Displaying publications 61 - 80 of 823 in total

Abstract:
Sort:
  1. Williams JD, Moosdeen F, Teoh-Chan CH, Lim VK, Jayanetra P
    Eur J Epidemiol, 1989 Jun;5(2):207-13.
    PMID: 2504618
    Antibiotic resistance in Gram-negative bacteria, particularly Salmonella and Shigella, requires surveillance worldwide. This study describes results of surveys in Hong Kong, Bangkok and Kuala Lumpur. All strains were isolated in hospitals which have large community catchment areas in addition to specialised hospital units. The prevalence of resistant strains was high in all areas. Gram-negative bacteria such as Enterobacter associated with hospital infections were resistant to penicillins and cephalosporins, with gentamicin resistance ranging from about 20% in Kuala Lumpur and Hong Kong, to 35% in Bangkok. Ninety-seven percent of Shigella isolated in Thailand were resistant to ampicillin. About 10% of Salmonella were resistant to chloramphenicol in all three centres.
    Matched MeSH terms: Escherichia coli/drug effects
  2. Wibawa PJ, Nur M, Asy'ari M, Wijanarka W, Susanto H, Sutanto H, et al.
    Molecules, 2021 Jun 22;26(13).
    PMID: 34206375 DOI: 10.3390/molecules26133790
    This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs-ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis's spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).
    Matched MeSH terms: Escherichia coli/growth & development*
  3. Wen X, Huang J, Cao J, Xu J, Mi J, Wang Y, et al.
    Ecotoxicol Environ Saf, 2020 Mar 15;191:110214.
    PMID: 31968275 DOI: 10.1016/j.ecoenv.2020.110214
    Microbial remediation has the potential to inexpensively yet effectively decontaminate and restore contaminated environments, but the virulence of pathogens and risk of resistance gene transmission by microorganisms during antibiotic removal often limit its implementation. Here, a cloned tetX gene with clear evolutionary history was expressed to explore doxycycline (DOX) degradation and resistance variation during the degradation process. Phylogenetic analysis of tetX genes showed high similarity with those of pathogenic bacteria, such as Riemerella sp. and Acinetobacter sp. Successful tetX expression was performed in Escherichia coli and confirmed by SDS-PAGE and Western blot. Our results showed that 95.0 ± 1.0% of the DOX (50 mg/L) was degraded by the recombinant strain (ETD-1 with tetX) within 48 h, which was significantly higher than that for the control (38.9 ± 8.7%) and the empty plasmid bacteria (8.8 ± 5.1%) (P  0.05). The efficient and safe DOX-degrading capacity of the recombinant strain ETD-1 makes it valuable and promising for antibiotic removal in the environment.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism
  4. Wang Y, Lee SM, Gentle IR, Dykes GA
    Biofouling, 2020 11;36(10):1227-1242.
    PMID: 33412938 DOI: 10.1080/08927014.2020.1865934
    A statistical approach using a polynomial linear model in combination with a probability distribution model was developed to mathematically represent the process of bacterial attachment and study its mechanism. The linear deterministic model was built based on data from experiments investigating bacterial and substratum surface physico-chemical factors as predictors of attachment. The prediction results were applied to a normal-approximated binomial distribution model to probabilistically predict attachment. The experimental protocol used mixtures of Streptococcus salivarius and Escherichia coli, and mixtures of porous poly(butyl methacrylate-co-ethyl dimethacrylate) and aluminum sec-butoxide coatings, at varying ratios, to allow bacterial attachment to substratum surfaces across a range of physico-chemical properties (including the surface hydrophobicity of bacterial cells and the substratum, the surface charge of the cells and the substratum, the substratum surface roughness and cell size). The model was tested using data from independent experiments. The model indicated that hydrophobic interaction was the most important predictor while reciprocal interactions existed between some of the factors. More importantly, the model established a range for each factor within which the resultant attachment is unpredictable. This model, however, considers bacterial cells as colloidal particles and accounts only for the essential physico-chemical attributes of the bacterial cells and substratum surfaces. It is therefore limited by a lack of consideration of biological and environmental factors. This makes the model applicable only to specific environments and potentially provides a direction to future modelling for different environments.
