Displaying publications 61 - 80 of 140 in total

Abstract:
Sort:
  1. Kho ASK, Foo JJ, Ooi ET, Ooi EH
    Comput Methods Programs Biomed, 2020 Feb;184:105289.
    PMID: 31891903 DOI: 10.1016/j.cmpb.2019.105289
    BACKGROUND AND OBJECTIVE: The majority of the studies on radiofrequency ablation (RFA) have focused on enlarging the size of the coagulation zone. An aspect that is crucial but often overlooked is the shape of the coagulation zone. The shape is crucial because the majority of tumours are irregularly-shaped. In this paper, the ability to manipulate the shape of the coagulation zone following saline-infused RFA by altering the location of saline infusion is explored.

    METHODS: A 3D model of the liver tissue was developed. Saline infusion was described using the dual porosity model, while RFA was described using the electrostatic and bioheat transfer equations. Three infusion locations were investigated, namely at the proximal end, the middle and the distal end of the electrode. Investigations were carried out numerically using the finite element method.

    RESULTS: Results indicated that greater thermal coagulation was found in the region of tissue occupied by the saline bolus. Infusion at the middle of the electrode led to the largest coagulation volume followed by infusion at the proximal and distal ends. It was also found that the ability to delay roll-off, as commonly associated with saline-infused RFA, was true only for the case when infusion is carried out at the middle. When infused at the proximal and distal ends, the occurrence of roll-off was advanced. This may be due to the rapid and more intense heating experienced by the tissue when infusion is carried out at the electrode ends where Joule heating is dominant.

    CONCLUSION: Altering the location of saline infusion can influence the shape of the coagulation zone following saline-infused RFA. The ability to 'shift' the coagulation zone to a desired location opens up great opportunities for the development of more precise saline-infused RFA treatment that targets specific regions within the tissue.

    Matched MeSH terms: Finite Element Analysis
  2. Hussin MS, Fernandez J, Ramezani M, Kumar P, Kelly PA
    Comput Methods Biomech Biomed Engin, 2020 Mar;23(4):143-154.
    PMID: 31928215 DOI: 10.1080/10255842.2019.1709118
    Osteoarthritis (OA) is a commonly occurring cartilage degenerative disease. The end stage treatment is Total Knee Arthroplasty (TKA), which can be costly in terms of initial surgery, but also in terms of revision knee arthroplasty, which is quite often required. A novel conceptual knee implant has been proposed to function as a reducer of stress across the joint surface, to extend the period of time before TKA becomes necessary. The objective of this paper is to develop a computational model which can be used to assess the wear arising at the implant articulating surfaces. Experimental wear coefficients were determined from physical testing, the results of which were verified using a semi-analytical model. Experimental results were incorporated into an anatomically correct computational model of the knee and implant. The wear-rate predicted for the implant was 27.74 mm3 per million cycles (MC) and the wear depth predicted was 1.085 mm/MC. Whereas the wear-rate is comparable to that seen in conventional knee implants, the wear depth is significantly higher than for conventional knee prostheses, and indicates that, in order to be viable, wear-rates should be reduced in some way, perhaps by using low-wear polymers.
    Matched MeSH terms: Finite Element Analysis
  3. Mutafi A, Yidris N, Ishak MR, Zahari R
    Heliyon, 2018 Nov;4(11):e00937.
    PMID: 30839801 DOI: 10.1016/j.heliyon.2018.e00937
    Steel sections are normally shaped via cold work manufacturing processes. The extent of cold work to shape the steel sections might induce residual stresses in the region of bending. Previously, researchers had performed studies on the influences of local buckling on the failure behavior of steel compression members which shown that failure will happen when most of the yielding has extended to the middle surface in the bend region of the sections. Therefore, these cold work methods may have major effect on the behavior of the steel section and also its load-bearing capability. In addition, another factor may play significant role in formed section's load-bearing capacity which is the longitudinal residual strain. The longitudinal residual strain raised during forming procedure can be used to define the section imperfection of the formed section and its relation to the existence of defects. Therefore, the main motivation of this research paper is to perform three-dimensional finite element (3D-FE) to investigate peak longitudinal residual strains of a thin-walled steel plate with large bending angle along member length. A 3D finite element simulation in ABAQUS has been employed to simulate this forming process. The study concluded that the longitudinal residual strain at the section corner edge was higher than those at the rest of the corner region. These strains at the edge were higher than the yield strain


    (



    ε


    y



    )


    of the formed section which occurred due to the lack of transverse restraint. This made the plate edge tended to bend toward the normal direction when it was under a high transverse bending. This causes a significant difference in longitudinal strain at the plate edge.
