. With the considerable effort devoted in recent decades to understanding atmospheric circulation in the south-polar region, a unique opportunity has emerged to investigate the atmospheric ecology of Antarctica, from regional to continental scales. This concept note identifies key questions in Antarctic microbial biogeography and the need for standardized sampling and analysis protocols to address such questions. A consortium of polar aerobiologists is established to bring together researchers with a common interest in the airborne dispersion of microbes and other propagules in the Antarctic, with opportunities for comparative studies in the Arctic.
    Matched MeSH terms: Ecosystem
  10. Holzner A, Mohd Rameli NIA, Ruppert N, Widdig A
    Curr Biol, 2024 Jan 22;34(2):410-416.e4.
    PMID: 38194972 DOI: 10.1016/j.cub.2023.12.002
    Infant survival is a major determinant of individual fitness and constitutes a crucial factor in shaping species' ability to maintain viable populations in changing environments.1 Early adverse conditions, such as maternal loss, social isolation, and ecological hazards, have been associated with reduced rates of infant survivorship in wild primates.2,3,4 Agricultural landscapes increasingly replacing natural forest habitats may additionally threaten the survival of infants through exposure to novel predators,5 human-wildlife conflicts,6,7 or the use of harmful chemicals.8,9 Here, we investigated potential links between agricultural habitat use and high infant mortality in wild southern pig-tailed macaques (Macaca nemestrina) inhabiting a mosaic landscape of rainforest and oil palm plantation in Peninsular Malaysia. Longitudinal data revealed that 57% of all infants born during the study period (2014-2023) died before the age of 1 year, far exceeding mortality rates reported for other wild primates.10,11,12,13,14 Importantly, prolonged time spent in the plantation during infancy decreased the likelihood of infant survival by 3-fold, likely caused by increased exposure to the threats inherent to this environment. Further, mortality risk was elevated for infants born to primiparous mothers and predicted by prolonged maternal interbirth intervals, suggesting potential long-term effects attributed to the uptake and/or accumulation of pesticides in mothers' bodies.15,16,17 Indeed, existing literature reports that pesticides may cross the placental barrier, thus impacting fetal development during pregnancy.18,19,20 Our findings emphasize the importance of minimizing anthropogenic threats to wildlife in agricultural landscapes by establishing environmentally friendly cultivation practices that can sustain wildlife populations in the long term.
    Matched MeSH terms: Ecosystem
  11. Dalu T, Wasserman RJ, Dalu MT
    Glob Chang Biol, 2017 03;23(3):983-985.
    PMID: 27869348 DOI: 10.1111/gcb.13549
    Ephemeral wetlands in arid regions are often degraded or destroyed through poor land-use practice long before they are ever studied or prioritized for conservation. Climate change will likely also have implications for these ecosystems given forecast changes in rainfall patterns in many arid environments. Here, we present a conceptual diagram showing typical and modified ephemeral wetlands in agricultural landscapes and how modification impacts on species diversity and composition.
    Matched MeSH terms: Ecosystem
  12. Wan Zaki WM, Yahya MS, Norhisham AR, Sanusi R, van der Meer PJ, Azhar B
    Oecologia, 2023 Mar;201(3):863-875.
    PMID: 36914820 DOI: 10.1007/s00442-023-05348-3
    Large-scale deforestation in the tropics, triggered by logging and subsequent agricultural monoculture has a significant adverse impact on biodiversity due to habitat degradation. Here, we measured the diversity of butterfly species in three agricultural landscapes, agroforestry orchards, oil palm, and rubber tree plantations. Butterfly species were counted at 127 sampling points over the course of a year using the point count method. We found that agroforestry orchards supported a greater number of butterfly species (74 species) compared to rubber tree (61 species) and oil palm plantations (54 species) which were dominated by generalist (73%) followed by forest specialists (27%). We found no significant difference of butterfly species composition between agroforestry orchards and rubber tree plantation, with both habitats associated with more butterfly species compared to oil palm plantations. This indicates butterflies were able to persist better in certain agricultural landscapes. GLMMs suggested that tree height, undergrowth coverage and height, and elevation determined butterfly diversity. Butterfly species richness was also influenced by season and landscape-level variables such as proximity to forest, mean NDVI, and habitat. Understanding the factors that contributed to butterfly species richness in an agroecosystem, stakeholders should consider management practices to improve biodiversity conservation such as ground vegetation management and retaining adjacent forest areas to enhance butterfly species richness. Furthermore, our findings suggest that agroforestry system should be considered to enhance biodiversity in agricultural landscapes.
    Matched MeSH terms: Ecosystem
  13. Takahashi M, Feng Z, Mikhailova TA, Kalugina OV, Shergina OV, Afanasieva LV, et al.
    Sci Total Environ, 2020 Nov 10;742:140288.