    Matched MeSH terms: Escherichia coli
  5. Wang JL, Lai CC, Ko WC, Hsueh PR
    Int J Antimicrob Agents, 2023 Sep;62(3):106930.
    PMID: 37490959 DOI: 10.1016/j.ijantimicag.2023.106930
    This study aimed to investigate the geographical trends of minimum inhibitory concentrations (MICs) for tigecycline and colistin in Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae isolates which were collected for the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme from 2016-2021. MICs of the isolates were determined using the broth microdilution method. In the study period, there was an increase in MIC50 and MIC90 values in Asia for tigecycline MICs in A. baumannii isolates, and the geometric mean of MICs increased significantly from 0.51-0.96 (R2 value of 0.912). The isolates in Europe and Latin America also showed an increase in the geometric mean, but the percentage of MIC values ≤ 2 mg/L decreased from 99.7% to 86.7% in Asia. Among the Asian countries studied, China (90.9%), Thailand (94.3%), and Malaysia (95.5%) showed the lower percentages of tigecycline MIC values ≤0.5 mg/L for E. coli isolates. In terms of colistin susceptibility among A. baumannii isolates, there was no increase in MIC50/ MIC90 or the geometric mean from 2016-2021. Compared to other continents, A. baumannii isolates in Europe had the highest MIC50 (0.5 mg/L), MIC90 (2 mg/L), and geometric mean (0.55 mg/L). For E. coli, the percentage of colistin MIC values ≤2 mg/L was consistently >98% in the study areas from 2016-2021. Among K. pneumoniae isolates, Europe and Latin America had higher geometric means of MICs (0.41 and 0.4 mg/L, respectively) and lower percentages of colistin MICs ≤2 mg/L than those in the other continents.
    Matched MeSH terms: Escherichia coli
  6. Wang H, Ren L, Liang Y, Zheng K, Guo R, Liu Y, et al.
    Microbiol Spectr, 2023 Aug 17;11(4):e0533522.
    PMID: 37272818 DOI: 10.1128/spectrum.05335-22
    Psychrobacter is an important bacterial genus that is widespread in Antarctic and marine environments. However, to date, only two complete Psychrobacter phage sequences have been deposited in the NCBI database. Here, the novel Psychrobacter phage vB_PmaS_Y8A, infecting Psychrobacter HM08A, was isolated from sewage in the Qingdao area, China. The morphology of vB_PmaS_Y8A was characterized by transmission electron microscopy, revealing an icosahedral head and long tail. The genomic sequence of vB_PmaS_Y8A is linear, double-stranded DNA with a length of 40,226 bp and 44.1% G+C content, and encodes 69 putative open reading frames. Two auxiliary metabolic genes (AMGs) were identified, encoding phosphoadenosine phosphosulfate reductase and MarR protein. The first AMG uses thioredoxin as an electron donor for the reduction of phosphoadenosine phosphosulfate to phosphoadenosine phosphate. MarR regulates multiple antibiotic resistance mechanisms in Escherichia coli and is rarely found in viruses. No tRNA genes were identified and no lysogeny-related feature genes were detected. However, many similar open reading frames (ORFs) were found in the host genome, which may indicate that Y8A also has a lysogenic stage. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis indicate that vB_PmaS_Y8A contains a novel genomic architecture similar only to that of Psychrobacter phage pOW20-A, although at a low similarity. vB_PmaS_Y8A represents a new family-level virus cluster with 22 metagenomic assembled viral genomes, here named Minviridae. IMPORTANCE Although Psychrobacter is a well-known and important bacterial genus that is widespread in Antarctic and marine environments, genetic characterization of its phages is still rare. This study describes a novel Psychrobacter phage containing an uncharacterized antibiotic resistance gene and representing a new virus family, Minviridae. The characterization provided here will bolster current understanding of genomes, diversity, evolution, and phage-host interactions in Psychrobacter populations.
