Displaying publications 61 - 80 of 126 in total

Abstract:
Sort:
  1. Zakaria ZA, Sulaiman MR, Morsid NA, Aris A, Zainal H, Pojan NH, et al.
    Methods Find Exp Clin Pharmacol, 2009 Mar;31(2):81-8.
    PMID: 19455262 DOI: 10.1358/mf.2009.31.2.1353876
    The present study was carried out to evaluate the antinociceptive, anti-inflammatory and antipyretic effects of the aqueous extract of Solanum nigrum leaves using various animal models. The extract, at concentrations of 10, 50 and 100%, was prepared by soaking (1:20; w/v) air-dried powdered leaves (20 g) in distilled water (dH2O) for 72 h. The extract solutions were administered subcutaneously in mice/rats 30 min prior to the tests. The extract exhibited significant (P < 0.05) antinociceptive activity when assessed using the abdominal constriction, hot plate and formalin tests. The extract also produced significant (P < 0.05) anti-inflammatory and antipyretic activities when assessed using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests, respectively. Overall, these activities occurred in a concentration-dependent manner, except for the 50% concentration of the extract, which was not effective in the abdominal constriction test. In conclusion, the present study demonstrated that S. nigrum leaves possessed antinociceptive, anti-inflammatory and antipyretic effects and thus supported traditional claims of its medicinal uses.
    Matched MeSH terms: Inflammation/drug therapy
  2. Ranneh Y, Mahmoud AM, Fadel A, Albujja M, Akim AM, Hamid HA, et al.
    PMID: 32957878 DOI: 10.2174/1386207323999200918152111
    BACKGROUND: Systemic acute inflammation is the hallmark of sepsis and is associated with multiple organ dysfunction.

    OBJECTIVE: This study investigated the potential of Stingless Bee Honey (SBH) to suppress lipopolysaccharide (LPS)-induced systemic acute inflammation in rats and to reveal the probable mechanism of action.

    METHODS: Rats received 4.6 and 9.2 g/kg SBH for 7 days followed by a single injection of LPS after which blood samples were taken 6h later.

    RESULTS: LPS induced liver, kidney, heart, and lung injury, were manifested by increased serum transaminases, alkaline phosphatase, creatine kinase, creatinine, and urea, along with multiple histological alterations, particularly leukocyte infiltration. Pro-inflammatory cytokines were elevated in the serum, and NF-κB p65, p38 MAPK, and HMGB-1 were significantly increased in different tissues of LPS-challenged rats. SBH prevented tissue injury, ameliorated pro-inflammatory cytokines, and suppressed NF-κB p65, p38 MAPK, and HMGB-1 in rats that had received LPS. In addition, SBH diminished reactive oxygen species (ROS) production, lipid peroxidation, and oxidative DNA damage, and enhanced glutathione and Nrf2 in LPS-treated rats.

    CONCLUSION: SBH prevents systemic acute inflammation by suppressing NF-κB, p38 MAPK, HMGB-1, oxidative stress, and tissue injury in rats. Thus, SBH may represent an effective anti-inflammatory nutraceutical, pending further mechanistic studies.

