Displaying publications 61 - 80 of 84 in total

Abstract:
Sort:
  1. Harihar A, Chanchani P, Borah J, Crouthers RJ, Darman Y, Gray TNE, et al.
    PLoS One, 2018;13(11):e0207114.
    PMID: 30408090 DOI: 10.1371/journal.pone.0207114
    With less than 3200 wild tigers in 2010, the heads of 13 tiger-range countries committed to doubling the global population of wild tigers by 2022. This goal represents the highest level of ambition and commitment required to turn the tide for tigers in the wild. Yet, ensuring efficient and targeted implementation of conservation actions alongside systematic monitoring of progress towards this goal requires that we set site-specific recovery targets and timelines that are ecologically realistic. In this study, we assess the recovery potential of 18 sites identified under WWF's Tigers Alive Initiative. We delineated recovery systems comprising a source, recovery site, and support region, which need to be managed synergistically to meet these targets. By using the best available data on tiger and prey numbers, and adapting existing species recovery frameworks, we show that these sites, which currently support 165 (118-277) tigers, have the potential to harbour 585 (454-739) individuals. This would constitute a 15% increase in the global population and represent over a three-fold increase within these specific sites, on an average. However, it may not be realistic to achieve this target by 2022, since tiger recovery in 15 of these 18 sites is contingent on the initial recovery of prey populations, which is a slow process. We conclude that while sustained conservation efforts can yield significant recoveries, it is critical that we commit our resources to achieving the biologically realistic targets for these sites even if the timelines are extended.
    Matched MeSH terms: Endangered Species*
  2. Habibullah MS, Din BH, Tan SH, Zahid H
    Environ Sci Pollut Res Int, 2022 Jan;29(1):1073-1086.
    PMID: 34341937 DOI: 10.1007/s11356-021-15702-8
    The present study investigates the impact of climate change on biodiversity loss using global data consisting of 115 countries. In this study, we measure biodiversity loss using data on the total number of threatened species of amphibians, birds, fishes, mammals, mollusks, plants, and reptiles. The data were compiled from the Red List published by the International Union for Conservation of Nature (IUCN). For climate change variables, we have included temperature, precipitation, and the number of natural disaster occurrences. As for the control variable, we have considered governance indicator and the level of economic development. By employing ordinary least square with robust standard error and robust regression (M-estimation), our results suggest that all three climate change variables - temperature, precipitation, and the number of natural disasters occurrences - increase biodiversity loss. Higher economic development also impacted biodiversity loss positively. On the other hand, good governance such as the control of corruption, regulatory quality, and rule of law reduces biodiversity loss. Thus, practicing good governance, promoting conservation of the environment, and the control of greenhouse gasses would able to mitigate biodiversity loss.
    Matched MeSH terms: Endangered Species
  3. Grismer LL, Wood PL, Anuar S, Davis HR, Cobos AJ, Murdoch ML
    Zootaxa, 2016 Jan 04;4061(1):1-17.
    PMID: 27395475 DOI: 10.11646/zootaxa.4061.1.1
    A new species of Bent-toed Gecko, Cyrtodactylus gunungsenyumensis sp. nov. of the sworderi complex, is described from Hutan Lipur Gunung Senyum, Pahang, Peninsular Malaysia and is differentiated from all other species in the sworderi complex by having a unique combination of characters including a maximum SVL of 74.7 mm; low, rounded, weakly keeled, body tubercles; 34-40 paravertebral tubercles; weak ventrolateral body fold lacking tubercles; 38-41 ventral scales; an abrupt transition between the posterior and ventral femoral scales; 20-23 subdigital lamellae on the fourth toe; enlarged femoral scales; no femoral or precloacal pores; no precloacal groove; wide caudal bands; and an evenly banded dorsal pattern. Cyrtodactylus gunungsenyumensis sp. nov. is a scansorial, karst forest-adapted specialist endemic to the karst ecosystem surrounding Gunung Senyum and occurs on the vertical walls of the limestone towers as well as the branches, trunks, and leaves of the vegetation in the associated karst forest. Cyrtodactylus gunungsenyumensis sp. nov. is the seventh species of karst forest-adapted Cyrtodactylus and the sixteenth endemic species of karst ecosystem reptile discovered in Peninsular Malaysia in the last seven years from only 12 different karst forests. This is a clear indication that many species remain to be discovered in the approximately 558 isolated karst ecosystems in Peninsular Malaysia not yet surveyed. These data continue to underscore the importance of karst ecosystems as reservoirs of biodiversity and microendemism and that they constitute an important component of Peninsular Malaysia's natural heritage and should be protected from the quarrying interests of foreign industrial companies.
    Matched MeSH terms: Endangered Species
  4. Grinang J, Tyan PS, Tuen AA, Das I
    Trop Life Sci Res, 2017 Jul;28(2):75-87.
    PMID: 28890762 MyJurnal DOI: 10.21315/tlsr2017.28.2.6
    Data on nutrient contents of freshwater crabs are important for ecological studies and species conservation assessments, especially when the species concerned is threatened among others by habitat destruction and uncontrolled resources utilisation. Indeed comprehensive biological information is required to reconcile the needs between sustainable resources utilisation and conservation of the species. This study documents the nutrient contents of a freshwater crab, Isolapotamon bauense which is listed as 'Vulnerable' in the IUCN Red List of Threatened Species and also being harvested by local community for dietary supplement. Results show that muscles of the freshwater crab contain a substantial amount of nutrients in particular water content (male = 79.31 ± 2.30 %, female = 77.63 ± 0.56 %), protein (male = 77.47 ± 6.11 %, female = 63.28 ± 3.62 %), magnesium (male = 51.48 ± 16.10 mg/g, female = 39.73 ± 6.99 mg/g) and calcium (male = 25.50 ± 6.98 mg/g, female = 39.73 ± 6.99 mg/g). Means of nutrient contents between male and female crabs are not significantly different. It is estimated that an individual of I. bauense with weight range of 56-139 g contained on average of 0.35 ± 0.15 g of protein. Our estimation also shows that the number of individuals of the freshwater crab required to meet the recommended daily protein intakes of the community concerned is in the range 35-96 individuals for children, 130-188 individuals for adolescents, 171-179 individuals for men and 149-159 individuals for women. The results imply that harvesting of wild I. bauense as a source of protein supplement naturally may not be practical because of its relatively low population abundance, and conservation of the species for its ecological roles may thus be preferred.
    Matched MeSH terms: Endangered Species
  5. Grace MK, Akçakaya HR, Bennett EL, Brooks TM, Heath A, Hedges S, et al.
    Conserv Biol, 2021 12;35(6):1833-1849.
    PMID: 34289517 DOI: 10.1111/cobi.13756
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard.
    Matched MeSH terms: Endangered Species*
  6. Froufe E, Gan HM, Lee YP, Carneiro J, Varandas S, Teixeira A, et al.
    PMID: 27158872 DOI: 10.3109/19401736.2015.1074223
    Freshwater mussels of the family Unionidae exhibit a particular form of mitochondria inheritance called double uniparental inheritance (DUI), in which the mitochondria are inherited by both male and female parents. The (M)ale and (F)emale mitogenomes are highly divergent within species. In the present study, we determine and describe the complete M and F mitogenomes of the Endangered freshwater mussel Potomida littoralis (Cuvier, 1798). The complete M and F mitogenomes sequences are 16 451 bp and 15 787 bp in length, respectively. Both F and M have the same gene content: 13 protein-coding genes (PCGs), 22 transfer RNA (trn) and 2 ribosomal RNA (rrn) genes. Bayesian analyses based on the concatenated nucleotide sequences of 12 PCGs and 2 rrn genes of both genomes, including mitogenome sequences available from related species, were performed. Male and Female lineages are monophyletic within the family, but reveal distinct phylogenetic relationships.
    Matched MeSH terms: Endangered Species*
  7. Davidar P, Sharma R, de Silva S, Campos-Arceiz A, Goossens B, Puyravaud JP, et al.
    Science, 2023 Feb 24;379(6634):765.
    PMID: 36821683 DOI: 10.1126/science.adg7470
    Matched MeSH terms: Endangered Species*
  8. D MR, Linkie M
    PLoS One, 2020;15(12):e0243932.
    PMID: 33315909 DOI: 10.1371/journal.pone.0243932
    Across the tropics, large-bodied mammals have been affected by selective logging in ways that vary with levels of timber extraction, collateral damage, species-specific traits and secondary effects of hunting, as facilitated by improved access through logging roads. In Peninsular Malaysia, 3.0 million hectares or 61 percent of its Permanent Reserved Forests is officially assigned for commercial selective logging. Understanding how wildlife adapts and uses logged forest is critical for its management and, for threatened species, their conservation. In this study, we quantify the population status of four tropical ungulate species in a large selectively logged forest reserve and an adjacent primary forest protected area. We then conduct finer scale analyses to identify the species-specific factors that determine their occurrence. A combined indirect sign-camera trapping approach with a large sampling effort (2,665 km and 27,780 trap nights surveyed) covering a wide area (560 km2) generated species-specific detection probabilities and site occupancies. Populations of wild boar were widespread across both logged and primary forests, whereas sambar and muntjac occupancy was lower in logged forest (48.4% and 19.2% respectively), with gaur showing no significant difference. Subsequent modelling revealed the importance of conserving lower elevation habitat in both habitat types, particularly <1,000 m asl, for which occupancies of sambar, muntjac and gaur were typically higher. This finding is important because 75 percent (~13,400 km2) of Peninsular Malaysia's Main Range Forest (Banjaran Titiwangsa) is under 1,000 m asl and therefore at risk of being converted to industrial timber plantations, which calls for renewed thinking around forest management planning.
    Matched MeSH terms: Endangered Species*
  9. Corder J, Davison G
    Zoo Biol, 2021 Jul;40(4):346-351.
    PMID: 33724508 DOI: 10.1002/zoo.21600
    We describe unique reproductive features of two threatened Galliformes species, the Malaysian peacock-pheasant (Polyplectron malacense) and Bornean peacock-pheasant (P. schleiermacheri). These features pose challenges to successful captive breeding to build up sustainable populations for conservation purposes. Single egg clutches in both species mean that reproductive rates are low and population increase is slow. The very rounded eggs of Bornean Peacock-pheasant cause difficulties for egg orientation in incubators. Single chicks with special requirements are poorly suited to rearing by broody bantams and successful husbandry requires increased human time, commitment, and skills.
    Matched MeSH terms: Endangered Species*
  10. Clements GR, Lynam AJ, Gaveau D, Yap WL, Lhota S, Goosem M, et al.
    PLoS One, 2014;9(12):e115376.
    PMID: 25521297 DOI: 10.1371/journal.pone.0115376
    Habitat destruction and overhunting are two major drivers of mammal population declines and extinctions in tropical forests. The construction of roads can be a catalyst for these two threats. In Southeast Asia, the impacts of roads on mammals have not been well-documented at a regional scale. Before evidence-based conservation strategies can be developed to minimize the threat of roads to endangered mammals within this region, we first need to locate where and how roads are contributing to the conversion of their habitats and illegal hunting in each country. We interviewed 36 experts involved in mammal research from seven Southeast Asian countries to identify roads that are contributing the most, in their opinion, to habitat conversion and illegal hunting. Our experts highlighted 16 existing and eight planned roads - these potentially threaten 21% of the 117 endangered terrestrial mammals in those countries. Apart from gathering qualitative evidence from the literature to assess their claims, we demonstrate how species-distribution models, satellite imagery and animal-sign surveys can be used to provide quantitative evidence of roads causing impacts by (1) cutting through habitats where endangered mammals are likely to occur, (2) intensifying forest conversion, and (3) contributing to illegal hunting and wildlife trade. To our knowledge, ours is the first study to identify specific roads threatening endangered mammals in Southeast Asia. Further through highlighting the impacts of roads, we propose 10 measures to limit road impacts in the region.
    Matched MeSH terms: Endangered Species/statistics & numerical data*
  11. Clements GR, Rayan DM, Aziz SA, Kawanishi K, Traeholt C, Magintan D, et al.
    Integr Zool, 2012 Dec;7(4):400-406.