    Matched MeSH terms: Escherichia coli/genetics
  7. Wan-Hamat H, Lani MN, Hamzah Y, Alias R, Hassan Z, Mahat NA
    Trop Biomed, 2020 Mar 01;37(1):103-115.
    PMID: 33612722
    The microbiological quality of thirty ready-to-eat (RTE) keropok lekor (a sausage shape Malaysian fish product) was evaluated in comparison to microbiological guidelines for ready to eat foods. The two E. coli isolates were subjected to DNA sequencing, identified and tested for their resistance towards fifteen different antibiotics. The survival and growth of the isolated E. coli strains inoculated in keropok lekor at atmospheric air and vacuum packaging were also evaluated. Results revealed that four samples (13.33%) contained Enterobacteriaceae counts that exceeded the recommended allowable counts of 4.0 log10 CFU/g. Unsatisfactory level of coliforms (< 1.7 log10 CFU/g) was also observed in ten of the samples; two of which contained E. coli (2.1 ± 0.17 and 3.7 ± 0.02 log10 CFU/g), suggesting of poor hygiene and sanitation practices. While the 'Possible E10' E. coli strain was observably resistant towards Nalidixic acid (30µg) alone, B10 E. coli isolate was worryingly resistant towards Ampicillin (10µg), Ceftazidime (30µg), Ciprofloxacin (5µg), Ceftriaxone (30µg), Nalidixic acid (30µg) and Tetracycline (30µg). This study also revealed that the growth and survival of the 'Possible E10' and B10 E. coli strains were not significantly affected by vacuum packaging when stored at both 4°C and 28°C. Therefore, intervention programmes to alert and educate smallmedium enterprisers (SMEs) of keropok lekor producers on food safety as well as potential health risks that can be associated due to inappropriate handling procedures of such product, merits consideration.
    Matched MeSH terms: Escherichia coli/drug effects*
  8. Wan Mat Khalir WKA, Shameli K, Jazayeri SD, Othman NA, Che Jusoh NW, Hassan NM
    Front Chem, 2020;8:620.
    PMID: 32974269 DOI: 10.3389/fchem.2020.00620
    Silver nanoparticles (Ag-NPs) have been established as antibacterial nanoparticles and have been innovatively developed to overcome the occurrence of antibiotic resistance in the environment. In this study, an environmentally friendly and easy method of the biosynthesis of Ag-NPs plants, mediated by aqueous extract stem extract of Entada spiralis (E. spiralis), was successfully developed. The E. spiralis/Ag-NPs samples were characterized using spectroscopy and the microscopic technique of UV-visible (UV-vis), X-ray Diffraction (XRD), Field Emission Transmission Electron Microscope (FETEM), zeta potential, and Fourier Transform Infrared (FTIR) analyses. Surface Plasmon Resonance (SPR) absorption at 400-450 nm in the UV-vis spectra established the formation of E. spiralis/Ag-NPs. The crystalline structure of E. spiralis/Ag-NPs was displayed in the XRD analysis. The small size, around 18.49 ± 4.23 nm, and spherical shape of Ag-NPs with good distribution was observed in the FETEM image. The best physicochemical parameters on Ag-NPs biosynthesis using E. spiralis extract occurred at a moderate temperature (~52.0°C), 0.100 M of silver nitrate, 2.50 g of E. spiralis dosage and 600 min of stirring reaction time. The antibacterial activity was tested against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Proteus vulgaris using an antibacterial disk diffusion assay. Based on the results, it is evident that E. spiralis/Ag-NPs are susceptible to all the bacteria and has promising potential to be applied in both the industry and medical fields.
    Matched MeSH terms: Escherichia coli
  9. Wan Mat Khalir WKA, Shameli K, Jazayeri SD, Othman NA, Che Jusoh NW, Mohd Hassan N
    Nanomaterials (Basel), 2020 Jun 03;10(6).
    PMID: 32503127 DOI: 10.3390/nano10061104
    It is believed of great interest to incorporate silver nanoparticles (Ag-NPs) into stable supported materials using biological methods to control the adverse properties of nanoscale particles. In this study, in-situ biofabrication of Ag-NPs using Entada spiralis (E. spiralis) aqueous extract in Ceiba pentandra (C. pentandra) fiber as supporting material was used in which, the E. spiralis extract acted as both reducing and stabilizing agents to incorporate Ag-NPs in the C. pentandra fiber. The properties of Ag-NPs incorporated in the C. pentandra fiber (C. pentandra/Ag-NPs) were characterized using UV-visible spectroscopy (UV-vis), X-ray Diffraction (XRD), Field Emission Transmission Electron Microscope (FETEM), Scanning Electron Microscope (Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET), Thermogravimetric (TGA) and Fourier Transform Infrared (FTIR) analyses. The average size of Ag-NPs measured using FETEM image was 4.74 nm spherical in shape. The C. pentandra/Ag-NPs was easily separated after application, and could control the release of Ag-NPs to the environment due to its strong attachment in C. pentandra fiber. The C. pentandra/Ag-NPs exposed good qualitative and quantitative antibacterial activities against Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 25922) and Proteus vulgaris (ATCC 33420). The dye catalytic properties of C. pentandra/Ag-NPs revealed the dye reduction time in which it was completed within 4 min for 20 mg/L rhodamine B and 20 min for 20 mg/L methylene blue dye, respectively. Based on the results, it is evident that C. pentandra/Ag-NPs are potentially promising to be applied in wound healing, textile, wastewater treatment, food packaging, labeling and biomedical fields.
    Matched MeSH terms: Escherichia coli
  10. Wan Makhtar WR, Mohd Azlan M, Hassan NH, Aziah I, Samsurizal NH, Yusof NY
    Microbiol Resour Announc, 2020 Aug 13;9(33).
    PMID: 32817162 DOI: 10.1128/MRA.01497-19
    We describe here the draft genome sequence and basic characteristics of Escherichia coli isolate INF13/18/A, which was isolated from Universiti Sains Malaysia (USM) Hospital. This isolate was identified as an extended-spectrum β-lactamase-producing Escherichia coli strain harboring the antimicrobial resistance genes TEM, CTX-M-1, and CTX-M-9.
    Matched MeSH terms: Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins
  11. Wan KF, Radu S, Cheah YK, Benjamin PG, Ling CM, Hon SF, et al.
    PMID: 15115139
    Enteropathogenic Escherichia coli (EPEC) is a leading cause of diarrhea among infants in developing countries. A total of 38 EPEC isolates, obtained from diarrhea patients of Hospital Miri, Sarawak, were investigated through plasmid profile, antibiotic resistance and randomly amplified polymorphic DNA (RAPD) analysis. From the 8 types of antibiotics used, all isolates were 100% resistant to furoxime, cephalothin and sulphamethoxazole and showed high multiple antibiotic resistant (MAR) indexes, ranging from 0.5 to 1.0. In plasmid profiling, 22 isolates (58%) showed the presence of one or more plasmids in the range 1.0 to 30.9 mDa. The dendrogram obtained from the results of the RAPD-PCR discriminated the isolates into 30 single isolates and 3 clusters at the level of 40% similarity. The EPEC isolates were highly diverse, as shown by their differing plasmid profiles, antibiotic resistance patterns and RAPD profiles.