    Matched MeSH terms: Inflammation/drug therapy*
  3. Dar MJ, Ali H, Khan A, Khan GM
    J Drug Target, 2017 Aug;25(7):582-596.
    PMID: 28277824 DOI: 10.1080/1061186X.2017.1298601
    Colon-specific drug delivery has found important applications in the wide array of diseases affecting the lower intestinal tract. Recent developments and advancements in the polymer-based colonic delivery ensure targeted therapeutics with reduced systemic adverse effects. Latest progress in the understanding of polymer science has decorated a polymer-based formulation with a number of special features, which may prove effective in the localized drug targeting at specific sites of the intestine. Upon oral administration, polymeric vehicles or polymer-coated formulations serve to protect the drug from premature release and degradation in the upper gastrointestinal tract. Moreover, it also facilitates the selective accumulation and controlled release of the drug at inflamed sites of the colon. This review article focuses on a wide coverage of major polymers, their modifications, pros and cons, mechanism of colon targeting and applications as a vehicle system for colonic drug delivery, with a special emphasis on the inflammatory bowel disease.
    Matched MeSH terms: Inflammation/drug therapy*
  4. Ali F, Ismail A, Kersten S
    Mol Nutr Food Res, 2014 Jan;58(1):33-48.
    PMID: 24259381 DOI: 10.1002/mnfr.201300277
    Obesity and related metabolic diseases (e.g., type 2 diabetes, cardiovascular diseases, and hypertension) are the most prevailing nutrition-related issues in the world. An emerging feature of obesity is their relationship with chronic inflammation that begins in white adipose tissue and eventually becomes systemic. One potential dietary strategy to reduce glucose intolerance and inflammation is consumption of polyphenol-rich cocoa-like cocoa or their by-products. In vitro as well as in vivo data indicate that cocoa polyphenols (CPs) may exhibit antioxidant and anti-inflammatory properties. Polyphenols commonly found in cocoa have been reported to regulate lipid metabolism via inducing metabolic gene expression or activating transcription factors that regulate the expression of numerous genes, many of which play an important role in energy metabolism. Currently, several molecular targets (e.g., nuclear factor Kappa B, activated protein-1, peroxisome proliferator-activated receptors, liver X receptors, and adiponectin gene) have been identified, which may explain potential beneficial obesity-associated diseases effects of CPs. Further studies have been performed regarding the protective effects of CPs against metabolic diseases by suppressing transcription factors that antagonize lipid accumulation. Thus, polyphenols-rich cocoa products may diminish obesity-mediated metabolic diseases by multiple mechanisms, thereby attenuating chronic inflammation.
    Matched MeSH terms: Inflammation/drug therapy
  5. Sarmadi B, Musazadeh V, Dehghan P, Karimi E
    Nutr Metab Cardiovasc Dis, 2023 Oct;33(10):1821-1835.
    PMID: 37500345 DOI: 10.1016/j.numecd.2023.03.010
    AIMS: Cinnamon is a polyphenol-rich spice that has beneficial effects on markers of cardio metabolic health such as lipid profile, oxidative stress, and inflammation. Despite the accumulating evidence from meta-analyses on the effects of cinnamon on these markers, their findings are controversial. Thus, this umbrella meta-analysis was performed to evaluate the present evidence and provide a conclusive clarification.

    DATA SYNTHESIS: We searched the following international databases from inception to January 2022: PubMed, Scopus, Web of Science and Embase, and Google Scholar. Our findings of eleven meta-analyses showed that cinnamon consumption can significantly improve total cholesterol (TC) (WMD = -1.01 mg/dL; 95% CI: -2.02, -0.00, p = 0.049), low-density lipoprotein-cholesterol (LDL-C) (WMD = -0.82 mg/dL; 95% CI: -1.57, -0.07, p = 0.032), and high-density lipoprotein-cholesterol (HDL-C) (WMD = 0.47 mg/dL; 95% CI: 0.17, 0.77, p = 0.002) levels but not triglyceride (TG) levels (WMD = -0.13 mg/dL; 95% CI: -0.58, 0.32, p = 0.570). Our results did not show any significant effect of cinnamon on malondialdehyde (MDA) levels (WMD = -0.47; 95% CI: -0.99, 0.05, p = 0.078) and C-reactive protein (CRP) levels (WMD = -1.33; 95% CI: -2.66, 0.00, p = 0.051) but there was enhanced total antioxidant capacity (TAC) in patients with type 2 diabetes (T2DM) and polycystic ovary syndrome (PCOS) (WMD = 0.34; 95% CI: 0.04, 0.64, p = 0.026) and increased levels of interleukin-6 (WMD = -1.48; 95% CI: -2.96, -0.01, p = 0.049).

    CONCLUSIONS: Our results support the usefulness of cinnamon intake in modulating an imbalanced lipid profile in some metabolic disorders, particularly PCOS, as well as in improving TAC and interleukin-6. The review protocol was registered on PROSPERO as CRD42022358827.