    PMID: 23253371 DOI: 10.1111/j.1749-4877.2012.00314.x
    In 2008, the IUCN threat status of the Asian tapir (Tapirus indicus) was reclassified from 'vulnerable' to 'endangered'. The latest distribution map from the IUCN Red List suggests that the tapirs' native range is becoming increasingly fragmented in Peninsular Malaysia, but distribution data collected by local researchers suggest a more extensive geographical range. Here, we compile a database of 1261 tapir occurrence records within Peninsular Malaysia, and demonstrate that this species, indeed, has a much broader geographical range than the IUCN range map suggests. However, extreme spatial and temporal bias in these records limits their utility for conservation planning. Therefore, we used maximum entropy (MaxEnt) modeling to elucidate the potential extent of the Asian tapir's occurrence in Peninsular Malaysia while accounting for bias in existing distribution data. Our MaxEnt model predicted that the Asian tapir has a wider geographic range than our fine-scale data and the IUCN range map both suggest. Approximately 37% of Peninsular Malaysia contains potentially suitable tapir habitats. Our results justify a revision to the Asian tapir's extent of occurrence in the IUCN Red List. Furthermore, our modeling demonstrated that selectively logged forests encompass 45% of potentially suitable tapir habitats, underscoring the importance of these habitats for the conservation of this species in Peninsular Malaysia.
    Matched MeSH terms: Endangered Species*
  12. Choo SW, Rayko M, Tan TK, Hari R, Komissarov A, Wee WY, et al.
    Genome Res, 2016 10;26(10):1312-1322.
    PMID: 27510566
    Pangolins, unique mammals with scales over most of their body, no teeth, poor vision, and an acute olfactory system, comprise the only placental order (Pholidota) without a whole-genome map. To investigate pangolin biology and evolution, we developed genome assemblies of the Malayan (Manis javanica) and Chinese (M. pentadactyla) pangolins. Strikingly, we found that interferon epsilon (IFNE), exclusively expressed in epithelial cells and important in skin and mucosal immunity, is pseudogenized in all African and Asian pangolin species that we examined, perhaps impacting resistance to infection. We propose that scale development was an innovation that provided protection against injuries or stress and reduced pangolin vulnerability to infection. Further evidence of specialized adaptations was evident from positively selected genes involving immunity-related pathways, inflammation, energy storage and metabolism, muscular and nervous systems, and scale/hair development. Olfactory receptor gene families are significantly expanded in pangolins, reflecting their well-developed olfaction system. This study provides insights into mammalian adaptation and functional diversification, new research tools and questions, and perhaps a new natural IFNE-deficient animal model for studying mammalian immunity.
    Matched MeSH terms: Endangered Species
  13. Chong VC, Lee PK, Lau CM
    J Fish Biol, 2010 Jun;76(9):2009-66.
    PMID: 20557654 DOI: 10.1111/j.1095-8649.2010.02685.x
    A total of 1951 species of freshwater and marine fishes belonging to 704 genera and 186 families are recorded in Malaysia. Almost half (48%) are currently threatened to some degree, while nearly one third (27%) mostly from the marine and coral habitats require urgent scientific studies to evaluate their status. Freshwater habitats encompass the highest percentage of threatened fish species (87%) followed by estuarine habitats (66%). Of the 32 species of highly threatened (HT) species, 16 are freshwater and 16 are largely marine-euryhaline species. Fish extinctions in Malaysia are confined to two freshwater species, but both freshwater and marine species are being increasingly threatened by largely habitat loss or modification (76%), overfishing (27%) and by-catch (23%). The most important threat to freshwater fishes is habitat modification and overfishing, while 35 species are threatened due to their endemism. Brackish-water, euryhaline and marine fishes are threatened mainly by overfishing, by-catch and habitat modification. Sedimentation (pollution) additionally threatens coral-reef fishes. The study provides recommendations to governments, fish managers, scientists and stakeholders to address the increasing and unabated extinction risks faced by the Malaysian fish fauna.
    Matched MeSH terms: Endangered Species
  14. Braulik GT, Taylor BL, Minton G, Notarbartolo di Sciara G, Collins T, Rojas-Bracho L, et al.
    Conserv Biol, 2023 Oct;37(5):e14090.
    PMID: 37246556 DOI: 10.1111/cobi.14090
    To understand the scope and scale of the loss of biodiversity, tools are required that can be applied in a standardized manner to all species globally, spanning realms from land to the open ocean. We used data from the International Union for the Conservation of Nature Red List to provide a synthesis of the conservation status and extinction risk of cetaceans. One in 4 cetacean species (26% of 92 species) was threatened with extinction (i.e., critically endangered, endangered, or vulnerable) and 11% were near threatened. Ten percent of cetacean species were data deficient, and we predicted that 2-3 of these species may also be threatened. The proportion of threatened cetaceans has increased: 15% in 1991, 19% in 2008, and 26% in 2021. The assessed conservation status of 20% of species has worsened from 2008 to 2021, and only 3 moved into categories of lesser threat. Cetacean species with small geographic ranges were more likely to be listed as threatened than those with large ranges, and those that occur in freshwater (100% of species) and coastal (60% of species) habitats were under the greatest threat. Analysis of odontocete species distributions revealed a global hotspot of threatened small cetaceans in Southeast Asia, in an area encompassing the Coral Triangle and extending through nearshore waters of the Bay of Bengal, northern Australia, and Papua New Guinea and into the coastal waters of China. Improved management of fisheries to limit overfishing and reduce bycatch is urgently needed to avoid extinctions or further declines, especially in coastal areas of Asia, Africa, and South America.
    Matched MeSH terms: Endangered Species
  15. Azman A, Ng KK, Ng CH, Lee CT, Tnah LH, Zakaria NF, et al.
    Sci Rep, 2020 11 05;10(1):19112.
    PMID: 33154411 DOI: 10.1038/s41598-020-76092-4
    Worldwide, many mangrove species are experiencing significant population declines, including Rhizophora apiculata, which is one of the most widespread and economically important species in tropical Asia. In Malaysia, there has been an alarming decline in R. apiculata populations driven primarily by anthropogenic activities. However, the lack of genetic and demographic information on this species has hampered local efforts to conserve it. To address these gaps, we generated novel genetic information for R. apiculata, based on 1,120 samples collected from 39 natural populations in Peninsular Malaysia. We investigated its genetic diversity and genetic structure with 19 transcriptome and three nuclear microsatellite markers. Our analyses revealed a low genetic diversity (mean He: 0.352) with significant genetic differentiation (FST: 0.315) among populations of R. apiculata. Approximately two-third of the populations showed significant excess of homozygotes, indicating persistent inbreeding which might be due to the decrease in population size or fragmentation. From the cluster analyses, the populations investigated were divided into two distinct clusters, comprising the west and east coasts of Peninsular Malaysia. The western cluster was further divided into two sub-clusters with one of the sub-clusters showing strong admixture pattern that harbours high levels of genetic diversity, thus deserving high priority for conservation.
    Matched MeSH terms: Endangered Species*
  16. Aylesworth L, Lawson JM, Laksanawimol P, Ferber P, Loh TL
    J Fish Biol, 2016 Apr;88(4):1620-30.
    PMID: 26840386 DOI: 10.1111/jfb.12908
    New records of the Japanese seahorse Hippocampus mohnikei from Cambodia, Malaysia, Thailand and Vietnam, along with recently published studies from India and Singapore, have greatly expanded the known range of H. mohnikei within Southeast Asia. These new records reveal novel habitat preferences and threats to H. mohnikei in the region. Although the global conservation status of H. mohnikei is classified as Data Deficient according to the IUCN Red List of Threatened Species, new sightings indicate that this species is found in similar habitats and faces similar threats as other Hippocampus species that are considered Vulnerable.
    Matched MeSH terms: Endangered Species
  17. Austin CM, Tan MH, Gan HY, Gan HM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4176-4177.
    PMID: 25630729
    Next-Gen sequencing was used to recover the complete mitochondrial genome of Cherax tenuimanus. The mitogenome consists of 15,797 base pairs (68.14% A + T content) containing 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs, and a 779 bp non-coding AT-rich region. Mitogenomes have now been recovered for all six species of Cherax native to Western Australia.
    Matched MeSH terms: Endangered Species
  18. Arumugam R, Ravichandran P, Yeap SK, Sharma RSK, Zulkifly SB, Yawah D, et al.
    Methods Mol Biol, 2023;2649:175-194.