    Matched MeSH terms: Finite Element Analysis
  4. Jiading Wang, Tianfeng Gu, Jianbin Wang, Yuanjun Xu, Peng Chen, Muhammad Aqeel Ashraf
    Sains Malaysiana, 2017;46:2049-2059.
    The development degree of fissure water in underground rock is a great trouble to the construction of railway tunnel, which will cause a series of environmental geological problems. Take the surrounding rock-section of the typical red clay in Lvliang-Mt. railway tunnel below the underground water level as an example, several aspects about the red clay surrounding rock will be researched, including pore water pressure, volume moisture content, stress of surrounding rock, vault subsidence and horizontal convergence through the field monitoring. Taking into account the importance of railway tunnel engineering, the large shear test of red clay was carried out at the construction site specially and the reliable situ shear strength parameters of surrounding rock will be obtained. These investigations and field tests helped to do a series of work: Three dimensional finite element numerical model of railway tunnel will be established, the deformation law of the red clay surrounding rock will be investigated, respectively, for the water-stress coupling effect and without considering it, the variation of the pore water pressure during excavation, the influence degree about the displacement field and stress field of water-stress coupling on red clay-rock will be discussed and the mechanism of the surrounding rock deformation will be submitted. Finally, the paper puts forward the feasible drainage scheme of the surrounding rock and the tunnel cathode. The geological environment safety of tunnel construction is effectively protected.
    Matched MeSH terms: Finite Element Analysis
  5. Mat Daud NI, Viswanathan KK
    PLoS One, 2019;14(7):e0219089.
    PMID: 31269073 DOI: 10.1371/journal.pone.0219089
    Vibrational behaviour of symmetric angle-ply layered circular cylindrical shell filled with quiescent fluid is presented. The equations of motion of cylindrical shell in terms of stress and moment resultants are derived from the first order shear deformation theory. Irrotational of inviscid fluid are expressed as the wave equation. These two equations are coupled. Strain-displacement relations and stress-strain relations are adopted into the equations of motion to obtain the differential equations with displacements and rotational functions. A system of ordinary differential equation is obtained in one variable by assuming the functions in separable form. Spline of order three is applied to approximate the displacement and rotational functions, together with boundary conditions, to get a generalised eigenvalue problem. The eigenvalue problem is solved for eigen frequency parameter and associate eigenvectors of spline coefficients. The study of frequency parameters are analysed using the parameters the thickness ratio, length ratio, angle-ply, properties of material and number of layers under different boundary conditions.
    Matched MeSH terms: Finite Element Analysis
  6. Abdul Wahab AH, Mohamad Azmi NA, Abdul Kadir MR, Md Saad AP
    Int J Artif Organs, 2022 Feb;45(2):200-206.
    PMID: 33645338 DOI: 10.1177/0391398821999391
    Glenoid conformity is one of the important aspects that could contribute to implant stability. However, the optimal conformity is still being debated among the researchers. Therefore, this study aims to analyze the stress distribution of the implant and cement in three types of conformity (conform, non-conform, and hybrid) in three load conditions (central, anterior, and posterior). Glenoid implant and cement were reconstructed using Solidwork software and a 3D model of scapula bone was done using MIMICS software. Constant load, 750 N, was applied at the central, anterior, and posterior region of the glenoid implant which represents average load for daily living activities for elder people, including, walking with a stick and standing up from a chair. The results showed that, during center load, an implant with dual conformity (hybrid) showed the best (Max Stress-3.93 MPa) and well-distributed stress as compared to other conformity (Non-conform-7.21 MPa, Conform-9.38 MPa). While, during eccentric load (anterior and posterior), high stress was located at the anterior and posterior region with respect to the load applied. Cement stress for non-conform and hybrid implant recorded less than 5 MPa, which indicates it had a very low risk to have cement microcracks, whilst, conform implant was exposed to microcrack of the cement. In conclusion, hybrid conformity showed a promising result that could compromise between conform and non-conform implant. However, further enhancement is required for hybrid implants when dealing with eccentric load (anterior and posterior).
