Malacca Strait (MS) has an important role and potential for many countries. It is a major transportation route for oil and commodities across continents. In addition, various activities such as shipping, fishing, aquaculture, oil drilling, and energy are also carried out in MS. Tides strongly affect the MS environment so that it becomes a major parameter in MS management. This paper is the first study, which presents MS tidal hydrodynamics based on a baroclinic and nonhydrostatic approach. Tidal hydrodynamics in MS and the surrounding waters were assessed using tidal forces, temperature, salinity, and density. This study analyzes the amplitude, phase, current ellipses, and semi-major axis of the tides. These variables are obtained from the simulation results of the three-dimensional numerical models of M2 tides and combined tides (M2, S2, N2, K1, and O1) with nonhydrostatic models. Then the results obtained are verified by observation data. Amplitude and phase of the tidal wave in MS originate from two directions, namely the northern part of MS (Andaman Sea) and the South China Sea (SCS). Tides from the north of MS propagate into the MS, while tides from the SCS travel to Singapore Waters (SW) and the south of MS. This causes a complex residual flow in SW and shoaling in the middle of MS. Shoaling in the middle of MS is characterized by a large amplitude and semi-major, as in B. Siapiapi. The results of this analysis show that tidal waves are dominated by semidiurnal types rather than diurnal types. The M2 current ellipse has dominantly anticlockwise rotation along the west of the MS, while along the east of MS, it has generally a clockwise rotation.
Concerning on navigational safety of a ship, comprehensive investigation of manoeuvrability of the ship is prominently required. The turning instability due to improper speed and magnitude of the rudder angle is vulnerable to serious accidents such as collision especially in the confined waters. This paper presents a computational fluid dynamic analyses on manoeuvrability performance of a tug in calm water. Here, the characteristics of the turning ability and zig-zag characteristics of the tug has been assessed due to effect of the various angles of twin-rudder and turning speeds. The results revealed that the increase of rudder’s angle resulted in subsequent reduction of her advance diameter from 144 m, 108 m, 96 m to 92 m. While for zig zag manoeuvre, the first overshoot angle is 0.6° and 1.08° for 10°/10° and 20°/20° rudder’s angle respectively. The first overshoot and second overshoot angle are within the IMO criteria which is below 20° and 25°. However, the increase of turning speed from 7 knots to 9 knots has been proportional with the increase of the turning diameter (advance diameter) from 70 m to 105.2 m. Basically, the turning performances of the tug manoeuvring with the turning speed of 7 to 9 knots incorporated with rudder’s angle 20°, 25°, 30° and 35° have been complied with IMO manoeuvring standards. This preliminary analysis contributes very valuable findings at early ship design stage to provide a safety of the navigational guidance for turning ability of the tug.
A numerical simulation of a patient's nasal airflow was developed via computational fluid dynamics. Accordingly, computerized tomography scans of a patient with septal deviation and allergic rhinitis were obtained. The three-dimensional (3D) nasal model was designed using InVesalius 3.0, which was then imported to (computer aided 3D interactive application) CATIA V5 for modification, and finally to analysis system (ANSYS) flow oriented logistics upgrade for enterprise networks (FLUENT) to obtain the numerical solution. The velocity contours of the cross-sectional area were analyzed on four main surfaces: the vestibule, nasal valve, middle turbinate, and nasopharynx. The pressure and velocity characteristics were assessed at both laminar and turbulent mass flow rates for both the standardized and the patient's model nasal cavity. The developed model of the patient is approximately half the size of the standardized model; hence, its velocity was approximately two times more than that of the standardized model.
Engineering control is a method of controlling the risk of exposure to contaminants. Health effects to industrial workers are more severe whilst high exposure and time exposed to contaminants at workplace. Installation of industrial ventilation or local exhaust ventilation (LEV) system is the proposed method to reduce the risk. This paper discusses the past, present and future relating to LEV system in Malaysia. Current issues related to monitoring reported by Hygiene Technician in compliance with Occupational Safety and Health (Use of Standard Chemical Hazardous to Health Regulation 2000) carried out in several states in Malaysia as a sample. The nanotechnology is a new area at present and future. The involvement of government, employers and employees need to be justified due to the attention to prevent and control of any exposure. It is suggested that using the Computational Fluid Dynamic (CFD) simulation, a new design of LEV system can be upgraded and predicted.
