Displaying publications 61 - 78 of 78 in total

Abstract:
Sort:
  1. Kupaei RH, Alengaram UJ, Jumaat MZ
    ScientificWorldJournal, 2014;2014:898536.
    PMID: 25531006 DOI: 10.1155/2014/898536
    This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials--low calcium fly ash (FA) and oil palm shell (OPS)--as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength.
    Matched MeSH terms: Hydroxides/chemistry
  2. Kura AU, Hussein-Al-Ali SH, Hussein MZ, Fakurazi S
    ScientificWorldJournal, 2014;2014:104246.
    PMID: 24782658 DOI: 10.1155/2014/104246
    We incorporated anti-Parkinsonian drug, levodopa (dopa), in Zn/Al-LDH by coprecipitation method to form dopa-LDH nanocomposite. Further coating of Tween-80 on the external surfaces of dopa-LDH nanocomposite was achieved through the oxygen of C=O group of Tween-80 with the layer of dopa-LDH nanocomposite. The final product is called Tween-dopa-LDH nanocomposite. The X-ray diffraction indicates that the Tween-dopa-LDH nanocomposite was formed by aggregation structure. From the TGA data, the Tween-80 loading on the surface of LDH and dopa-LDH was 8.6 and 7.4%, respectively. The effect of coating process on the dopa release from Tween-dopa-LDH nanocomposite was also studied. The release from Tween-dopa-LDH nanocomposite shows slower release compared to the release of the drug from dopa-LDH nanocomposite as done previously in our study, presumably due to the retarding shielding effect. The cell viability study using PC12 showed improved viability with Tween-80 coating on dopa-LDH nanocomposite as studied by mitochondrial dehydrogenase activity (MTT assay).
    Matched MeSH terms: Hydroxides/chemistry*
  3. bin Hussein MZ, Zainal Z, Yahaya AH, Foo DW
    J Control Release, 2002 Aug 21;82(2-3):417-27.
    PMID: 12175754
    Formation of the so-called organic-inorganic nanohybrid material was exploited for the preparation of a controlled release formulation. The inorganic Zn-Al-layered double hydroxide (LDH) was used as a matrix, hosting an active agent or a guest, alpha-naphthaleneacetate (NAA), a plant growth regulator by self-assembly technique. The reverse process, i.e., the deintercalation or release of the guest, NAA was found to be rapid initially, followed by a more sustained release thereafter and this behavior was dependent on the pH of the release medium, the aqueous solution. The mechanism of release has been interpreted on the basis of the ion-exchange process between the NAA anion intercalated in the lamella host and nitrate or hydroxyl anions in the aqueous solution.
    Matched MeSH terms: Hydroxides/chemistry*
  4. Megat Nabil Mohsin S, Hussein MZ, Sarijo SH, Fakurazi S, Arulselvan P, Taufiq-Yap YH
    Int J Nanomedicine, 2018;13:6359-6374.
    PMID: 30349255 DOI: 10.2147/IJN.S171390
    Introduction: The potential of layered double hydroxide (LDH) as a host of multiple ultraviolet-ray absorbers was investigated by simultaneous intercalation of benzophenone 4 (B4) and Eusolex® 232 (EUS) in Zn/Al LDH.

    Methods: The nanocomposites were prepared via coprecipitation method at various molar ratios of B4 and EUS.

    Results: At equal molar ratios, the obtained nanocomposite showed an intercalation selectivity that is preferential to EUS. However, the selectivity ratio of intercalated anions was shown to be capable of being altered by adjusting the molar ratio of intended guests during synthesis. Dual-guest nanocomposite synthesized with B4:EUS molar ratio 3:1 (ZEB [3:1]) showed an intercalation selectivity ratio of B4:EUS =53:47. Properties of ZEB (3:1) were monitored using powder X-ray diffractometer to show a basal spacing of 21.8 Å. Direct-injection mass spectra, Fourier transform infrared spectra, and ultraviolet-visible spectra confirmed the dual intercalation of both anions into the interlayer regions of dual-guest nanocomposite. The cytotoxicity study of dual-guest nanocomposite ZEB (3:1) on human dermal fibroblast cells showed no significant toxicity until 25 μg/mL.

    Conclusion: Overall, the findings demonstrate successful customization of ultraviolet-ray absorbers composition in LDH host.

    Matched MeSH terms: Hydroxides/chemistry*
  5. Eili M, Shameli K, Ibrahim NA, Wan Yunus WMZ
    Int J Mol Sci, 2012;13(7):7938-7951.
    PMID: 22942682 DOI: 10.3390/ijms13077938
    Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn(3)Al LDH. A solution casting method was used to prepare PLA/stearate-Zn(3)Al LDH nanocomposites. The anionic clay Zn(3)Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn(3)Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn(3)Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn(3)Al LDH nanocomposites showed that the presence of around 1.0-3.0 wt % of the stearate-Zn(3)Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn(3)Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA.
    Matched MeSH terms: Hydroxides/chemistry*
  6. Saifullah B, El Zowalaty ME, Arulselvan P, Fakurazi S, Webster TJ, Geilich BM, et al.
    Drug Des Devel Ther, 2014;8:1029-36.
    PMID: 25114509 DOI: 10.2147/DDDT.S63753
    The treatment of tuberculosis by chemotherapy is complicated due to multiple drug prescriptions, long treatment duration, and adverse side effects. We report here for the first time an in vitro therapeutic effect of nanocomposites based on para-aminosalicylic acid with zinc layered hydroxide (PAS-ZLH) and zinc-aluminum layered double hydroxides (PAS-Zn/Al LDH), against mycobacteria, Gram-positive bacteria, and Gram-negative bacteria. The nanocomposites demonstrated good antimycobacterial activity and were found to be effective in killing Gram-positive and Gram-negative bacteria. A biocompatibility study revealed good biocompatibility of the PAS-ZLH nanocomposites against normal human MRC-5 lung cells. The para-aminosalicylic acid loading was quantified with high-performance liquid chromatography analysis. In summary, the present preliminary in vitro studies are highly encouraging for further in vivo studies of PAS-ZLH and PAS-Zn/Al LDH nanocomposites to treat tuberculosis.
    Matched MeSH terms: Hydroxides/chemistry
  7. Kura AU, Hussein Al Ali SH, Hussein MZ, Fakurazi S, Arulselvan P
    Int J Nanomedicine, 2013;8:1103-10.
    PMID: 23524513 DOI: 10.2147/IJN.S39740
    A new layered organic-inorganic nanocomposite material with an anti-parkinsonian active compound, L-3-(3,4-dihydroxyphenyl) alanine (levodopa), intercalated into the inorganic interlayers of a Zn/Al-layered double hydroxide (LDH) was synthesized using a direct coprecipitation method. The resulting nanocomposite was composed of the organic moiety, levodopa, sandwiched between Zn/Al-LDH inorganic interlayers. The basal spacing of the resulting nano-composite was 10.9 Å. The estimated loading of levodopa in the nanocomposite was approximately 16% (w/w). A Fourier transform infrared study showed that the absorption bands of the nanocomposite were characteristic of both levodopa and Zn/Al-LDH, which further confirmed intercalation, and that the intercalated organic moiety in the nanocomposite was more thermally stable than free levodopa. The resulting nanocomposite showed sustained-release properties, so can be used in a controlled-release formulation. Cytotoxicity analysis using an MTT assay also showed increased cell viability of 3T3 cells exposed to the newly synthesized nanocomposite compared with those exposed to pure levodopa after 72 hours of exposure.
    Matched MeSH terms: Hydroxides/chemistry
  8. Barahuie F, Hussein MZ, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S, Zainal Z
    Int J Nanomedicine, 2013;8:1975-87.
    PMID: 23737666 DOI: 10.2147/IJN.S42718
    In the study reported here, magnesium/aluminum (Mg/Al)-layered double hydroxide (LDH) was intercalated with an anticancer drug, protocatechuic acid, using ion-exchange and direct coprecipitation methods, with the resultant products labeled according to the method used to produce them: "PANE" (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the ion-exchange method) and "PAND" (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the direct method), respectively. Powder X-ray diffraction and Fourier transform infrared spectroscopy confirmed the intercalation of protocatechuic acid into the inter-galleries of Mg/Al-LDH. The protocatechuic acid between the interlayers of PANE and PAND was found to be a monolayer, with an angle from the z-axis of 8° for PANE and 15° for PAND. Thermogravimetric and differential thermogravimetric analysis results revealed that the thermal stability of protocatechuic acid was markedly enhanced upon intercalation. The loading of protocatechuic acid in PANE and PAND was estimated to be about 24.5% and 27.5% (w/w), respectively. The in vitro release study of protocatechuic acid from PANE and PAND in phosphate-buffered saline at pH 7.4, 5.3, and 4.8 revealed that the nanocomposites had a sustained release property. After 72 hours incubation of PANE and PAND with MCF-7 human breast cancer and HeLa human cervical cancer cell lines, it was found that the nanocomposites had suppressed the growth of these cancer cells, with a half maximal inhibitory concentration of 35.6 μg/mL for PANE and 36.0 μg/mL for PAND for MCF-7 cells, and 19.8 μg/mL for PANE and 30.3 μg/mL for PAND for HeLa cells. No half maximal inhibitory concentration for either nanocomposite was found for 3T3 cells.
    Matched MeSH terms: Hydroxides/chemistry
  9. Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Zainal Z, Hakim MN
    Int J Nanomedicine, 2011;6:3099-111.
    PMID: 22163163 DOI: 10.2147/IJN.S24510
    A new simple preparation method for a hippurate-intercalated zinc-layered hydroxide (ZLH) nanohybrid has been established, which does not need an anion-exchange procedure to intercalate the hippurate anion into ZLH interlayers.
    Matched MeSH terms: Hydroxides/chemistry*
  10. Salman JM, Hameed BH
    J Hazard Mater, 2010 Mar 15;175(1-3):133-7.
    PMID: 19879687 DOI: 10.1016/j.jhazmat.2009.09.139
    Oil palm fronds (OPF) were used to prepare activated carbon (PFAC) using physiochemical activation method, which consisted of potassium hydroxide (KOH) treatment and carbon dioxide gasification. The effects of the preparation variables, which were activation temperature, activation time and chemical impregnation ratios (KOH: char by weight), on the carbon yield and bentazon removal were investigated. Based on the central composite design (CCD), two factor interaction (2FI) and quadratic models were, respectively, employed to correlate the PFAC preparation variables to the bentazon removal and carbon yield. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum conditions for preparing activated carbon from OPF were found as follows: activation temperature of 850 degrees C, activation time of 1h and KOH:char ratio of 3.75:1. The predicted and experimental results for removal of bentazon and yield of PFAC were 99.85%, 20.5 and 98.1%, 21.6%, respectively.
    Matched MeSH terms: Hydroxides/chemistry
  11. Saifullah B, El Zowalaty ME, Arulselvan P, Fakurazi S, Webster TJ, Geilich BM, et al.
    Int J Nanomedicine, 2016;11:3225-37.
    PMID: 27486322 DOI: 10.2147/IJN.S102406
    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly.
    Matched MeSH terms: Hydroxides/chemistry*
  12. Rubnawaz S, Kayani WK, Akhtar N, Mahmood R, Khan A, Okla MK, et al.
    Molecules, 2021 Aug 11;26(16).
    PMID: 34443462 DOI: 10.3390/molecules26164874
    Ajuga bracteosa Wall. ex Benth. is an endangered medicinal herb traditionally used against different ailments. The present study aimed to create new insight into the fundamental mechanisms of genetic transformation and the biological activities of this plant. We transformed the A. bracteosa plant with rol genes of Agrobacterium rhizogenes and raised the regenerants from the hairy roots. These transgenic regenerants were screened for in vitro antioxidant activities, a range of in vivo assays, elemental analysis, polyphenol content, and different phytochemicals found through HPLC. Among 18 polyphenolic standards, kaempferol was most abundant in all transgenic lines. Furthermore, transgenic line 3 (ABRL3) showed maximum phenolics and flavonoids content among all tested plant extracts. ABRL3 also demonstrated the highest total antioxidant capacity (8.16 ± 1 μg AAE/mg), total reducing power, (6.60 ± 1.17 μg AAE/mg), DPPH activity (IC50 = 59.5 ± 0.8 μg/mL), hydroxyl ion scavenging (IC50 = 122.5 ± 0.90 μg/mL), and iron-chelating power (IC50 = 154.8 ± 2 μg/mL). Moreover, transformed plant extracts produced significant analgesic, anti-inflammatory, anticoagulant, and antidepressant activities in BALB/c mice models. In conclusion, transgenic regenerants of A. bracteosa pose better antioxidant and pharmacological properties under the effect of rol genes as compared to wild-type plants.
    Matched MeSH terms: Hydroxides/chemistry
  13. Ebadi M, Saifullah B, Buskaran K, Hussein MZ, Fakurazi S
    Int J Nanomedicine, 2019;14:6661-6678.
    PMID: 31695362 DOI: 10.2147/IJN.S214923
    BACKGROUND: Cancer treatments are being continually developed. Increasingly more effective and better-targeted treatments are available. As treatment has developed, the outcomes have improved.

    PURPOSE: In this work, polyethylene glycol (PEG), layered double hydroxide (LDH) and 5-fluorouracil (5-FU) were used as a stabilizing agent, a carrier and an anticancer active agent, respectively.

    CHARACTERIZATION AND METHODS: Magnetite nanoparticles (Fe3O4) coated with polyethylene glycol (PEG) and co-coated with 5-fluorouracil/Mg/Al- or Zn/Al-layered double hydroxide were synthesized by co-precipitation technique. Structural, magnetic properties, particle shape, particle size and drug loading percentage of the magnetic nanoparticles were investigated by XRD, TGA, FTIR, DLS, FESEM, TEM, VSM, UV-vis spectroscopy and HPLC techniques.

    RESULTS: XRD, TGA and FTIR studies confirmed the formation of Fe3O4 phase and the presence of iron oxide nanoparticles, polyethylene glycol, LDH and the drug for all the synthesized samples. The size of the nanoparticles co-coated with Mg/Al-LDH is about 27 nm compared to 40 nm when they were co-coated with Zn/Al-LDH, with both showings near uniform spherical shape. The iron oxide nanoparticles retain their superparamagnetic property when they were coated with polyethylene glycol, polyethylene glycol co-coated with Mg/Al-LDH and polyethylene glycol co-coated with Zn/Al-LDH with magnetic saturation value of 56, 40 and 27 emu/g, respectively. The cytotoxicity study reveals that the anticancer nanodelivery system has better anticancer activity than the free drug, 5-FU against liver cancer HepG2 cells and at the same time, it was found to be less toxic to the normal fibroblast 3T3 cells.

    CONCLUSION: These are unique core-shell nanoparticles synthesized with the presence of multiple functionalities are hoped can be used as a multifunctional nanocarrier with the capability of targeted delivery using an external magnetic field and can also be exploited as hypothermia for cancer cells in addition to the chemotherapy property.

    Matched MeSH terms: Hydroxides/chemistry*
  14. Siti Kamilah Che Soh, Siti Aminah Jusoh, Mustaffa Shamsuddin
    MyJurnal
    A polystyrene (PS)-anchored Pd(II) metal complex was synthesized on cross-linked polymer by heating a mixture of chlorometylated polystyrene with phenyldithiocarbazate and carbon disulfide in the presence of potassium hydroxide (KOH) in dimethylformamide (DMF). The reaction mixture was heated at 80 °C to form the corresponding phenyldithiocarbazate-functionalized polymer. Then, it was treated with bis(benzonitrile)palladium(II) chloride. The properties of dark colored polymer, impregnated with the metal complex was then characterized by various spectroscopic technique such as Fourier Transform Infrared (FTIR), Scanning Electron Microscopy/Energy Dispersive X-ray (SEM/EDX), CHNS elemental analysis, BET surface area, X-ray Diffraction (XRD), Thermogravimetric (TGA) and Inductively Coupled Plasma-Optical Emission (ICP-OES) spectroscopy.
    Matched MeSH terms: Hydroxides
  15. Saifullah B, Arulselvan P, El Zowalaty ME, Fakurazi S, Webster TJ, Geilich B, et al.
    ScientificWorldJournal, 2014;2014:401460.
    PMID: 25050392 DOI: 10.1155/2014/401460
    Tuberculosis is a lethal epidemic, difficult to control disease, claiming thousands of lives every year. We have developed a nanodelivery formulation based on para-aminosalicylic acid (PAS) and zinc layered hydroxide using zinc nitrate salt as a precursor. The developed formulation has a fourfold higher efficacy of PAS against mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) found to be at 1.40 μg/mL compared to the free drug PAS with a MIC of 5.0 μg/mL. The newly developed formulation was also found active against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans. The formulation was also found to be biocompatible with human normal lung cells MRC-5 and mouse fibroblast cells-3T3. The in vitro release of PAS from the formulation was found to be sustained in a human body simulated phosphate buffer saline (PBS) solution at pH values of 7.4 and 4.8. Most importantly the nanocomposite prepared using zinc nitrate salt was advantageous in terms of yield and free from toxic zinc oxide contamination and had higher biocompatibility compared to one prepared using a zinc oxide precursor. In summary, these promising in vitro results are highly encouraging for the continued investigation of para-aminosalicylic acid and zinc layered hydroxide nanocomposites in vivo and eventual preclinical studies.
    Matched MeSH terms: Hydroxides/chemistry*
  16. Hasan S, Al Ali H, Al-Qubaisi M, Zobir Hussein M, Ismail M, Zainal Z, et al.
    Int J Nanomedicine, 2012;7:3351-63.
    PMID: 22848164 DOI: 10.2147/IJN.S30809
    A controlled-release formulation of an antihistamine, cetirizine, was synthesized using zinc-layered hydroxide as the host and cetirizine as the guest. The resulting well-ordered nanolayered structure, a cetirizine nanocomposite "CETN," had a basal spacing of 33.9 Å, averaged from six harmonics observed from X-ray diffraction. The guest, cetirizine, was arranged in a horizontal bilayer between the zinc-layered hydroxide (ZLH) inorganic interlayers. Fourier transform infrared spectroscopy studies indicated that the intercalation takes place without major change in the structure of the guest and that the thermal stability of the guest in the nanocomposites is markedly enhanced. The loading of the guest in the nanocomposites was estimated to be about 49.4% (w/w). The release study showed that about 96% of the guest could be released in 80 hours by phosphate buffer solution at pH 7.4 compared with about 97% in 73 hours at pH 4.8. It was found that release was governed by pseudo-second order kinetics. Release of histamine from rat basophilic leukemia cells was found to be more sensitive to the intercalated cetirizine in the CETN compared with its free counterpart, with inhibition of 56% and 29%, respectively, at 62.5 ng/mL. The cytotoxicity assay toward Chang liver cells line show the IC₅₀ for CETN and ZLH are 617 and 670 μg/mL, respectively.
    Matched MeSH terms: Hydroxides/chemistry*
  17. Adewoyin M, Mohsin SM, Arulselvan P, Hussein MZ, Fakurazi S
    Drug Des Devel Ther, 2015;9:2475-84.
    PMID: 25995619 DOI: 10.2147/DDDT.S72716
    BACKGROUND: Cinnamic acid (CA) is a phytochemical originally derived from Cinnamomum cassia, a plant with numerous pharmacological properties. The intercalation of CA with a nanocarrier, zinc layered hydroxide, produces cinnamate-zinc layered hydroxide (ZCA), which has been previously characterized. Intercalation is expected to improve the solubility and cell specificity of CA. The nanocarrier will also protect CA from degradation and sustain its release. The aim of this study was to assess the effect of intercalation on the anti-inflammatory capacity of CA.

    METHODS: In this study, the anti-inflammatory activity of ZCA was investigated and compared with that of nonintercalated CA. Evaluations were based on the capacity of ZCA and CA to modulate the release of nitric oxide, prostaglandin E2, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), IL-1β, and IL-10 in lipopolysaccharide-induced RAW 264.7 cells. Additionally, the expression of proinflammatory enzymes, ie, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B (NF-κB), were examined.

    RESULTS: Although both ZCA and CA downregulated nitric oxide, prostaglandin E2, tumor necrosis factor alpha, IL-1β, and IL-6, ZCA clearly displayed better activity. Similarly, expression of cyclooxygenase-2 and inducible nitric oxide synthase were inhibited in samples treated with ZCA and CA. The two compounds effectively inactivated the transcription factor NF-κB, but the anti-inflammatory cytokine, IL-10, was significantly upregulated by ZCA only.

    CONCLUSION: The present findings suggest that ZCA possesses better anti-inflammatory potential than CA, while zinc layered hydroxide had little or no effect, and these results were comparable with the positive control.

    Matched MeSH terms: Hydroxides
  18. Kura AU, Ain NM, Hussein MZ, Fakurazi S, Hussein-Al-Ali SH
    Int J Mol Sci, 2014;15(4):5916-27.
    PMID: 24722565 DOI: 10.3390/ijms15045916
    Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL) nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell model. ZAL nanocomposite demonstrated a decreased cytotoxic effect when compared to levodopa on PC12 cells with more than 80% cell viability at 100 µg/mL compared to less than 20% cell viability in a direct levodopa exposure. Neither levodopa-loaded nanocomposite nor the un-intercalated nanocomposite disturbed the cytoskeletal structure of the neurogenic cells at their IC50 concentration. Levodopa metabolite (HVA) released from the nanocomposite demonstrated the slow sustained and controlled release character of layered hydroxide nanoparticles unlike the burst uptake and release system shown with pure levodopa treatment.
    Matched MeSH terms: Hydroxides
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links