    Matched MeSH terms: Finite Element Analysis
  7. Hafizh M, Soliman MM, Qiblawey Y, Chowdhury MEH, Islam MT, Musharavati F, et al.
    Biosensors (Basel), 2023 Jan 02;13(1).
    PMID: 36671914 DOI: 10.3390/bios13010079
    In this paper, a surface acoustic wave (SAW) sensor for hip implant geometry was proposed for the application of total hip replacement. A two-port SAW device was numerically investigated for implementation with an operating frequency of 872 MHz that can be used in more common radio frequency interrogator units. A finite element analysis of the device was developed for a lithium niobate (LiNBO3) substrate with a Rayleigh velocity of 3488 m/s on COMSOL Multiphysics. The Multiphysics loading and frequency results highlighted a good uniformity with numerical results. Afterwards, a hip implant geometry was developed. The SAW sensor was mounted at two locations on the implant corresponding to two regions along the shaft of the femur bone. Three discrete conditions were studied for the feasibility of the implant with upper- and lower-body loading. The loading simulations highlighted that the stresses experienced do not exceed the yield strengths. The voltage output results indicated that the SAW sensor can be implanted in the hip implant for hip implant-loosening detection applications.
    Matched MeSH terms: Finite Element Analysis
  8. Oshkour AA, Talebi H, Shirazi SF, Bayat M, Yau YH, Tarlochan F, et al.
    ScientificWorldJournal, 2014;2014:807621.
    PMID: 25302331 DOI: 10.1155/2014/807621
    This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent.
    Matched MeSH terms: Finite Element Analysis*
  9. Latifi MH, Ganthel K, Rukmanikanthan S, Mansor A, Kamarul T, Bilgen M
    Biomed Eng Online, 2012;11:23.
    PMID: 22545650 DOI: 10.1186/1475-925X-11-23
    Effective fixation of fracture requires careful selection of a suitable implant to provide stability and durability. Implant with a feature of locking plate (LP) has been used widely for treating distal fractures in femur because of its favourable clinical outcome, but its potential in fixing proximal fractures in the subtrochancteric region has yet to be explored. Therefore, this comparative study was undertaken to demonstrate the merits of the LP implant in treating the subtrochancteric fracture by comparing its performance limits against those obtained with the more traditional implants; angle blade plate (ABP) and dynamic condylar screw plate (DCSP).
    Matched MeSH terms: Finite Element Analysis*
  10. Raja Izaham RM, Abdul Kadir MR, Abdul Rashid AH, Hossain MG, Kamarul T
    Injury, 2012 Jun;43(6):898-902.
    PMID: 22204773 DOI: 10.1016/j.injury.2011.12.006
    The use of open wedge high tibial osteotomy (HTO) to correct varus deformity of the knee is well established. However, the stability of the various implants used in this procedure has not been previously demonstrated. In this study, the two most common types of plates were analysed (1) the Puddu plates that use the dynamic compression plate (DCP) concept, and (2) the Tomofix plate that uses the locking compression plate (LCP) concept. Three dimensional model of the tibia was reconstructed from computed tomography images obtained from the Medical Implant Technology Group datasets. Osteotomy and fixation models were simulated through computational processing. Simulated loading was applied at 60:40 ratios on the medial:lateral aspect during single limb stance. The model was fixed distally in all degrees of freedom. Simulated data generated from the micromotions, displacement and, implant stress were captured. At the prescribed loads, a higher displacement of 3.25 mm was observed for the Puddu plate model (p<0.001). Coincidentally the amount of stresses subjected to this plate, 24.7 MPa, was also significantly lower (p<0.001). There was significant negative correlation (p<0.001) between implant stresses to that of the amount of fracture displacement which signifies a less stable fixation using Puddu plates. In conclusion, this study demonstrates that the Tomofix plate produces superior stability for bony fixation in HTO procedures.
    Matched MeSH terms: Finite Element Analysis*
  11. Lee HW, Arunasalam P, Laratta WP, Seetharamu KN, Azid IA
    J Biomech Eng, 2007 Aug;129(4):540-7.