    PMID: 37258862 DOI: 10.1007/978-1-0716-3072-3_8
    The Tapirus indicus, also known as Malayan tapir, has been listed as a rapidly declining animal species in the past decades, along with being declared and categorized as an endangered species by the International Union for Conservation of Nature (IUCN) 2016. This tapir species is geographically distributed across several countries in Southeast Asia such as Peninsular Malaysia, Indonesia (Sumatra), South Thailand, and Myanmar. Amongst these countries, the Peninsula Malaysia forest is recorded to contain the highest number of Malayan tapir population. Unfortunately, in the past decades, the population of Malayan tapirs has declined swiftly due to serious deforestation, habitat fragmentation, and heavy vehicle accidents during road crossings at forest routes. Concerned by this predicament, the Department of Wildlife and National Parks (DWNP) Peninsular Malaysia collaborated with a few local universities to conduct various studies aimed at increasing the population number of tapirs in Malaysia. Several studies were conducted with the aim of enhancing the well-being of tapirs in captivity. Veterinarians face problems when it comes to selecting healthy and suitable tapirs for breeding programs at conservation centers. Conventional molecular methods using high-throughput sequencing provides a solution in determining the health condition of Malayan tapirs using the Next-Generation Sequencing (NGS) technology. Unaware by most, gut microbiome plays an important role in determining the health condition of an organism by various aspects: (1) digestion control; (2) benefiting the immune system; and (3) playing a role as a "second brain." Commensal gut bacterial communities (microbiomes) are predicted to influence organism health and disease. Imbalance of unhealthy and healthy microbes in the gut may contribute to weight gain, high blood sugar, high cholesterol, and other disorders. In infancy, neonatal gut microbiomes are colonized with maternal and environmental flora, and mature toward a stable composition in two to three years. Interactions between the microorganism communities and the host allow for the establishment of microbiological roles. Identifying the core microbiome(s) are essential in the prediction of diseases and changes in environmental behavior of microorganisms. The dataset of 16S rRNA amplicon sequencing of Malayan tapir was deposited in the MG-RAST portal. Parameters such as quality control, taxonomic prediction (unknown and predicted), diversity (rarefaction), and diversity (alpha) were analyzed using sequencing approaches (Amplicon sequencing). Comparisons of parameters, according to the type of sequencing, showed significant differences, except for the prediction variable. In the Amplicon sequencing datasets, the parameters Rarefaction and Unknown had the highest correlation, while Alpha and Predicted had the lowest. Firmicutes, Bacteroidetes, Proteobacteria, Bacilli, and Bacteroidia were the most representative genera in Malayan tapir amplicon sequences, which indicated that most of the tapirs were healthy. However, continuous assessment to maintain the well-being of tapir for long term is still required. This chapter focuses on the introduction of 16S rRNA amplicon metagenomics in analyzing Malayan tapir gut microbiome dataset.
    Matched MeSH terms: Endangered Species*
  19. Ang CC, Lee SL, Lee CT, Tnah LH, Zakaria RM, Ng CC
    Am J Bot, 2011 May;98(5):e117-9.
    PMID: 21613176 DOI: 10.3732/ajb.1000494
    Microsatellite markers were developed for Johannesteijsmannia lanceolata to assess the genetic diversity and mating system of this alarmingly endangered species.
    Matched MeSH terms: Endangered Species
  20. Andersen SK, Staerk J, Kalhor E, Natusch DJD, da Silva R, Pfau B, et al.
    Data Brief, 2021 Feb;34:106708.
    PMID: 33506080 DOI: 10.1016/j.dib.2020.106708
    We collected data on the trade of seven turtle and tortoise species endemic to Indonesia and Malaysia (Amyda cartilaginea, Batagur borneoensis, Cuora amboinensis, Carettochelys insculpta, Heosemys annandalii, Heosemys grandis, and Heosemys spinosa). The data on those species included: operations costs of three breeding farms and one export facility; species life-history traits; and species international legal trade and confiscation data. We collected data for the facilities (one in Malaysia and three in Indonesia) using site visits and a semi-structured questionnaire. We conducted a literature review to compile relevant information on species' life-history traits to estimate breeding viability. We downloaded species-specific data on international trade from the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Trade Database for the exporting countries (Malaysia and Indonesia) for 2000-2015. We compared legal trade with confiscation data obtained from CITES. The data in this article can provide insights into the operations of turtle breeding farms in Southeast Asia. These data can be used as a reference for the inspection of breeding farms and for legislative bodies to determine whether captive breeding for select turtle species is feasible.
    Matched MeSH terms: Endangered Species
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links