An attempt was made in this investigation to trace the dynamic response of roller compacted concrete dam, which is subjected to horizontal ground motion by considering the interactions between flexible foundations, reservoir water, and bottom reservoir sediments. Two-dimensional finiteinfinite element was used for the non-linear elasto-plastic dynamic analysis. In this analysis, special emphasis was given to the non-linear behaviour of discontinuities along RCC dam-bedding rock foundation which was modelled by thin layer interface. Analysis was first carried out under static loading (self-weight and hydrostatic pressure), and this this was followed by seismic analysis, with hydrodynamic pressure effect in a dam-reservoir system. Based on the numerical dynamic results, it is concluded that the bottom reservoir sediment has significant effect on the seismic response of the RCC gravity dam. Moreover, there is a redistribution of the stresses at thin layer interface with significant stresses reduction, which is resulted from the release of energy through different modes of deformation in this region.
Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) analysis were performed in this work in order to obtain the best design for safety and aerodynamic performance of the bicycle cycling helmet. FEA analysis was computed on two different helmet designs to determine the critical area subjected to impact. A pressure load was applied on the helmets’ outer surface to simulate oblique loading. The critical areas of the helmets were then highlighted and identified, enabling design improvements to be made on both designs. CFD analysis was then executed in order to obtain the lowest drag coefficient number in reducing the air resistance induced by both of the helmet designs, inherently increasing cyclist performance and ensuring competition success.
The temperature profile of a cryogenic system for cooling of beryllium filter of a small-angle neutron scattering (SANS) instrument of TRIGA MARK II PUSPATI research reactor was investigated using computational fluid dynamics (CFD) modeling and simulation. The efficient cooling of beryllium filter is important for obtaining higher cold neutron transmission for the SANS instrument. This paper presents the transient CFD results of temperature distributions via the thermal link to the beryllium and simulation of heat
flux. The temperature simulation data are also compared with the experimental results for the cooling time and distribution to the beryllium.
The Miniaturised Lab-on-a-Disc (miniLOAD) platform, which utilises surface acoustic waves (SAWs) to drive the rotation of thin millimeter-scale discs on which microchannels can be fabricated and hence microfluidic operations can be performed, offers the possibility of miniaturising its larger counterpart, the Lab-on-a-CD, for true portability in point-of-care applications. A significant limitation of the original miniLOAD concept, however, is that it does not allow for flexible control over the disc rotation direction and speed without manual adjustment of the disc's position, or the use of multiple devices to alter the SAW frequency. In this work, we demonstrate the possibility of achieving such control with the use of tapered interdigitated transducers to confine a SAW beam such that the localised acoustic streaming it generates imparts a force, through hydrodynamic shear, at a specific location on the disc. Varying the torque that arises as a consequence by altering the input frequency to the transducers then allows the rotational velocity and direction of the disc to be controlled with ease. We derive a simple predictive model to illustrate the principle by which this occurs, which we find agrees well with the experimental measurements.
In this study, the implementation of the Regional Climate Model into the hydrodynamic model has been applied for streamflow projection on a river located at the south of Peninsular Malaysia within the years 2070 till 2099. The data has been obtained from a Regional Climate Model (RCM), named Précis, on a daily basis. It begins by comparing historical rainfall data generated from Précis versus the actual gauged recorded rainfall data from Department of Irrigation and Drainage Malaysia (DID). The bias of the generated rainfall data has been reduced by statistical techniques. The same has been applied to the future generated rainfall data from 2070 to 2099. Using the generated precipitation data as input to the hydrological model, results in the daily output of river discharge identified as the main contributor of flood occurrences. Based on the results of the hydrological model utilised, e.g. HEC-HMS, comparison was made between the future and historical generated discharge data using Précis between the years 1960 till 1998. Dividing a year into three segments, e.g. January-April, May-August, SeptemberDecember, the results show that there would be a significant drop of peak discharge in the third segment and an increase in discharge during the second segment. The first part remains almost with no changes. As an addition, the drop of the peak shows reduction in the probability of flood occurrences. It also indicates the reduction in water storage capacity which coherently affects the water supply scheme
Current worldwide projections of sea-level rise show a staggering increase in water level of up to 2 m by 2100 owing to global warming exacerbated by anthropogenically induced climate change. While amplified rates of sea-level rise is an immense hazard to coastal communities, storm surges are expected to increase in intensity and frequency making it an equally significant threat to coastal populations. In France, these hazards are not uncommon with records of extreme tempests every thousand years in the Holocene. Despite these recurring devastating events, in the Bay of Saint-Brieuc, Brittany, legislated laws for coastal management do not entirely focus on protecting littoral zones from such calamities. 130,739 people are concentrated in 21 municipalities with major cities located at close proximity to the shoreline with numerous socio-economic activities, which increases the vulnerability of the coastal population and infrastructures; thus, affirming the indispensable need of a thorough vulnerability assessment. Here, we conduct a mechanistic appraisal of the vulnerability of the bay considering thirteen parameters within three governing sub-systems that demonstrate the multidimensional dynamics in these municipalities. In the occasion of an extreme climatic event, our results of total vulnerability show risks in the sub-systems highlighting erosional processes due to augmented hydrodynamics, socio-economic and administrative vulnerabilities associated with anthropogenic development. Eight municipalities of the bay portray moderate to very high vulnerability and the remaining exhibits a lower risk; however, not devoid of high vulnerabilities for certain sub-systems. We posit that a more accurate fit for predicting the total vulnerability of the region can be achieved by exclusively integrating physical-natural and administrative sub-system vulnerabilities. We propose generic but requisite recommendations for Integrated Coastal Zone Management such as surveillance of urban development along the coast, implementation of coastal defense systems and appropriate industrial corridors to attenuate and dispose hazardous refuse.