    PMID: 17655475
    In this study, a hybridized neuro-genetic optimization methodology realized by embedding finite element analysis (FEA) trained artificial neural networks (ANN) into genetic algorithms (GA), is used to optimize temperature control in a ceramic based continuous flow polymerase chain reaction (CPCR) device. The CPCR device requires three thermally isolated reaction zones of 94 degrees C, 65 degrees C, and 72 degrees C for the denaturing, annealing, and extension processes, respectively, to complete a cycle of polymerase chain reaction. The most important aspect of temperature control in the CPCR is to maintain temperature distribution at each reaction zone with a precision of +/-1 degree C or better, irrespective of changing ambient conditions. Results obtained from the FEA simulation shows good comparison with published experimental work for the temperature control in each reaction zone of the microfluidic channels. The simulation data are then used to train the ANN to predict the temperature distribution of the microfluidic channel for various heater input power and fluid flow rate. Once trained, the ANN analysis is able to predict the temperature distribution in the microchannel in less than 20 min, whereas the FEA simulation takes approximately 7 h to do so. The final optimization of temperature control in the CPCR device is achieved by embedding the trained ANN results as a fitness function into GA. Finally, the GA optimized results are used to build a new FEA model for numerical simulation analysis. The simulation results for the neuro-genetic optimized CPCR model and the initial CPCR model are then compared. The neuro-genetic optimized model shows a significant improvement from the initial model, establishing the optimization method's superiority.
    Matched MeSH terms: Finite Element Analysis*
  12. Wahab AH, Kadir MR, Harun MN, Kamarul T, Syahrom A
    Med Biol Eng Comput, 2017 Mar;55(3):439-447.
    PMID: 27255451 DOI: 10.1007/s11517-016-1525-6
    The present study was conducted to compare the stability of four commercially available implants by investigating the focal stress distributions and relative micromotion using finite element analysis. Variations in the numbers of pegs between the implant designs were tested. A load of 750 N was applied at three different glenoid positions (SA: superior-anterior; SP: superior-posterior; C: central) to mimic off-center and central loadings during activities of daily living. Focal stress distributions and relative micromotion were measured using Marc Mentat software. The results demonstrated that by increasing the number of pegs from two to five, the total focal stress volumes exceeding 5 MPa, reflecting the stress critical volume (SCV) as the threshold for occurrence of cement microfractures, decreased from 8.41 to 5.21 % in the SA position and from 9.59 to 6.69 % in the SP position. However, in the C position, this change in peg number increased the SCV from 1.37 to 5.86 %. Meanwhile, micromotion appeared to remain within 19-25 µm irrespective of the number of pegs used. In conclusion, four-peg glenoid implants provide the best configuration because they had lower SCV values compared with lesser-peg implants, preserved more bone stock, and reduced PMMA cement usage compared with five-peg implants.
    Matched MeSH terms: Finite Element Analysis*
  13. Ramlee MH, Sulong MA, Garcia-Nieto E, Penaranda DA, Felip AR, Kadir MRA
    Med Biol Eng Comput, 2018 Oct;56(10):1925-1938.
    PMID: 29679256 DOI: 10.1007/s11517-018-1830-3
    Pilon fractures can be caused by high-energy vertical forces which may result in long-term patient immobilization. Many experts in orthopedic surgery recommend the use of a Delta external fixator for type III Pilon fracture treatment. This device can promote immediate healing of fractured bone, minimizing the rate of complications as well as allowing early mobilization. The characteristics of different types of the Delta frame have not been demonstrated yet. By using the finite element method, this study was conducted to determine the biomechanical characteristics of six different configurations (Model 1 until Model 6). CT images from the lower limb of a healthy human were used to reconstruct three-dimensional models of foot and ankle bones. All bones were assigned with isotropic material properties and the cartilages were assigned to exhibit hyperelasticity. A linear link was used to simulate 37 ligaments at the ankle joint. Axial loads of 70 and 350 N were applied at the proximal tibia to simulate the stance and swing phase. The metatarsals and calcaneus were fixed distally in order to prevent rigid body motion. A synthetic ankle bone was used to validate the finite element model. The simulated results showed that Delta3 produced the highest relative micromovement (0.09 mm, 7 μm) during the stance and swing phase, respectively. The highest equivalent von Mises stress was found at the calcaneus pin of the Delta4 (423.2 MPa) as compared to others. In conclusion, Delta1 external fixator was the most favorable option for type III Pilon fracture treatment. Graphical abstract ᅟ.
    Matched MeSH terms: Finite Element Analysis*
  14. Masni-Azian, Tanaka M
    Comput Methods Biomech Biomed Engin, 2017 Aug;20(10):1066-1076.