    PMID: 32721711 DOI: 10.1016/j.scitotenv.2020.140288
    Air pollution and atmospheric deposition have adverse effects on tree and forest health. We reviewed studies on tree and forest decline in Northeast and Southeast Asia, Siberia, and the Russian Far East (hereafter referred to as East Asia). This included studies published in domestic journals and languages. We identified information about the locations, causes, periods, and tree species exhibiting decline. Past air pollution was also reviewed. Most East Asian countries show declining trends in SO2 concentration in recent years, although Mongolia and Russia show increasing trends. Ozone (O3) concentrations are stable or gradually increasing in the East Asia region, with high maxima. Wet nitrogen (N) deposition was high in China and tropical countries, but low in Russia. The decline of trees and forests primarily occurred in the mid-latitudes of Japan, Korea, China, and Russia. Long-term large N deposition resulted in the N saturation phenomenon in Japan and China, but no clear forest health response was observed. Thereafter, forest decline symptoms, suspected to be caused by O3, were observed in Japan and China. In East Russia, tree decline occurred around industrial centers in Siberia. Haze events have been increasing in tropical and boreal forests, and particulate matter inhibits photosynthesis. In recent years, chronically high O3 concentrations, in conjunction with climate change, are likely have adverse effects on tree physiology. The effects of air pollution and related factors on tree decline are summarized. Recently, the effects of air pollution on tree decline have not been apparent under the changing climate, however, monitoring air pollution is indispensable for identifying the cause of tree decline. Further economic growth is projected in Southeast Asia and therefore, the monitoring network should be expanded to tropical and boreal forest zones. Countermeasures such as restoring urban trees and rural forests are important for ensuring future ecosystem services.
    Matched MeSH terms: Ecosystem
  14. Hemprich-Bennett DR, Kemp VA, Blackman J, Struebig MJ, Lewis OT, Rossiter SJ, et al.
    Mol Ecol, 2021 11;30(22):5844-5857.
    PMID: 34437745 DOI: 10.1111/mec.16153
    Habitat degradation is pervasive across the tropics and is particularly acute in Southeast Asia, with major implications for biodiversity. Much research has addressed the impact of degradation on species diversity; however, little is known about how ecological interactions are altered, including those that constitute important ecosystem functions such as consumption of herbivores. To examine how rainforest degradation alters trophic interaction networks, we applied DNA metabarcoding to construct interaction networks linking forest-dwelling insectivorous bat species and their prey, comparing old-growth forest and forest degraded by logging in Sabah, Borneo. Individual bats in logged rainforest consumed a lower richness of prey than those in old-growth forest. As a result, interaction networks in logged forests had a less nested structure. These network structures were associated with reduced network redundancy and thus increased vulnerability to perturbations in logged forests. Our results show how ecological interactions change between old-growth and logged forests, with potentially negative implications for ecosystem function and network stability.
    Matched MeSH terms: Ecosystem
  15. Runting RK, Meijaard E, Abram NK, Wells JA, Gaveau DL, Ancrenaz M, et al.
    Nat Commun, 2015 04 14;6:6819.
    PMID: 25871635 DOI: 10.1038/ncomms7819
    Balancing economic development with international commitments to protect biodiversity is a global challenge. Achieving this balance requires an understanding of the possible consequences of alternative future scenarios for a range of stakeholders. We employ an integrated economic and environmental planning approach to evaluate four alternative futures for the mega-diverse island of Borneo. We show what could be achieved if the three national jurisdictions of Borneo coordinate efforts to achieve their public policy targets and allow a partial reallocation of planned land uses. We reveal the potential for Borneo to simultaneously retain ∼50% of its land as forests, protect adequate habitat for the Bornean orangutan (Pongo pygmaeus) and Bornean elephant (Elephas maximus borneensis), and achieve an opportunity cost saving of over US$43 billion. Such coordination would depend on enhanced information sharing and reforms to land-use planning, which could be supported by the increasingly international nature of economies and conservation efforts.
    Matched MeSH terms: Ecosystem
  16. Shabanzadeh P, Yusof R
    Comput Math Methods Med, 2015;2015:802754.
    PMID: 26336509 DOI: 10.1155/2015/802754
    Unsupervised data classification (or clustering) analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO) algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification.
    Matched MeSH terms: Ecosystem
  17. Harun SN, Hanafiah MM, Aziz NIHA
    Environ Manage, 2021 Jan;67(1):146-161.
    PMID: 33001258 DOI: 10.1007/s00267-020-01365-7
    This study aims to assess the environmental impacts of conventional and organic rice cultivations and proposes a sustainable conceptual framework of rice farming based on the life cycle assessment (LCA) approach. A cradle-to-gate LCA was performed by using the ReCiPe 2016 method and SimaPro 8.5 software. The functional unit was one ton of rice grains harvested. Primary data were obtained from the farmer, while secondary data were collected from Ecoinvent 3.0, the Agri Footprint 3.0 database and the literature. The total characterization factors for global warming potential (GWP), water consumption potential (WCP) and fossil fuel depletion potential (FFP) were 457.89 kg CO2-eq, 98.18 m3 and 84.56 kg oil-eq, respectively, at the midpoint level for conventional rice, while the impacts for organic rice were 140.55 kg CO2-eq, 29.45 m3 and 22.25 kg oil-eq, respectively. At the endpoint level, the total characterization factors for human health damage (HH), ecosystem damage (ED) and resource availability (RA) for conventional rice were 9.63 × 10-4 DALY, 5.54 × 10-6 species.year and 30.98 Dollar, respectively, while for organic rice, the impacts were 2.60 × 10-4 DALY, 2.28 × 10-6 species.year and 8.44 Dollar, respectively. Rice cultivation impacted the environment, particularly in relation to three impact categories: GWP, WCP and FFP. The cultivation phase of rice production was the main contributor to environmental impacts due to the production and application of fertilizer and pesticides. It can be concluded that the application of LCA in agricultural sector is able to provide information and responses for policy makers in understanding the potential environmental impacts at various spatial levels.
    Matched MeSH terms: Ecosystem
  18. Schwarz CJ, Konopik O
    Zootaxa, 2014.
    PMID: 24870862 DOI: 10.11646/zootaxa.3797.1.12
    We present the first checklist of praying mantids (Mantodea) of Borneo, with special reference to the specimens collected during the Scientific Expedition to Lanjak Entimau Wildlife Sanctuary 2008. With 118 confirmed species in 56 genera (including subgenera), Borneo is the island with the highest mantodean diversity known to date. In Lanjak Entimau 38 specimens representing 17 genera and 18 species were collected around the station lights and in surrounding secondary and primary forest. A new synonymy in the genus Deroplatys is established. The observed diversity patterns among Bornean mantids are discussed with reference to the biogeographic history of the Sunda Shelf since the Miocene.
    Matched MeSH terms: Ecosystem
  19. Lewis K, Rumpang E, Kho LK, McCalmont J, Teh YA, Gallego-Sala A, et al.
    Sci Rep, 2020 02 10;10(1):2230.
    PMID: 32041975 DOI: 10.1038/s41598-020-58982-9
    The recent expansion of oil palm (OP, Elaeis guineensis) plantations into tropical forest peatlands has resulted in ecosystem carbon emissions. However, estimates of net carbon flux from biomass changes require accurate estimates of the above ground biomass (AGB) accumulation rate of OP on peat. We quantify the AGB stocks of an OP plantation on drained peat in Malaysia from 3 to 12 years after planting using destructive harvests supported by non-destructive surveys of a further 902 palms. Peat specific allometric equations for palm (R2 = 0.92) and frond biomass are developed and contrasted to existing allometries for OP on mineral soils. Allometries are used to upscale AGB estimates to the plantation block-level. Aboveground biomass stocks on peat accumulated at ~6.39 ± 1.12 Mg ha-1 per year in the first 12 years after planting, increasing to ~7.99 ± 0.95 Mg ha-1 yr-1 when a 'perfect' plantation was modelled. High inter-palm and inter-block AGB variability was observed in mature classes as a result of variations in palm leaning and mortality. Validation of the allometries defined and expansion of non-destructive inventories across alternative plantations and age classes on peat would further strengthen our understanding of peat OP AGB accumulation rates.
    Matched MeSH terms: Ecosystem
  20. Zailan NA, Azizan MM, Hasikin K, Mohd Khairuddin AS, Khairuddin U
    Front Public Health, 2022;10:907280.
    PMID: 36033781 DOI: 10.3389/fpubh.2022.907280
    Due to urbanization, solid waste pollution is an increasing concern for rivers, possibly threatening human health, ecological integrity, and ecosystem services. Riverine management in urban landscapes requires best management practices since the river is a vital component in urban ecological civilization, and it is very imperative to synchronize the connection between urban development and river protection. Thus, the implementation of proper and innovative measures is vital to control garbage pollution in the rivers. A robot that cleans the waste autonomously can be a good solution to manage river pollution efficiently. Identifying and obtaining precise positions of garbage are the most crucial parts of the visual system for a cleaning robot. Computer vision has paved a way for computers to understand and interpret the surrounding objects. The development of an accurate computer vision system is a vital step toward a robotic platform since this is the front-end observation system before consequent manipulation and grasping systems. The scope of this work is to acquire visual information about floating garbage on the river, which is vital in building a robotic platform for river cleaning robots. In this paper, an automated detection system based on the improved You Only Look Once (YOLO) model is developed to detect floating garbage under various conditions, such as fluctuating illumination, complex background, and occlusion. The proposed object detection model has been shown to promote rapid convergence which improves the training time duration. In addition, the proposed object detection model has been shown to improve detection accuracy by strengthening the non-linear feature extraction process. The results showed that the proposed model achieved a mean average precision (mAP) value of 89%. Hence, the proposed model is considered feasible for identifying five classes of garbage, such as plastic bottles, aluminum cans, plastic bags, styrofoam, and plastic containers.
    Matched MeSH terms: Ecosystem*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links