Vibrational behaviour of symmetric angle-ply layered circular cylindrical shell filled with quiescent fluid is presented. The equations of motion of cylindrical shell in terms of stress and moment resultants are derived from the first order shear deformation theory. Irrotational of inviscid fluid are expressed as the wave equation. These two equations are coupled. Strain-displacement relations and stress-strain relations are adopted into the equations of motion to obtain the differential equations with displacements and rotational functions. A system of ordinary differential equation is obtained in one variable by assuming the functions in separable form. Spline of order three is applied to approximate the displacement and rotational functions, together with boundary conditions, to get a generalised eigenvalue problem. The eigenvalue problem is solved for eigen frequency parameter and associate eigenvectors of spline coefficients. The study of frequency parameters are analysed using the parameters the thickness ratio, length ratio, angle-ply, properties of material and number of layers under different boundary conditions.
This paper studies the heat transfer analysis caused due to free convection in a vertically oscillating cylinder. Exact solutions are determined by applying the Laplace and finite Hankel transforms. Expressions for temperature distribution and velocity field corresponding to cosine and sine oscillations are obtained. The solutions that have been obtained for velocity are presented in the forms of transient and post-transient solutions. Moreover, these solutions satisfy both the governing differential equation and all imposed initial and boundary conditions. Numerical computations and graphical illustrations are used in order to study the effects of Prandtl and Grashof numbers on velocity and temperature for various times. The transient solutions for both cosine and sine oscillations are also computed in tables. It is found that, the transient solutions are of considerable interest up to the times t = 15 for cosine oscillations and t = 1.75 for sine oscillations. After these moments, the transient solutions can be neglected and, the fluid moves according with the post-transient solutions.
The study presents a baseline variability and climatology study of measured hydrodynamic, water properties and some water quality parameters of West Johor Strait, Singapore at hourly-to-seasonal scales to uncover their dependency and correlation to one or more drivers. The considered parameters include, but not limited by sea surface elevation, current magnitude and direction, solar radiation and air temperature, water temperature, salinity, chlorophyll-a and turbidity. FFT (Fast Fourier Transform) analysis is carried out for the parameters to delineate relative effect of tidal and weather drivers. The group and individual correlations between the parameters are obtained by principal component analysis (PCA) and cross-correlation (CC) technique, respectively. The CC technique also identifies the dependency and time lag between driving natural forces and dependent water property and water quality parameters. The temporal variability and climatology of the driving forces and the dependent parameters are established at the hourly, daily, fortnightly and seasonal scales.
Dilated cardiomyopathy (DCM) is the most common myocardial disease. It not only leads to systolic dysfunction but also diastolic deficiency. We sought to investigate the effect of idiopathic and ischemic DCM on the intraventricular fluid dynamics and myocardial wall mechanics using a 2D axisymmetrical fluid structure interaction model. In addition, we also studied the individual effect of parameters related to DCM, i.e. peak E-wave velocity, end systolic volume, wall compliance and sphericity index on several important fluid dynamics and myocardial wall mechanics variables during ventricular filling. Intraventricular fluid dynamics and myocardial wall deformation are significantly impaired under DCM conditions, being demonstrated by low vortex intensity, low flow propagation velocity, low intraventricular pressure difference (IVPD) and strain rates, and high-end diastolic pressure and wall stress. Our sensitivity analysis results showed that flow propagation velocity substantially decreases with an increase in wall stiffness, and is relatively independent of preload at low-peak E-wave velocity. Early IVPD is mainly affected by the rate of change of the early filling velocity and end systolic volume which changes the ventriculo:annular ratio. Regional strain rate, on the other hand, is significantly correlated with regional stiffness, and therefore forms a useful indicator for myocardial regional ischemia. The sensitivity analysis results enhance our understanding of the mechanisms leading to clinically observable changes in patients with DCM.