    PMID: 28532164 DOI: 10.1080/10255842.2017.1331345
    In the biomechanics field, material parameters calibration is significant for finite element (FE) model to ensure a legit estimation of biomechanical response. Determining an appropriate combination of calibration factors is challenging as each constitutive component responds differently. This study proposes a statistical factorial analysis approach using L16(4(5)) orthogonal array to evaluate material nonlinearity and applicable calibration factor of the intervertebral disc FE model in pure moment. The calibrated model exhibits improved agreement to the experimental findings for all directions. Appropriate combination of calibration parameter reduces the estimation gap to the experimental findings, ensuring agreeable biomechanical responses.
    Matched MeSH terms: Finite Element Analysis*
  15. Ramlee MH, Beng GK, Bajuri N, Abdul Kadir MR
    Med Biol Eng Comput, 2018 Jul;56(7):1161-1171.
    PMID: 29209961 DOI: 10.1007/s11517-017-1762-3
    The provision of the most suitable rehabilitation treatment for stroke patient remains an ongoing challenge for clinicians. Fully understanding the pathomechanics of the upper limb will allow doctors to assist patients with physiotherapy treatment that will aid in full arm recovery. A biomechanical study was therefore conducted using the finite element (FE) method. A three-dimensional (3D) model of the human wrist was reconstructed using computed tomography (CT)-scanned images. A stroke model was constructed based on pathological problems, i.e. bone density reductions, cartilage wane, and spasticity. The cartilages were reconstructed as per the articulation shapes in the joint, while the ligaments were modelled using linear links. The hand grip condition was mimicked, and the resulting biomechanical characteristics of the stroke and healthy models were compared. Due to the lower thickness of the cartilages, the stroke model reported a higher contact pressure (305 MPa), specifically at the MC1-trapezium. Contrarily, a healthy model reported a contact pressure of 228 MPa. In the context of wrist extension and displacement, the stroke model (0.68° and 5.54 mm, respectively) reported a lower magnitude than the healthy model (0.98° and 9.43 mm, respectively), which agrees with previously reported works. It was therefore concluded that clinicians should take extra care in rehabilitation treatment of wrist movement in order to prevent the occurrence of other complications. Graphical abstract ᅟ.
    Matched MeSH terms: Finite Element Analysis*
  16. Abdullah AH, Todo M, Nakashima Y
    Med Eng Phys, 2017 06;44:8-15.
    PMID: 28373012 DOI: 10.1016/j.medengphy.2017.03.006
    Femoral bone fracture is one of the main causes for the failure of hip arthroplasties (HA). Being subjected to abrupt and high impact forces in daily activities may lead to complex loading configuration such as bending and sideway falls. The objective of this study is to predict the risk of femoral bone fractures in total hip arthroplasty (THA) and resurfacing hip arthroplasty (RHA). A computed tomography (CT) based on finite element analysis was conducted to demonstrate damage formation in a three dimensional model of HAs. The inhomogeneous model of femoral bone was constructed from a 79 year old female patient with hip osteoarthritis complication. Two different femoral components were modeled with titanium alloy and cobalt chromium and inserted into the femoral bones to present THA and RHA models respectively. The analysis included six configurations, which exhibited various loading and boundary conditions, including axial compression, torsion, lateral bending, stance and two types of falling configurations. The applied hip loadings were normalized to body weight (BW) and accumulated from 1 BW to 3 BW. Predictions of damage formation in the femoral models were discussed as the resulting tensile failure as well as the compressive yielding and failure elements. The results indicate that loading directions can forecast the pattern and location of fractures at varying magnitudes of loading. Lateral bending configuration experienced the highest damage formation in both THA and RHA models. Femoral neck and trochanteric regions were in a common location in the RHA model in most configurations, while the predicted fracture locations in THA differed as per the Vancouver classification.
    Matched MeSH terms: Finite Element Analysis*
  17. Ramlee MH, Kadir MR, Murali MR, Kamarul T
    Med Eng Phys, 2014 Oct;36(10):1322-30.