    Matched MeSH terms: Inflammation/drug therapy
  6. Attiq A, Afzal S, Ahmad W, Kandeel M
    Eur J Pharmacol, 2024 Mar 05;966:176338.
    PMID: 38242225 DOI: 10.1016/j.ejphar.2024.176338
    Inflammation drives coronary artery disease and atherosclerosis implications. Lipoprotein entry, retention, and oxidative modification cause endothelial damage, triggering innate and adaptive immune responses. Recruited immune cells orchestrate the early atherosclerotic lesions by releasing proinflammatory cytokines, expediting the foam cell formation, intraplaque haemorrhage, secretion of matrix-degrading enzymes, and lesion progression, eventually promoting coronary artery syndrome via various inflammatory cascades. In addition, soluble mediators disrupt the dynamic anti- and prothrombotic balance maintained by endothelial cells and pave the way for coronary artery disease such as angina pectoris. Recent studies have established a relationship between elevated levels of inflammatory markers, including C-reactive protein (CRP), interleukins (IL-6, IL-1β), and tumour necrosis factor-alpha (TNF-α) with the severity of CAD and the possibility of future cardiovascular events. High-sensitivity C-reactive protein (hs-CRP) is a marker for assessing systemic inflammation and predicting the risk of developing CAD based on its peak plasma levels. Hence, understanding cross-talk interactions of inflammation, atherogenesis, and CAD is highly warranted to recalculate the risk factors that activate and propagate arterial lesions and devise therapeutic strategies accordingly. Cholesterol-inflammation lowering agents (statins), monoclonal antibodies targeting IL-1 and IL-6 (canakinumab and tocilizumab), disease-modifying antirheumatic drugs (methotrexate), sodium-glucose transport protein-2 (SGLT2) inhibitors, colchicine and xanthene oxidase inhibitor (allopurinol) have shown promising results in reducing inflammation, regressing atherogenic plaque and modifying the course of CAD. Here, we review the complex interplay between inflammatory, endothelial, smooth muscle and foam cells. Moreover, the putative role of inflammation in atherosclerotic CAD, underlying mechanisms and potential therapeutic implications are also discussed herein.
    Matched MeSH terms: Inflammation/drug therapy
  7. Siti HN, Kamisah Y, Kamsiah J
    Vascul. Pharmacol., 2015 Aug;71:40-56.
    PMID: 25869516 DOI: 10.1016/j.vph.2015.03.005
    The concept of mild chronic vascular inflammation as part of the pathophysiology of cardiovascular disease, most importantly hypertension and atherosclerosis, has been well accepted. Indeed there are links between vascular inflammation, endothelial dysfunction and oxidative stress. However, there are still gaps in our understanding regarding this matter that might be the cause behind disappointing results of antioxidant therapy for cardiovascular risk factors in large-scale long-term randomised controlled trials. Apart from the limitations of our knowledge, limitations in methodology and assessment of the body's endogenous and exogenous oxidant-antioxidant status are a serious handicap. The pleiotropic effects of antioxidant and anti-inflammation that are shown by some well-established antihypertensive agents and statins partly support the idea of using antioxidants in vascular diseases as still relevant. This review aims to provide an overview of the links between oxidative stress, vascular inflammation, endothelial dysfunction and cardiovascular risk factors, importantly focusing on blood pressure regulation and atherosclerosis. In view of the potential benefits of antioxidants, this review will also examine the proposed role of vitamin C, vitamin E and polyphenols in cardiovascular diseases as well as the success or failure of antioxidant therapy for cardiovascular diseases in clinical trials.
    Matched MeSH terms: Inflammation/drug therapy
  8. Bonsu KO, Reidpath DD, Kadirvelu A
    Cardiovasc Ther, 2015 Dec;33(6):338-46.
    PMID: 26280110 DOI: 10.1111/1755-5922.12150
    Statins are known to prevent heart failure (HF). However, it is unclear whether statins as class or type (lipophilic or hydrophilic) improve outcomes of established HF.
    Matched MeSH terms: Inflammation/drug therapy*
  9. Ahmad Nazri KA, Haji Mohd Saad Q, Mohd Fauzi N, Buang F, Jantan I, Jubri Z
    Pharm Biol, 2021 Dec;59(1):1203-1215.
    PMID: 34493166 DOI: 10.1080/13880209.2021.1970199
    CONTEXT: Gynura procumbens (Lour.) Merr. (Asteraceae) has been reported to have various pharmacological activities including anti-inflammatory effects.