This study aims to investigate the influence of artery wall curvature on the anatomical assessment of stenosis severity and to identify a region of misinterpretation in the assessment of per cent area stenosis (AS) for functionally significant stenosis using fractional flow reserve (FFR) as standard. Five artery models of different per cent AS severity (70, 75, 80, 85 and 90%) were considered. For each per cent AS severity, the angle of curvature of the arterial wall varied from straight to an increasingly curved model (0°, 30°, 60°, 90° and 120°). Computational fluid dynamics was performed under transient physiologic hyperemic flow conditions to investigate the influence of artery wall curvature on the pressure drop and the FFR. The findings in this study may be useful in in vitro anatomical assessment of functionally significant stenosis. The FFR decreased with increasing stenosis severity for a given curvature of the artery wall. Moreover, a significant decrease in FFR was found between straight and curved models discussed for a given severity condition. These findings indicate that the curvature effect was included in the FFR assessment in contrast to minimum lumen area (MLA) or per cent AS assessment. The MLA or per cent AS assessment may lead to underestimation of stenosis severity. From this numerical study, an uncertainty region could be evaluated using the clinical FFR cutoff value of 0.8. This value was observed at 81.98 and 79.10% AS for arteries with curvature angles of 0° and 120° respectively. In conclusion, the curvature of the artery should not be neglected in in vitro anatomical assessment.
Dicofol, a recommended Stockholm convention persistent organic pollutants (POPs) candidate is well known for its endocrine disruptive properties and has been extensively used as an organochlorine pesticide worldwide. The hydrodynamic cavitation (HC) treatment of Dicofol in aqueous media induced by a liquid whistle hydrodynamic cavitaion reactor (LWHCR) has been investigated while considering important parameters such as inlet pressure, initial concentration of Dicofol, solution temperature, pH, addition of H2O2 and radical scavenger for the extent of degradation. The pseudo-first-order degradation rate constant (k) was determined to be 0.073 min-1 with a cavitational yield of 1.26 × 10-5 mg/J at optimum operating conditions and a complete removal of Dicofol was achieved within 1 h of treatment. Considering the removal rate and energy efficiency, the optimal inlet pressure was found to be 7 bar, resulting in a cavitation number of 0.17. High performance liquid chromatography (HPLC) and Gas chromatography mass spectroscopy (GC-MS) analyses indicated a sharp decline in the concentration of Dicofol with treatment time and indicated the presence of degraded products. An 85% total organic carbon (TOC) removal was achieved within 1 h of treatment time, demonstrating successful mineralization of Dicofol. The obtained results suggest that the degradation of Dicofol followed thermal decomposition and successive recombination reactions at bubble-vapor interface. Overall, the attempted hydrodynamic cavitation demonstrated successful and rapid removal of endocrine disruptive chemicals such as Dicofol and is expected to provide efficient solution for wastewater treatment.
Recruitment constraints on Singapore's dwindling fluted giant clam, Tridacna squamosa, population were studied by modelling fertilisation, larval transport, and settlement using real-time hydrodynamic forcing combined with knowledge of spawning characteristics, larval development, behaviour, and settlement cues. Larval transport was simulated using a finite-volume advection-diffusion model coupled to a three-dimensional hydrodynamic model. Three recruitment constraint hypotheses were tested: 1) there is limited connectivity between Singapore's reefs and other reefs in the region, 2) there is limited exchange within Singapore's Southern Islands, and 3) there exist low-density constraints to fertilisation efficacy (component Allee effects). Results showed that connectivity among giant clam populations was primarily determined by residual hydrodynamic flows and spawning time, with greatest chances of successful settlement occurring when spawning and subsequent larval dispersal coincided with the period of lowest residual flow. Simulations suggested poor larval transport from reefs located along the Peninsular Malaysia to Singapore, probably due to strong surface currents between the Andaman Sea and South China Sea combined with a major land barrier disrupting larval movement among reefs. The model, however, predicted offshore coral reefs to the southeast of Singapore (Bintan and Batam) may represent a significant source of larvae. Larval exchange within Singapore's Southern Islands varied substantially depending on the locations of source and sink reefs as well as spawning time; but all simulations resulted in low settler densities (2.1-68.6 settled individuals per 10,000 m(2)). Poor fertilisation rates predicted by the model indicate that the low density and scattered distribution of the remaining T. squamosa in Singapore are likely to significantly inhibit any natural recovery of local stocks.
The Bio-ecological Drainage System, or BIOECODS, is an urban drainage system located at the Engineering Campus, Universiti Sains Malaysia. It consists of a constructed wetland as a part of the urban drainage system to carry storm water in a closed system. In this closed system, the constructed wetland was designed particularly for further treatment of storm water. For the purpose of studying the water balance of the constructed wetland, data collection was carried out for two years (2007 and 2009). The results show that the constructed wetland has a consistent volume of water storage compared to the outflow for both years with correlation coefficients (R(2)) of 0.99 in 2007 and 0.86 in 2009.
Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh) manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid's velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications.