Displaying publications 61 - 80 of 169 in total

Abstract:
Sort:
  1. Ismail NA, Abdullah N, Mohamad Noor MH, Lai PS, Shafie MS, Nor FM
    J Forensic Leg Med, 2019 Apr;63:11-17.
    PMID: 30825771 DOI: 10.1016/j.jflm.2019.02.010
    BACKGROUND: In the application of scientific human skeletal variation in medico-legal matters, virtual anthropology is the current technique performed to examine skeleton and its body parts. Hence, this study was conducted to assess the accuracy and reliability of virtual femur measurement through intra and inter-observer error analysis, and comparison was made between the virtual and conventional methods.

    METHODS: A total of 15 femora were examined with four parameters i.e. maximum length of femur (FeMl), diameter of femoral head (FeHd), transverse diameter of midshaft (FeMd) and condylar breadth (FeCb). Osteometric board and vernier calipers were employed for the conventional method, while CT reconstructed images and Osirix MD software was utilised for the virtual method.

    RESULTS: Results exhibited that there were no significant differences in the measurements by conventional and virtual methods. There were also no significant differences in the measurements by the intra or inter-observer error analyses. The intraclass correlation coefficients (ICC) were more than 0.95 by both intra and inter-observer error analyses. Technical error of measurement had displayed values within the acceptable ranges (rTEM <0.08 for intra-observer, <2.25 for inter-observer), and coefficient of reliability (R) indicated small measurement errors (R > 0.95 for intra-observer, R > 0.92 for inter-observer). By parameters, FeMl showed the highest R value (0.99) with the least error in different methods and observers (rTEM = 0.02-0.41%). Bland and Altman plots revealed points scattered close to zero indicating perfect agreement by both virtual and conventional methods. The mean differences for FeMl, FeHd, FeMd and FeCb measurements were 0.01 cm, -0.01 cm, 0.02 cm and 0.01 cm, respectively.

    CONCLUSION: This brought to suggest that bone measurement by virtual method was highly accurate and reliable as in the conventional method. It is recommended for implementation in the future anthropological studies especially in countries with limited skeletal collection.

    Matched MeSH terms: Imaging, Three-Dimensional
  2. Sim GS, Wong JH, Ng KH
    J Appl Clin Med Phys, 2013 Jul 08;14(4):4182.
    PMID: 23835383 DOI: 10.1120/jacmp.v14i4.4182
    Radiochromic and radiographic films are widely used for radiation dosimetry due to the advantage of high spatial resolution and two-dimensional dose measurement. Different types of scanners, including various models of flatbed scanners, have been used as part of the dosimetry readout procedure. This paper focuses on the characterization of the EBT2 film response in combination with a Microtek ScanMaker 9800XL scanner and the subsequent use in the dosimetric verification of a 3D conformal radiotherapy treatment. The film reproducibility and scanner uniformity of the Microtek ScanMaker 9800XL was studied. A three-field 3D conformal radiotherapy treatment was planned on an anthropomorphic phantom and EBT2 film measurements were carried out to verify the treatment. The interfilm reproducibility was found to be 0.25%. Over a period of three months, the films darkened by 1%. The scanner reproducibility was ± 2% and a nonuniformity was ±1.9% along the direction perpendicular to the scan direction. EBT2 measurements showed an underdose of 6.2% at high-dose region compared to TPS predicted dose. This may be due to the inability of the treatment planning system to predict the correct dose distribution in the presence of tissue inhomogeneities and the uncertainty of the scanner reproducibility and uniformity. The use of EBT2 film in conjunction with the axial CT image of the anthropomorphic phantom allows the evaluation of the anatomical location of dose discrepancies between the EBT2 measured dose distribution and TPS predicted dose distribution.
    Matched MeSH terms: Imaging, Three-Dimensional
  3. Zheng S, Rahmat RWO, Khalid F, Nasharuddin NA
    PeerJ Comput Sci, 2019;5:e236.
    PMID: 33816889 DOI: 10.7717/peerj-cs.236
    As the technology for 3D photography has developed rapidly in recent years, an enormous amount of 3D images has been produced, one of the directions of research for which is face recognition. Improving the accuracy of a number of data is crucial in 3D face recognition problems. Traditional machine learning methods can be used to recognize 3D faces, but the face recognition rate has declined rapidly with the increasing number of 3D images. As a result, classifying large amounts of 3D image data is time-consuming, expensive, and inefficient. The deep learning methods have become the focus of attention in the 3D face recognition research. In our experiment, the end-to-end face recognition system based on 3D face texture is proposed, combining the geometric invariants, histogram of oriented gradients and the fine-tuned residual neural networks. The research shows that when the performance is evaluated by the FRGC-v2 dataset, as the fine-tuned ResNet deep neural network layers are increased, the best Top-1 accuracy is up to 98.26% and the Top-2 accuracy is 99.40%. The framework proposed costs less iterations than traditional methods. The analysis suggests that a large number of 3D face data by the proposed recognition framework could significantly improve recognition decisions in realistic 3D face scenarios.
    Matched MeSH terms: Imaging, Three-Dimensional
  4. Lim AC, Chong VC, Wong CS, Muniandy SV
    PeerJ, 2015;3:e1471.
    PMID: 26734507 DOI: 10.7717/peerj.1471
    Background. Syngnathid fishes produce three kinds of sounds, named click, growl and purr. These sounds are generated by different mechanisms to give a consistent signal pattern or signature which is believed to play a role in intraspecific and interspecific communication. Commonly known sounds are produced when the fish feeds (click, purr) or is under duress (growl). While there are more acoustic studies on seahorses, pipefishes have not received much attention. Here we document the differences in feeding click signals between three species of pipefishes and relate them to cranial morphology and kinesis, or the sound-producing mechanism. Methods. The feeding clicks of two species of freshwater pipefishes, Doryichthys martensii and Doryichthys deokhathoides and one species of estuarine pipefish, Syngnathoides biaculeatus, were recorded by a hydrophone in acoustic dampened tanks. The acoustic signals were analysed using time-scale distribution (or scalogram) based on wavelet transform. A detailed time-varying analysis of the spectral contents of the localized acoustic signal was obtained by jointly interpreting the oscillogram, scalogram and power spectrum. The heads of both Doryichthys species were prepared for microtomographical scans which were analysed using a 3D imaging software. Additionally, the cranial bones of all three species were examined using a clearing and double-staining method for histological studies. Results. The sound characteristics of the feeding click of the pipefish is species-specific, appearing to be dependent on three bones: the supraoccipital, 1st postcranial plate and 2nd postcranial plate. The sounds are generated when the head of the Dorichthyes pipefishes flexes backward during the feeding strike, as the supraoccipital slides backwards, striking and pushing the 1st postcranial plate against (and striking) the 2nd postcranial plate. In the Syngnathoides pipefish, in the absence of the 1st postcranial plate, the supraoccipital rubs against the 2nd postcranial plate twice as it is pulled backward and released on the return. Cranial morphology and kinesis produce acoustic signals consistent with the bone strikes that produce sharp energy spikes (discrete or merged), or stridulations between bones that produce repeated or multimodal sinusoidal waveforms. Discussion. The variable structure of the sound-producing mechanism explains the unique acoustic signatures of the three species of pipefish. The differences in cranial bone morphology, cranial kinesis and acoustic signatures among pipefishes (and seahorses) could be attributed to independent evolution within the Syngnathidae, which warrants further investigation.
    Matched MeSH terms: Imaging, Three-Dimensional
  5. Yasir SF, Jani J, Mukri M
    Data Brief, 2019 Jun;24:103821.
    PMID: 30976635 DOI: 10.1016/j.dib.2019.103821
    This data illustration the similarity and accuracy of two subsurface profile analysis software which is RES2DINV and VOXLER. Electrical resistivity imaging methods was conducted as a geophysical technique to get subsurface profile were borehole had previously been made in the same locations. The General Department of Geoscience (JMG) conducted the drilling of the borehole in three locations which is Kampung Bangkahulu, Gemas, Kampung Semerbok, Rembau and Felda Bukit Rokan Utara. The 2D resistivity image from RES2DINV and the 3D image from VOXLER was highly matching the subsurface profile compared with borehole data log. The depth of the resistivity was 76.8, 87.2 and 39.4 respectively for the sites. This two software gave more clearly interpreted result for investigate the sub ground and geological formations.
    Matched MeSH terms: Imaging, Three-Dimensional
  6. Tengku Shaeran TA, Shaari R, Abdul Rahman S, Alam MK, Muhamad Husin A
    J Oral Biol Craniofac Res, 2017 Jan-Apr;7(1):7-12.
    PMID: 28316914 DOI: 10.1016/j.jobcr.2016.10.007
    BACKGROUND: Bilateral sagittal split osteotomy (BSSO) is the most versatile procedure and adopted by many surgeons to relocate the mandible in patients having mandibular prognathism (MP). Injury to the inferior alveolar nerve (IAN) and unfavorable splits are two surgical complications of BSSO which are associated with mandibular morphology. Uses of cone beam computed tomography (CBCT) in providing 3-D images has gained a wider acceptance in surgical field nowadays. Its advantages are including reduced cost, lesser radiation dose and smaller physical footprint comparing to the conventional computed tomography.