    PMID: 25127377 DOI: 10.1016/j.medengphy.2014.05.015
    Pilon fractures are commonly caused by high energy trauma and can result in long-term immobilization of patients. The use of an external fixator i.e. the (1) Delta, (2) Mitkovic or (3) Unilateral frame for treating type III pilon fractures is generally recommended by many experts owing to the stability provided by these constructs. This allows this type of fracture to heal quickly whilst permitting early mobilization. However, the stability of one fixator over the other has not been previously demonstrated. This study was conducted to determine the biomechanical stability of these external fixators in type III pilon fractures using finite element modelling. Three-dimensional models of the tibia, fibula, talus, calcaneus, navicular, cuboid, three cuneiforms and five metatarsal bones were reconstructed from previously obtained CT datasets. Bones were assigned with isotropic material properties, while the cartilage was assigned as hyperelastic springs with Mooney-Rivlin properties. Axial loads of 350 N and 70 N were applied at the tibia to simulate the stance and the swing phase of a gait cycle. To prevent rigid body motion, the calcaneus and metatarsals were fixed distally in all degrees of freedom. The results indicate that the model with the Delta frame produced the lowest relative micromovement (0.03 mm) compared to the Mitkovic (0.05 mm) and Unilateral (0.42 mm) fixators during the stance phase. The highest stress concentrations were found at the pin of the Unilateral external fixator (509.2 MPa) compared to the Mitkovic (286.0 MPa) and the Delta (266.7 MPa) frames. In conclusion, the Delta external fixator was found to be the most stable external fixator for treating type III pilon fractures.
    Matched MeSH terms: Finite Element Analysis*
  18. Ramlee MH, Kadir MR, Murali MR, Kamarul T
    Med Eng Phys, 2014 Oct;36(10):1358-66.
    PMID: 25092623 DOI: 10.1016/j.medengphy.2014.07.001
    Subtalar dislocation is a rare injury caused by high-energy trauma. Current treatment strategies include leg casts, internal fixation and external fixation. Among these, external fixators are the most commonly used as this method is believed to provide better stabilization. However, the biomechanical stability provided by these fixators has not been demonstrated. This biomechanical study compares two commonly used external fixators, i.e. Mitkovic and Delta. CT imaging data were used to reconstruct three-dimensional models of the tibia, fibula, talus, calcaneus, navicular, cuboid, three cuneiforms and five metatarsal bones. The 3D models of the bones and cartilages were then converted into four-noded linear tetrahedral elements, whilst the ligaments were modelled with linear spring elements. Bones and cartilage were idealized as homogeneous, isotropic and linear. To simulate loading during walking, axial loading (70 N during the swing and 350 N during the stance phase) was applied at the end of diaphyseal tibia. The results demonstrate that the Mitkovic fixator produced greater displacement (peak 3.0mm and 15.6mm) compared to the Delta fixator (peak 0.8mm and 3.9 mm), in both the swing and stance phase, respectively. This study demonstrates that the Delta external fixator provides superior stability over the Mitkovic fixator. The Delta fixator may be more effective in treating subtalar dislocation.
    Matched MeSH terms: Finite Element Analysis*
  19. Bajuri MN, Kadir MR, Raman MM, Kamarul T
    Med Eng Phys, 2012 Nov;34(9):1294-302.
    PMID: 22277308 DOI: 10.1016/j.medengphy.2011.12.020
    Understanding the pathomechanics involved in rheumatoid arthritis (RA) of the wrist provides valuable information, which will invariably allow various therapeutic possibilities to be explored. The computational modelling of this disease permits the appropriate simulation to be conducted seamlessly. A study that underpins the fundamental concept that produces the biomechanical changes in a rheumatoid wrist was thus conducted through the use of finite element method. The RA model was constructed from computed tomography datasets, taking into account three major characteristics: synovial proliferation, cartilage destruction and ligamentous laxity. As control, a healthy wrist joint model was developed in parallel and compared. Cartilage was modelled based on the shape of the articulation while the ligaments were modelled with linear spring elements. A load-controlled analysis was performed simulating physiological hand grip loading conditions. The results demonstrated that the diseased model produced abnormal wrist extension and stress distribution as compared to the healthy wrist model. Due to the weakening of the ligaments, destruction of the cartilage and lower bone density, the altered biomechanical stresses were particularly evident at the radioscaphoid and capitolunate articulations which correlate to clinical findings. These results demonstrate the robust finding of the developed RA wrist model, which accurately predicted the pathological process.
    Matched MeSH terms: Finite Element Analysis*
  20. Rad MA, Tijjani AS, Ahmad MR, Auwal SM
    Sensors (Basel), 2016 Dec 23;17(1).
    PMID: 28025571 DOI: 10.3390/s17010014
    This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young's modulus, Poisson's ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m-1, 123.4700 GPa, 0.3000 and 0.0693 V·m·N-1, respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young's modulus of the cells are determined to be 10.8867 ± 0.0094 N·m-1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young's modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.
    Matched MeSH terms: Finite Element Analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links