    OBJECTIVE: This study sought to determine whether Gynura procumbens (GP) could improve vascular reactivity by suppressing inflammation in postmenopausal rats fed with five-times heated palm oil (5HPO) diet.

    MATERIALS AND METHODS: Forty-eight female Sprague-Dawley rats were randomly divided into sham [non-ovariectomized; grouped as control, GP extracts (250 and 500 mg/kg), atorvastatin (ATV, 10 mg/kg)] and postmenopausal (PM) groups [ovariectomized rats fed with 5HPO; grouped as PM, GP extracts (250 and 500 mg/kg) and ATV (10 mg/kg)]. Each group (n = 6) was either supplemented with GP extract or ATV orally once daily for 6 months.

    RESULTS: In comparison with the untreated PM group, 250 and 500 mg/kg GP supplementation to PM groups reduced the systolic blood pressure (103 ± 2.7, 86 ± 2.4 vs. 156 ± 7.83 mmHg, p 

    Matched MeSH terms: Inflammation/drug therapy*
  10. Dang J, Paudel YN, Yang X, Ren Q, Zhang S, Ji X, et al.
    ACS Chem Neurosci, 2021 07 07;12(13):2542-2552.
    PMID: 34128378 DOI: 10.1021/acschemneuro.1c00314
    The lack of disease-modifying therapeutic strategies against epileptic seizures has caused a surge in preclinical research focused on exploring and developing novel therapeutic candidates for epilepsy. Compounds from traditional Chinese medicines (TCMs) have gained much attention for a plethora of neurological diseases, including epilepsy. Herein, for the first time, we evaluated the anticonvulsive effects of schaftoside (SS), a TCM, on pentylenetetrazol (PTZ)-induced epileptic seizures in zebrafish and examined the underlying mechanisms. We observed that SS pretreatments significantly suppressed seizure-like behavior and prolonged the onset of seizures. Zebrafish larvae pretreated with SS demonstrated downregulation of c-fos expression during seizures. PTZ-induced upregulation of apoptotic cells was decreased upon pretreatment with SS. Inflammatory phenomena during seizure progression including the upregulation of interleukin 6 (IL-6), interleukin 1 beta (IL-1β), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were downregulated upon pretreatment with SS. The PTZ-induced recruitment of immunocytes was in turn reduced upon SS pretreatment. Moreover, SS pretreatment modulated oxidative stress, as demonstrated by decreased levels of catalase (CAT) and increased levels of glutathione peroxidase-1a (GPx1a) and manganese superoxide dismutase (Mn-SOD). However, pretreatment with SS modulated the PTZ-induced downregulation of the relative enzyme activity of CAT, GPx, and SOD. Hence, our findings suggest that SS pretreatment ameliorates PTZ-induced seizures, suppresses apoptosis, and downregulates the inflammatory response and oxidative stress, which potentially protect against further seizures in zebrafish.
    Matched MeSH terms: Inflammation/drug therapy
  11. Bukhari SN, Jantan I, Jasamai M
    Mini Rev Med Chem, 2013 Jan;13(1):87-94.
    PMID: 22876943
    Chalcones (1, 3-Diphenyl-2-propen-1-one) are constituted by a three carbon α, β-unsaturated carbonyl system. The biosynthesis of flavonoids and isoflavonoids is initiated by chalcones. Notable pharmacological activities of chalcones and its derivatives include anti-inflammatory, antifungal, antibacterial, antimalarial, antituberculosis, antitumor, antimicrobial and antiviral effects respectively. Owing to simplicity of the chemical structures and a huge variety of pharmacological actions exhibited, the entities derived from chalcones are subjected to extensive consideration. This review article is an effort to sum up the anti-inflammatory activities of chalcone derived chemical entities. Effect of chalcones on lipid peroxidation, heme oxygenase 1(HO-1), cyclooxygenase (COX), interleukin 5 (IL-5), nitric oxide (NO) and expression of cell adhesion molecules (CAM) is summarized stepwise.
    Matched MeSH terms: Inflammation/drug therapy
  12. Arshad L, Haque MA, Abbas Bukhari SN, Jantan I
    Future Med Chem, 2017 04;9(6):605-626.
    PMID: 28394628 DOI: 10.4155/fmc-2016-0223
    Curcumin, extracted mainly from Curcuma longa rhizomes, has been reported to possess potent anti-inflammatory and anti-oxidant activities. Although safe at higher doses and exhibiting multiple biological activities, curcumin still has the problem of poor bioavailability which has been an attractive area of research over the last few years. A number of efforts have been made by modifying structural features of curcumin. This review highlights the structurally modified and more stable newly synthesized curcumin analogs that have been screened against antioxidant and anti-inflammatory activities. Also the structure-activity relationship to gain insight into future guidelines for scheming new compounds has been discussed, and further these analogs being more stable may serve as promising agents for use in different pathological conditions.
    Matched MeSH terms: Inflammation/drug therapy*
  13. Sulaiman MR, Perimal EK, Akhtar MN, Mohamad AS, Khalid MH, Tasrip NA, et al.
    Fitoterapia, 2010 Oct;81(7):855-8.
    PMID: 20546845 DOI: 10.1016/j.fitote.2010.05.009
    The anti-inflammatory activity of zerumbone (1), a natural cyclic sesquiterpene isolated from Zingiber zerumbet Smith was investigated using carrageenan-induced paw edema and cotton pellet-induced granuloma tissue formation test in mice. It was demonstrated that intraperitoneal administration of 1 at a dose of 5, 10, 50 and 100 mg/kg produced significant dose-dependent inhibition of paw edema induced by carrageenan. It was also demonstrated that 1 at similar doses significantly suppressed granulomatous tissue formation in cotton pellet-induced granuloma test.
    Matched MeSH terms: Inflammation/drug therapy*
  14. Harasstani OA, Moin S, Tham CL, Liew CY, Ismail N, Rajajendram R, et al.
    Inflamm Res, 2010 Sep;59(9):711-21.
    PMID: 20221843 DOI: 10.1007/s00011-010-0182-8
    OBJECTIVES: We evaluated several flavonoid combinations for synergy in the inhibition of proinflammatory mediator synthesis in the RAW 264.7 cellular model of inflammation.