    PURPOSE: This study aims to identify the differences in morphology of prognathic and non-prognathic mandible at BSSO sites using cone beam computed tomography images.

    METHODS: This retrospective study involved 51 CBCT images of patients having mandibular prognathism and without mandibular prognathism. The latter group made up from patients with Class I skeletal pattern. Samples were taken using purposive sampling method from two clinical centers.

    RESULT: Prognathic mandible has higher lingula level, superiorly and buccally placed inferior alveolar nerve canal at distal second molar, thinner mediolateral width of ramus at anterior and posterior part and thinner anteroposterior width of the ramus.

    CONCLUSION: Morphology of mandible in patients with mandibular prognathism (MP) was significantly different from patients without mandibular prognathism (WMP) for most of the parameters. The high risk parameters may be highlighted to the patients using cone beam computed tomography images.
    Matched MeSH terms: Imaging, Three-Dimensional
  7. Chan VS, Mohamed F, Yusoff YA, Dewi DEO, Anuar A, Shamsudin MA, et al.
    Med Biol Eng Comput, 2020 May;58(5):889-902.
    PMID: 31599379 DOI: 10.1007/s11517-019-02044-4
    Position tracking has been widely used in medical applications, especially in 3D ultrasound imaging, where it has transformed the 2D slice limitation into 3D volume with bigger clinical impacts. As a game controller can also produce position tracking information, it has the potential to act as a low-cost and portable position tracker for ultrasound probes. This paper aims to investigate the feasibility of a game controller to perform as a position tracker and to design its implementation in 3D ultrasound imaging. The study consists of data acquisition and 3D ultrasound reconstruction for visualization. The data acquisition is accomplished by capturing the 2D ultrasound frame and its relative positional and orientation data by using an ultrasound probe and game controller respectively. These data are further reconstructed to produce 3D ultrasound volume for visualization. Our experiments include game controller position tracker testing and 3D ultrasound reconstruction on baby phantom. The results have confirmed that the game controller performance was closely aligned with that of in a robot arm. Also, the 3D ultrasound reconstruction implementation has revealed promising outcomes. With these features, the function of the currently available ultrasound probes can be prospectively improved using a game controller position tracker effectively. Graphical Abstract.
    Matched MeSH terms: Imaging, Three-Dimensional/instrumentation*; Imaging, Three-Dimensional/methods*
  8. Alias A, Ibrahim A, Abu Bakar SN, Swarhib Shafie M, Das S, Abdullah N, et al.
    Clin Ter, 2018 11 6;169(5):e217-e223.
    PMID: 30393808 DOI: 10.7417/CT.2018.2082
    INTRODUCTION: The first step in the forensic identification is sex determination followed by age and stature estimation, as both are sex-dependent. The mandible is the largest, strongest and most durable bone in the face. Mandible is important for sex confirmation in absence of a complete pelvis and skull.

    AIM: The aim of the present study was to determine sex of human mandible from morphology, morphometric measurements as well as discriminant function analysis from the CT scan.

    MATERIALS AND METHODS: The present retrospective study comprised 79 subjects (48 males, 31 females), with age group between 18 and 74 years, and were obtained from the post mortem computed tomography data in the Hospital Kuala Lumpur. The parameters were divided into three morphologic and nine morphometric parameters, which were measured by using Osirix MD Software 3D Volume Rendering.

    RESULTS: The Chi-square test showed that men were significantly association with square-shaped chin (92%), prominent muscle marking (85%) and everted gonial glare, whereas women had pointed chin (84%), less prominent muscle marking (90%) and inverted gonial glare (80%). All parameter measurements showed significantly greater values in males than in females by independent t-test (p< 0.01). By discriminant analysis, the classification accuracy was 78.5%, the sensitivity was 79.2% and the specificity was 77.4%. The discriminant function equation was formulated based on bigonial breath and condylar height, which were the best predictors.

    CONCLUSION: In conclusion, the mandible could be distinguished according to the sex. The results of the study can be used for identification of damaged and/or unknown mandible in the Malaysian population.

    Matched MeSH terms: Imaging, Three-Dimensional
  9. Chai WL, Brook IM, Emanuelsson L, Palmquist A, van Noort R, Moharamzadeh K
    J Biomed Mater Res A, 2012 Feb;100(2):269-77.
    PMID: 22045611 DOI: 10.1002/jbm.a.33245
    A three dimensional tissue-engineered human oral mucosal model (3D OMM) used in the investigation of implant-soft tissue interface was recently reported. The aim of this study was to examine the ultrastructural features of soft tissue attachment to various titanium (Ti) implant surfaces based on the 3D OMM. Two techniques, that is, focus ion beam (FIB) and electropolishing techniques were used to prepare specimens for transmission electron microscopic (TEM) analysis of the interface. The 3D OM consisting of both epithelial and connective tissue layers was constructed by co-culturing human oral keratinocytes and fibroblasts onto an acellular dermis scaffold. Four types of Ti surface topographies were tested: polished, machined (turned), sandblasted, and TiUnite. The specimens were then processed for TEM examination using FIB (Ti remained) and electropolishing (Ti removed) techniques. The FIB sections showed some artifact and lack of details of ultrastructural features. In contrast, the ultrathin sections prepared from the electropolishing technique showed a residual Ti oxide layer, which preserved the details for intact ultrastructural interface analysis. There was evidence of hemidesmosome-like structures at the interface on the four types of Ti surfaces, which suggests that the tissue-engineered oral mucosa formed epithelial attachments on the Ti surfaces.
    Matched MeSH terms: Imaging, Three-Dimensional*
  10. Ho JPY, Merican AM, Hashim MS, Abbas AA, Chan CK, Mohamad JA
    J Arthroplasty, 2017 10;32(10):3176-3183.
    PMID: 28579444 DOI: 10.1016/j.arth.2017.04.060
    BACKGROUND: The posterior tibial slope (PTS) is an important consideration in knee arthroplasty. However, there is still no consensus for the optimal slope. The objectives of this study were (1) to reliably determine the native PTS in this population using 3-dimensional computed tomography scans and (2) to determine the normal reference range for PTS in this population.

    METHODS: One hundred computed tomography scans of disease-free knees were analyzed. A 3-dimensional reconstructed image of the tibia was generated and aligned to its anatomic axis in the coronal and sagittal planes. The tibia was then rotationally aligned to the tibial plateau (tibial centroid axis) and PTS was measured from best-fit planes on the surface of the proximal tibia and individually for the medial and lateral plateaus. This was then repeated with the tibia rotationally aligned to the ankle (transmalleolar axis).

    RESULTS: When rotationally aligned to the tibial plateau, the mean PTS, medial PTS, and lateral PTS were 11.2° ± 3.0 (range, 4.7°-17.7°), 11.3° ± 3.2 (range, 2.7°-19.7°), and 10.9° ± 3.7 (range, 3.5°-19.4°), respectively. When rotationally aligned to the ankle, the mean PTS, medial PTS, and lateral PTS were 11.4° ± 3.0 (range, 5.3°-19.3°), 13.9° ± 3.7 (range, 3.1°-24.4°), and 9.7° ± 3.6 (range, 0.8°-17.7°), respectively.

    CONCLUSION: The PTS in the normal Asian knee is on average 11° (mean) with a reference range of 5°-17° (mean ± 2 standard deviation). This has implications to surgery and implant design.

    Matched MeSH terms: Imaging, Three-Dimensional/methods
  11. Mittal S
    Heart Rhythm, 2008 Jun;5(6 Suppl):S64-7.
    PMID: 18456205 DOI: 10.1016/j.hrthm.2008.03.023
    Catheter ablation has come to play an important therapeutic role in the management of some patients with ventricular arrhythmias. An important advance in catheter ablation of ventricular tachycardia (VT) has been the development of three-dimensional catheter-based mapping systems, which permit identification of the tachycardia circuit and facilitate a strategy for catheter ablation. As a result, patients who suffer from "focal" forms of VT have been identified. This can have implications with respect to underlying arrhythmia mechanism, patient prognosis, and therapeutic strategies. The article reviews some insights learned from catheter ablation of focal forms of VT.
    Matched MeSH terms: Imaging, Three-Dimensional
  12. Moosavi Tayebi R, Wirza R, Sulaiman PS, Dimon MZ, Khalid F, Al-Surmi A, et al.
    J Cardiothorac Surg, 2015;10:58.
    PMID: 25896185 DOI: 10.1186/s13019-015-0249-2
    Computerized tomographic angiography (3D data representing the coronary arteries) and X-ray angiography (2D X-ray image sequences providing information about coronary arteries and their stenosis) are standard and popular assessment tools utilized for medical diagnosis of coronary artery diseases. At present, the results of both modalities are individually analyzed by specialists and it is difficult for them to mentally connect the details of these two techniques. The aim of this work is to assist medical diagnosis by providing specialists with the relationship between computerized tomographic angiography and X-ray angiography.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  13. Kurniawan A, Hamdani J, Chusida A, Utomo H, Rizky BN, Prakoeswa BFWR, et al.
    Leg Med (Tokyo), 2024 Mar;67:102399.
    PMID: 38219704 DOI: 10.1016/j.legalmed.2024.102399
    The field of bitemark analysis involves examining physical alterations in a medium resulting from contact with teeth and other oral structures. Various techniques, such as 2D and 3D imaging, have been developed in recent decades to ensure precise analysis of bitemarks. This study assessed the precision of using a smartphone camera to generate 3D models of bitemark patterns. A 3D model of the bite mark pattern was created using 3Shape TRIOSTM and a smartphone camera combined with monoscopic photogrammetry. The mesiodistal dimensions of the anterior teeth were measured using Rapidform Explorer and OrtogOnBlender, and the collected data were analyzed using IBM® SPSS® Statistics version 23.0. The mean mesiodistal dimension of the anterior teeth, as measured on the 3D model from 3Shape TRIOSTM and smartphone cameras, was found to be 6.95 ± 0.7667 mm and 6.94 ± 0.7639 mm, respectively. Statistical analysis revealed no significant difference between the two measurement methods, p > 0.05. The outcomes derived from this study unequivocally illustrate that a smartphone camera possessing the specific parameters detailed in this study can create a 3D representation of bite patterns with an accuracy level on par with the outputs of a 3D intraoral camera. These findings underscore the promising trajectory of merging smartphone cameras and monoscopic photogrammetry techniques, positioning them as a budget-friendly avenue for 3D bitemark analysis. Notably, the monoscopic photogrammetry methodology assumes substantial significance within forensic odontology due to its capacity for precise 3D reconstructions and the preservation of critical measurement data.
    Matched MeSH terms: Imaging, Three-Dimensional
  14. Yap Abdullah J, Manaf Abdullah A, Zaim S, Hadi H, Husein A, Ahmad Rajion Z, et al.
    Proc Inst Mech Eng H, 2024 Jan;238(1):55-62.
    PMID: 37990963 DOI: 10.1177/09544119231212034
    This study aimed to compare the 3D skull models reconstructed from computed tomography (CT) images using three different open-source software with a commercial software as a reference. The commercial Mimics v17.0 software was used to reconstruct the 3D skull models from 58 subjects. Next, two open-source software, MITK Workbench 2016.11, 3D Slicer 4.8.1 and InVesalius 3.1 were used to reconstruct the 3D skull models from the same subjects. All four software went through similar steps in 3D reconstruction process. The 3D skull models from the commercial and open-source software were exported in standard tessellation language (STL) format into CloudCompare v2.8 software and superimposed for geometric analyses. Hausdorff distance (HD) analysis demonstrated the average points distance of Mimics versus MITK was 0.25 mm. Meanwhile, for Mimics versus 3D Slicer and Mimics versus InVesalius, there was almost no differences between the two superimposed 3D skull models with average points distance of 0.01 mm. Based on Dice similarity coefficient (DSC) analysis, the similarity between Mimics versus MITK, Mimics versus 3D Slicer and Mimics versus InVesalius were 94.1, 98.8 and 98.3%, respectively. In conclusion, this study confirmed that the alternative open-source software, MITK, 3D Slicer and InVesalius gave comparable results in 3D reconstruction of skull models compared to the commercial gold standard Mimics software. This open-source software could possibly be used for pre-operative planning in cranio-maxillofacial cases and for patient management in the hospitals or institutions with limited budget.
    Matched MeSH terms: Imaging, Three-Dimensional*
  15. Saif AF, Prabuwono AS, Mahayuddin ZR
    PLoS One, 2015;10(6):e0126212.
    PMID: 26030818 DOI: 10.1371/journal.pone.0126212
    Fast and computationally less complex feature extraction for moving object detection using aerial images from unmanned aerial vehicles (UAVs) remains as an elusive goal in the field of computer vision research. The types of features used in current studies concerning moving object detection are typically chosen based on improving detection rate rather than on providing fast and computationally less complex feature extraction methods. Because moving object detection using aerial images from UAVs involves motion as seen from a certain altitude, effective and fast feature extraction is a vital issue for optimum detection performance. This research proposes a two-layer bucket approach based on a new feature extraction algorithm referred to as the moment-based feature extraction algorithm (MFEA). Because a moment represents the coherent intensity of pixels and motion estimation is a motion pixel intensity measurement, this research used this relation to develop the proposed algorithm. The experimental results reveal the successful performance of the proposed MFEA algorithm and the proposed methodology.
    Matched MeSH terms: Imaging, Three-Dimensional*
  16. Dong X, Xu S, Liu Y, Wang A, Saripan MI, Li L, et al.
    Cancer Imaging, 2020 Aug 01;20(1):53.
    PMID: 32738913 DOI: 10.1186/s40644-020-00331-0
    BACKGROUND: Convolutional neural networks (CNNs) have been extensively applied to two-dimensional (2D) medical image segmentation, yielding excellent performance. However, their application to three-dimensional (3D) nodule segmentation remains a challenge.

    METHODS: In this study, we propose a multi-view secondary input residual (MV-SIR) convolutional neural network model for 3D lung nodule segmentation using the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset of chest computed tomography (CT) images. Lung nodule cubes are prepared from the sample CT images. Further, from the axial, coronal, and sagittal perspectives, multi-view patches are generated with randomly selected voxels in the lung nodule cubes as centers. Our model consists of six submodels, which enable learning of 3D lung nodules sliced into three views of features; each submodel extracts voxel heterogeneity and shape heterogeneity features. We convert the segmentation of 3D lung nodules into voxel classification by inputting the multi-view patches into the model and determine whether the voxel points belong to the nodule. The structure of the secondary input residual submodel comprises a residual block followed by a secondary input module. We integrate the six submodels to classify whether voxel points belong to nodules, and then reconstruct the segmentation image.

    RESULTS: The results of tests conducted using our model and comparison with other existing CNN models indicate that the MV-SIR model achieves excellent results in the 3D segmentation of pulmonary nodules, with a Dice coefficient of 0.926 and an average surface distance of 0.072.

    CONCLUSION: our MV-SIR model can accurately perform 3D segmentation of lung nodules with the same segmentation accuracy as the U-net model.

    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  17. Ali A, Logeswaran R
    Comput Biol Med, 2007 Aug;37(8):1141-7.
    PMID: 17126314
    The 3D ultrasound systems produce much better reproductions than 2D ultrasound, but their prohibitively high cost deprives many less affluent organization this benefit. This paper proposes using the conventional 2D ultrasound equipment readily available in most hospitals, along with a single conventional digital camera, to construct 3D ultrasound images. The proposed system applies computer vision to extract position information of the ultrasound probe while the scanning takes place. The probe, calibrated in order to calculate the offset of the ultrasound scan from the position of the marker attached to it, is used to scan a number of geometrical objects. Using the proposed system, the 3D volumes of the objects were successfully reconstructed. The system was tested in clinical situations where human body parts were scanned. The results presented, and confirmed by medical staff, are very encouraging for cost-effective implementation of computer-aided 3D ultrasound using a simple setup with 2D ultrasound equipment and a conventional digital camera.
    Matched MeSH terms: Imaging, Three-Dimensional/economics; Imaging, Three-Dimensional/instrumentation*; Imaging, Three-Dimensional/statistics & numerical data
  18. Ali A, Logeswaran R
    J Digit Imaging, 2007 Dec;20(4):352-66.
    PMID: 17372781
    This article proposes a set-up for a 3-dimensional ultrasound system using visual probe localization on the conventional 2-dimensional ultrasound machines readily available in most hospitals. A calibrated digital camera is used for probe-tracking (localization) purposes, whereas ultrasound probe calibration is implemented using a purpose-built phantom. The calibration steps and results are detailed here. The overall system is proven effective in clinical trials through scanning of human organs. Results obtained show successful, accurate 3-dimensional representations using this simple cost-effective set-up.
    Matched MeSH terms: Imaging, Three-Dimensional/economics*; Imaging, Three-Dimensional/instrumentation
  19. Teo BG, Dhillon SK, Lim LH
    PLoS One, 2013;8(10):e77650.
    PMID: 24204903 DOI: 10.1371/journal.pone.0077650
    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.
    Matched MeSH terms: Imaging, Three-Dimensional/methods*
  20. Wan Ab Naim WN, Ganesan P, Al Abed A, Lim E
    PMID: 23365977 DOI: 10.1109/EMBC.2012.6346016
    The effects of curvature and tapering on the flow progression in the aorta were studied using numerical simulations on a realistic geometrical model of the aorta and three different versions of the ideal aorta models. The results showed that tapering increases velocity magnitude and wall shear stress while local curvatures affect the skewness of the velocity profile, the thickness of the boundary layer as well as the recirculation regions. Wall shear stress distribution in the aorta serves as an important determinant in the progression of arterial disease.
    Matched MeSH terms: Imaging, Three-Dimensional
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links