    Matched MeSH terms: Escherichia coli/classification*; Escherichia coli/drug effects; Escherichia coli/genetics; Escherichia coli Infections/microbiology*; Escherichia coli Infections/epidemiology
  12. Wameadesa N, Sae-lim A, Hayeebilan F, Rattanachuay P, Sukhumungoon P
    PMID: 29642296
    Local Thai and imported Malaysian beef in southern Thailand area carry
    several Shiga toxin-producing Escherichia coli (STEC) serotypes. STEC O104 is an
    important pathogen capable of causing outbreaks with considerable morbidity
    and mortality. This study investigated the presence of E. coli O104 from local Thai
    and imported Malaysian beef obtained from markets in Hat Yai City, Songkhla
    Province during August 2015 - February 2016. Thirty-one E. coli O104 strains
    were isolated from 12 beef samples (16% and 23% Thai and imported Malaysian,
    respectively). Thirty strains possessed aggA (coding for a major component of
    AAF/I fimbriae), a gene associated with enteroaggregative E. coli (EAEC) pathotype,
    and all strains carried fimH (encoding Type 1 fimbriae). Thirty strains
    belonged to phylogenetic group B1 and one strain (from Malaysian beef) to group
    A. Agglutination of yeast cells was observed among 29 E. coli O104 strains. Investigation
    of stx2 phage occupancy loci demonstrated that sbcB was occupied in 12
    strains. Antimicrobial susceptibility assay revealed that 7 strains were resistant
    to at least one antimicrobial agent and two were multi-drug resistant. One strain
    carried extended spectrum β-lactamase gene blaCTX-M and three carried blaTEM. PFGE-generated DNA profiling showed identical DNA pattern between that of
    one EAEC O104 strain from Thai beef and another from Malaysian beef, indicating
    that these two strains originated from the same clone. This is the first report
    in Thailand describing the presence of EAEC O104 from both Thai and imported
    Malaysian beef and their transfer between both countries. Thorough surveillance
    of this pathogen in fresh meats and vegetables should help to prevent any possible
    outbreak of E. coli O104.
    Matched MeSH terms: Escherichia coli Infections/microbiology; Escherichia coli Infections/epidemiology*; Escherichia coli O104/isolation & purification*
  13. Vincent M, Pometto AL, van Leeuwen JH
    Bioresour Technol, 2014 Apr;158:1-6.
    PMID: 24561994 DOI: 10.1016/j.biortech.2014.01.083
    Ethanol was produced via the simultaneous saccharification and fermentation (SSF) of dilute sodium hydroxide treated corn stover. Saccharification was achieved by cultivating either Phanerochaete chrysosporium or Gloeophyllum trabeum on the treated stover, and fermentation was then performed by using either Saccharomyces cerevisiae or Escherichia coli K011. Ethanol production was highest on day 3 for the combination of G. trabeum and E. coli K011 at 6.68 g/100g stover, followed by the combination of P. chrysosporium and E. coli K011 at 5.00 g/100g stover. SSF with S. cerevisiae had lower ethanol yields, ranging between 2.88 g/100g stover at day 3 (P. chrysosporium treated stover) and 3.09 g/100g stover at day 4 (G. trabeum treated stover). The results indicated that mild alkaline pretreatment coupled with fungal saccharification offers a promising bioprocess for ethanol production from corn stover without the addition of commercial enzymes.
    Matched MeSH terms: Escherichia coli/metabolism
  14. Vincent M, Pometto AL, van Leeuwen JH
    J Microbiol Biotechnol, 2011 Jul;21(7):703-10.
    PMID: 21791956
    Enzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn stover using either P. chrysosporium or G. trabeum to induce in situ cellulase production. During SSF with S. cerevisiae or E. coli, ethanol production was the highest on day 4 for all samples. For corn stover treated with P. chrysosporium, the conversion to ethanol was 2.29 g/100 g corn stover with S. cerevisiae as the fermenting organism, whereas for the sample inoculated with E. coli K011, the ethanol production was 4.14 g/100 g corn stover. Corn stover treated with G. trabeum showed a conversion 1.90 and 4.79 g/100 g corn stover with S. cerevisiae and E. coli K011 as the fermenting organisms, respectively. Other fermentation co-products, such as acetic acid and lactic acid, were also monitored. Acetic acid production ranged between 0.45 and 0.78 g/100 g corn stover, while no lactic acid production was detected throughout the 5 days of SSF. The results of our experiment suggest that it is possible to perform SSF of corn stover using P. chrysosporium, G. trabeum, S. cerevisiae and E. coli K011 for the production of fuel ethanol.
    Matched MeSH terms: Escherichia coli/metabolism*
  15. Verdugo-Rodriguez A, Gam LH, Devi S, Koh CL, Puthucheary SD, Calva E, et al.
    Asian Pac J Allergy Immunol, 1993 Jun;11(1):45-52.
    PMID: 8216558
    An indirect ELISA was used to detect antibodies against outer membrane protein preparations (OMPs) from Salmonella typhi. Sera from patients with a definitive diagnosis of typhoid fever (TF) gave a mean absorbance reading, at 414 nm, of 1.52 +/- 0.23 as compared to 0.30 +/- 0.11 for sera from healthy individuals. This gave a positive to negative ratio of absorbance readings of approximately 5.1. Suspected TF patients (no isolation of S. typhi), with positive and negative Widal titers had mean absorbance readings of 1.282 +/00.46 and 0.25 +/- 0.19, respectively. Sera from patients with leptospirosis, rickettsial typhus, dengue fever, and other infections gave mean absorbances of 0.20 +/- 0.08, 0.24 +/- 0.08, 0.27 +/- 0.08, and 0.31 +/- 0.16, respectively. The sensitivity, specificity, positive and negative predictive values were 100%, 94%, 80% and 100%, respectively. The antibody response detected in the definitive TF cases was predominantly IgG in nature and no cross-reactivity was seen with OMP preparations extracted from E. coli. Variable reactivity was noted with OMP preparations obtained from other Salmonella spp. Three major OMPs are presented in the antigen preparation and strong binding of positive sera was detected to all three bands.
    Matched MeSH terms: Escherichia coli/immunology
  16. Velusamy P, Su CH, Venkat Kumar G, Adhikary S, Pandian K, Gopinath SC, et al.
    PLoS One, 2016;11(6):e0157612.
    PMID: 27304672 DOI: 10.1371/journal.pone.0157612
    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.
    Matched MeSH terms: Escherichia coli/drug effects; Escherichia coli/physiology
  17. Vasu D, Navaneetha Pandiyaraj K, Padmanabhan PVA, Pichumani M, Deshmukh RR, Jaganathan SK
    Environ Geochem Health, 2021 Feb;43(2):649-662.
    PMID: 31679080 DOI: 10.1007/s10653-019-00446-9
    One of the major environmental issues of textile industries is the discharge of large quantities of textile effluents, which are source of contamination of water bodies on surface of earth and quality of groundwater. The effluents are toxic, non-biodegradable, carcinogenic and prodigious threats to human and aquatic creatures. Since textile effluents can be treated efficiently and effectively by various advanced oxidation processes (AOPs). Among the various AOPs, cold atmospheric pressure plasma is a promising method among many prominent techniques available to treat the effluents. In this paper, we report about the degradation of simulated effluent, namely Direct Orange-S (DO-S) aqueous solution, using nonthermal atmospheric pressure plasma jet. The plasma treatment of DO-S aqueous solution was carried out as a function of various operating parameters such as potential and treatment time. The change in properties of treated DO-S dye was investigated by means of various analytical techniques such as high-performance liquid chromatography, UV-visible (UV-Vis) spectroscopy and determination of total organic content (TOC). The reactive species present in the samples were identified using optical emission spectrometry (OES). OES results confirmed that the formation of reactive oxygen and nitrogen species during the plasma treatment in the liquid surface was responsible for dye oxidation and degradation. Degradation efficiency, as monitored by color removal efficiency, of 96% could be achieved after 1 h of treatment. Concurrently, the TOC values were found to decrease with plasma treatment, implying that the plasma treatment process enhanced the non-toxicity nature of DO-S aqueous solution. Toxicity of the untreated and plasma-treated dye solution samples was studied using Escherichia coli (E. coli) and Staphylococcus (S. aureus) organisms, which demonstrated that the plasma-treated dye solution was non-toxic in nature compared with untreated one.
    Matched MeSH terms: Escherichia coli/drug effects
  18. Vallance TM, Ravishankar D, Albadawi DAI, Layfield H, Sheard J, Vaiyapuri R, et al.
    Sci Rep, 2019 12 03;9(1):18258.
    PMID: 31796818 DOI: 10.1038/s41598-019-54617-w
    Platelets are small circulating blood cells that play essential roles in the maintenance of haemostasis via blood clotting. However, they also play critical roles in the regulation of innate immune responses. Inflammatory receptors, specifically Toll-like receptor (TLR)-4, have been reported to modify platelet reactivity. A plethora of studies have reported controversial functions of TLR4 in the modulation of platelet function using various chemotypes and preparations of its ligand, lipopolysaccharide (LPS). The method of preparation of LPS may explain these discrepancies however this is not fully understood. Hence, to determine the impact of LPS on platelet activation, we used ultrapure preparations of LPS from Escherichia coli (LPSEC), Salmonella minnesota (LPSSM), and Rhodobacter sphaeroides (LPSRS) and examined their actions under diverse experimental conditions in human platelets. LPSEC did not affect platelet activation markers such as inside-out signalling to integrin αIIbβ3 or P-selectin exposure upon agonist-induced activation in platelet-rich plasma or whole blood whereas LPSSM and LPSRS inhibited platelet activation under specific conditions at supraphysiological concentrations. Overall, our data demonstrate that platelet activation is not largely influenced by any of the ultrapure LPS chemotypes used in this study on their own except under certain conditions.
    Matched MeSH terms: Escherichia coli
  19. Vadivelu J, Feachem RG, Drasar BS, Harrison TJ, Parasakthi N, Thambypillai V, et al.
    Epidemiol Infect, 1989 Dec;103(3):497-511.
    PMID: 2691267
    The membrane-filter assay, GM1-ELISA, and DNA-DNA hybridization assay, were used to detect enterotoxigenic Escherichia coli (ETEC) in samples of water, weaning food, food preparation surface swabs, fingerprints of mothers, and the fingerprints and stools of children under 5 years of age, in 20 households in a Malaysian village. Weaning food and environmental samples were frequently contaminated by faecal coliforms, including ETEC. The membrane-filter assay detected and enumerated faecal coliforms and LT-ETEC in all types of water and weaning food samples. Highest concentrations of faecal coliforms and LT-ETEC were found in weaning food, followed by well-water, stored water and stored drinking water. The GM1-ELISA detected LT-ETEC in weaning food, food preparation surfaces, fingerprints and stool samples. The DNA-DNA hybridization assay detected a larger proportion of STa2-ETEC than the other toxotypes, either singly or in combination. All the assays in combination detected the presence of ETEC in all types of samples on at least one occasion in each household. It was not possible to classify households as consistently more or less contaminated with ETEC. On individual occasions it was possible to show a significant association of the presence of LT-ETEC between the fingerprints of children and their stools, fingerprints of mothers and children, and weaning food and the stools of the child consuming the food.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/isolation & purification*; Escherichia coli/metabolism
  20. Ur-Rehman A, Khan SG, Naqvi SAR, Ahmad M, Akhtar N, Bokhari TH, et al.
    Pak J Pharm Sci, 2021 Jan;34(1(Special)):441-446.
    PMID: 34275792
    A series of new derivatives of 4-(2-chloroethyl)morpholine hydrochloride (5) were efficiently synthesized. Briefly, different aromatic organic acids (1a-f) were refluxed to acquire respective esters (2a-f) using conc. H2SO4 as catalyst. The esters were subjected to nucleophillic substitution by monohydrated hydrazine to acquire hydrazides (3a-f). The hydrazides were cyclized with CS2 in the presence of KOH to yield corresponding oxadiazoles (4a-f). Finally, the derivatives, 6a-f, were prepared by reacting oxadiazoles (4a-f) with 5 using NaH as activator. Structures of all the derivatives were elucidated through 1D-NMR EI-MS and IR spectral data. All these molecules were subjected to antibacterial and hemolytic activities and showed good antibacterial and hemolytic potential relative to the reference standards.
    Matched MeSH terms: Escherichia coli/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links