    METHODS: The inhibitory effect of chrysin, kaempferol, morin, silibinin, quercetin, diosmin and hesperidin upon nitric oxide (NO), prostaglandin E(2) (PGE(2)) and tumour necrosis factor-alpha (TNF-alpha) secretion from the LPS-induced RAW 264.7 monocytic macrophage was assessed and IC(50) values obtained. Flavonoids that showed reasonable inhibitory effects in at least two out of the three assays were combined in a series of fixed IC(50) ratios and reassessed for inhibition of NO, PGE(2) and TNF-alpha. Dose-response curves were generated and interactions were analysed using isobolographic analysis.

    RESULTS: The experiments showed that only chrysin, kaempferol, morin, and silibinin were potent enough to produce dose-response effects upon at least two out of the three mediators assayed. Combinations of these four flavonoids showed that several combinations afforded highly significant synergistic effects.

    CONCLUSIONS: Some flavonoids are synergistic in their anti-inflammatory effects when combined. In particular chrysin and kaempferol significantly synergised in their inhibitory effect upon NO, PGE(2) and TNF-alpha secretion. These findings open further avenues of research into combinatorial therapeutics of inflammatory-related diseases and the pharmacology of flavonoid synergy.

    Matched MeSH terms: Inflammation/drug therapy
  15. Sulaiman MR, Zakaria ZA, Adilius M, Mohamad AS, Ismail M, Israf DA
    Methods Find Exp Clin Pharmacol, 2009 May;31(4):241-7.
    PMID: 19557202 DOI: 10.1358/mf.2009.31.4.1371198
    The ethanolic extract of Alpinia conchigera Griff. leaves (EACL) was evaluated for its antinociceptive and anti-inflammatory activities in several in vivo experimental models. Antinociceptive activity was determined using the acetic acid-induced abdominal writhing test, the hot plate test and the formalin test. Anti-inflammatory activity was determined using the carrageenan-induced paw edema test. The extract (30, 100 and 300 mg/kg i.p.) was found to possess significant, dose-dependent inhibitory activity in all test models. In addition, the antinociceptive effect of the extract in the acetic acid-induced writhing and hot plate tests was reversed by naloxone, suggesting that this activity is mediated through activation of the opioid system. These findings suggest that EACL presents notable analgesic and anti-inflammatory activities, which support its folkloric use for painful and inflammatory conditions.
    Matched MeSH terms: Inflammation/drug therapy
  16. Safi SZ, Shah H, Qvist R, Bindal P, Mansor M, Yan GOS, et al.
    Cell Physiol Biochem, 2018;51(3):1429-1436.
    PMID: 30485834 DOI: 10.1159/000495591
    BACKGROUND/AIMS: NF-κB induces transcription of a number of genes, associated with inflammation and apoptosis. In this study, we have investigated the effect of β-adrenergic receptor stimulation on NF-κB and IκBα in HUVECs.

    METHODS: Human umbilical vein endothelial cells (HUVECs) were cultured in high and low glucose concentrations. All HUVECs were treated with different concentrations of isoproterenol and propranolol for different time periods. The analytical procedures consisted of Western Blot, ELISA, DCFH-DA and TUNEL assays.

    RESULTS: Isoproterenol (agonist of a beta-adrenergic receptor) significantly reduced phosphorylation at Ser-536 of NF-κB; and Ser-32 and Ser-36 of IκBα in hyperglycemic HUVECs. Isoproterenol also significantly reduced apoptosis and ROS generation. No effect of IκBα was observed on Tyr-42 phosphorylation. The effect of isoproterenol was reversed by the antagonist propranolol. We also checked if NF-κB inhibitor MG132 causes any change at the level of apoptosis. However, we observed an almost similar effect.

    CONCLUSION: Given data demonstrates that beta-adrenergic receptors stimulation has a protective effect on HUVECs that might be occuring via NF-κβ and IκBα pathway.

    Matched MeSH terms: Inflammation/drug therapy
  17. Wong SK, Chin KY, Ima-Nirwana S
    Int J Med Sci, 2020;17(11):1625-1638.
    PMID: 32669965 DOI: 10.7150/ijms.47103
    Oxidative stress and inflammation are two interlinked events that exist simultaneously in metabolic syndrome (MetS) and its related complications. These pathophysiological processes can be easily triggered by each other. This review summarizes the current evidence from animal and human studies on the effects of vitamin C in managing MetS. In vivo studies showed promising effects of vitamin C, but most of the interventions used were in combination with other compounds. The direct effects of vitamin C remain to be elucidated. In humans, the current state of evidence revealed that lower vitamin C intake and circulating concentration were found in MetS subjects. A negative relationship was observed between vitamin C intake / concentration and the risk of MetS. Oral supplementation of vitamin C also improved MetS conditions. It has been postulated that the positive outcomes of vitamin C may be in part mediated through its anti-oxidative and anti-inflammatory properties. These observations suggest the importance of MetS patients to have an adequate intake of vitamin C through food, beverages or supplements in order to maintain its concentration in the systemic circulation and potentially reverse MetS.
    Matched MeSH terms: Inflammation/drug therapy
  18. Chen LH, Xue JF, Zheng ZY, Shuhaidi M, Thu HE, Hussain Z
    Int J Biol Macromol, 2018 Sep;116:572-584.
    PMID: 29772338 DOI: 10.1016/j.ijbiomac.2018.05.068
    Hyaluronic acid (HA) plays multifaceted role in regulating various biological processes and maintaining homeostasis into the body. Numerous researches evidenced the biomedical implications of HA in skin repairmen, cancer prognosis, wound healing, tissue regeneration, anti-inflammatory, immunomodulation. The present review was aimed to summarize and critically appraise the recent developments and efficacy of HA for treatment of inflammatory skin and joint diseases. A thorough analysis of the literature revealed that HA based formulations (i.e., gels, creams, autologous graft, thin sheets, soaked gauze, gauze pad, tincture, injection) have shown remarkable efficacy in treating a wide range of inflammatory skin diseases. The safety, tolerability, and efficacy of HA (as intra-articular injection) have also been well-documented for treatment of various types of joint disease including knee osteoarthritic, joint osteoarthritis, canine osteoarthritis, and meniscal swelling. Intra-articular injection of HA produces remarkable reduction in joint pain, synovial inflammation, and articular swelling. A remarkable improvement in chondrocyte density, territorial matrix appearance, reconstitution of superficial amorphous layer of the cartilage, collagen remodelling, and regeneration of meniscus have also been evident in patients treated with HA. Conclusively, we validate that the application/administration of HA is a promising pharmacotherapeutic regimen for treatment of inflammatory skin and joint diseases.
    Matched MeSH terms: Inflammation/drug therapy
  19. Tumpang MA, Ramli NA, Hussain Z
    Curr Drug Targets, 2018;19(6):674-700.
    PMID: 28914203 DOI: 10.2174/1389450118666170913162147
    BACKGROUND: Phytomedicines have been well-accepted alternative complementary therapies for the treatment of a wide range of acute and chronic skin inflammatory diseases including chronic herpes, prurigo, psoriasis, and atopic dermatitis (AD). A plethora of in vitro and in vivo studies have evidenced the therapeutic viability of phytomedicines, polyherbal formulations, plant-based materials and their decoctions for the treatment of mild-to-severe AD.

    OBJECTIVE: This review was aimed to summarize and critically discuss the convincing evidence for the therapeutic effectiveness of phytomedicines for the treatment of AD and explore their anti-AD efficacy.

    RESULTS: The critical analysis of a wide algorithm of herbal medicines revealed that their remarkable anti-AD efficacy is attributed to their potential of reducing erythema intensity, oedema, inflammation, transepidermal water loss (TEWL) and a remarkable suppression of mRNA expression of ADassociated inflammatory biomarkers including histamine, immunoglobulin (Ig)-E, prostaglandins, mast cells infiltration and production of cytokines and chemokines in the serum and skin biopsies.

    CONCLUSION: In conclusion, herbal medicines hold great promise as complementary and alternative therapies for the treatment of mild-to-moderate AD when used as monotherapy and for the treatment of moderate-to-severe AD when used in conjunction with other pharmacological agents.

    Matched MeSH terms: Inflammation/drug therapy
  20. Subramanian P, Jayakumar M, Jayapalan JJ, Hashim OH
    Pharmacol Rep, 2014 Dec;66(6):1037-42.
    PMID: 25443732 DOI: 10.1016/j.pharep.2014.06.018
    BACKGROUND: Elevated blood ammonia leads to hyperammonaemia that affects vital central nervous system (CNS) functions. Fisetin, a naturally occurring flavonoid, exhibits therapeutic benefits, such as anti-cancer, anti-diabetic, anti-oxidant, anti-angiogenic, neuroprotective and neurotrophic effects.

    METHODS: In this study, the chronotherapeutic effect of fisetin on ammonium chloride (AC)-induced hyperammonaemic rats was investigated, to ascertain the time point at which the maximum drug effect is achieved. The anti-hyperammonaemic potential of fisetin (50mg/kg b.w. oral) was analysed when administered to AC treated (100mg/kg b.w. i.p.) rats at 06:00, 12:00, 18:00 and 00:00h. Amelioration of pathophysiological conditions by fisetin at different time points was measured by analysing the levels of expression of liver urea cycle enzymes (carbamoyl phosphate synthetase-I (CPS-I), ornithine transcarbamoylase (OTC) and argininosuccinate synthetase (ASS)), nuclear transcription factor kappaB (NF-κB p65), brain glutamine synthetase (GS) and inducible nitric oxide synthase (iNOS) by Western blot analysis.

    RESULTS: Fisetin increased the expression of CPS-I, OTC, ASS and GS and decreased iNOS and NF-κB p65 in hyperammonaemic rats. Fisetin administration at 00:00h showed more significant effects on the expression of liver and brain markers, compared with other time points.

    CONCLUSIONS: Fisetin could exhibit anti-hyperammonaemic effect owing to its anti-oxidant and cytoprotective influences. The temporal variation in the effect of fisetin could be due to the (i) chronopharmacological, chronopharmacokinetic properties of fisetin and (ii) modulations in the endogenous circadian rhythms of urea cycle enzymes, brain markers, redox enzymes and renal clearance during hyperammonaemia by fisetin. However, future studies in these lines are necessitated.

    Matched MeSH terms: Inflammation/drug therapy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links