Displaying publications 61 - 80 of 336 in total

Abstract:
Sort:
  1. Subuhi NEAM, Saad SM, Zain NNM, Lim V, Miskam M, Kamaruzaman S, et al.
    J Sep Sci, 2020 Aug;43(16):3294-3303.
    PMID: 32519432 DOI: 10.1002/jssc.201901194
    In this work, a simple, fast, sensitive, and environmentally friendly method was developed for preconcentration and quantitative measurement of bisphenol A in water samples using gas chromatography with mass spectrometry. The preconcentration approach, namely biosorption-based dispersive liquid-liquid microextraction with extractant removal by magnetic nanoparticles was performed based on the formation of microdroplet of rhamnolipid biosurfactant throughout the aqueous samples, which accelerates the mass transfer process between the extraction solvent and sample solution. The process is then followed by the application of magnetic nanoparticles for easy retrieval of the analyte-containing extraction solvent. Several important variables were optimized comprehensively including type of disperser solvent and desorption solvent, rhamnolipid concentration, volume of disperser solvent, amount of magnetic nanoparticles, extraction time, desorption time, ionic strength, and sample pH. Under the optimized microextraction and gas chromatography with mass spectrometry conditions, the method demonstrated good linearity over the range of 0.5-500 µg/L with a coefficient of determination of R2  = 0.9904, low limit of detection (0.15 µg/L) and limit of quantification (0.50 µg/L) of bisphenol A, good analyte recoveries (84-120%) and acceptable relative standard deviation (1.8-14.9%, n = 6). The proposed method was successfully applied to three environmental water samples, and bisphenol A was detected in all samples.
    Matched MeSH terms: Limit of Detection
  2. Raja Jamaluddin RZA, Tan LL, Chong KF, Heng LY
    Nanotechnology, 2020 Nov 27;31(48):485501.
    PMID: 32748805 DOI: 10.1088/1361-6528/abab2e
    Graphene decorated with graphitic nanospheres functionalized with pyrene butyric acid (PBA) is used for the first time to fabricate a DNA biosensor. The electrode was formed by attaching a DNA probe onto PBA, which had been stacked onto a graphene material decorated with graphene nanospheres (GNSs). The nanomaterial was drop-coated onto a carbon screen-printed electrode (SPE) to create the GNS-PBA modified electrode (GNS-PBA/SPE). A simple method was used to produce GNS by annealing graphene oxide (GO) solution at high temperature. Field emission scanning electron micrographs confirmed the presence of a spherical shape of GNS with a diameter range of 40-80 nm. A stable and uniform PBA-modified GNS (GNS-PBA) was obtained with a facile ultrasonication step. Thus allowing aminated DNA probes of genetically modified (GM) soybean to be attached to the nanomaterials to form the DNA biosensor. The GNS-PBA/SPE exhibited excellent electrical conductivity via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) tests using potassium ferricyanide (K3[Fe(CN)6]) as the electroactive probe. By employing an anthraquinone monosulfonic acid (AQMS) redox intercalator as the DNA hybridization indicator, the biosensor response was evaluated using the DPV electrochemical method. A good linear relationship between AQMS oxidation peak current and target DNA concentrations from 1.0 × 10-16 to 1.0 × 10-8 M with a limit of detection (LOD) of less than 1.0 × 10-16 M was obtained. Selectivity experiments revealed that the voltammetric GM DNA biosensor could discriminate complementary sequences of GM soybean from non-complementary sequences and hence good recoveries were obtained for real GM soybean sample analysis. The main advantage of using GNS is an improvement of the DNA biosensor analytical performance.
    Matched MeSH terms: Limit of Detection
  3. Zakaria N, Ramli MZ, Ramasamy K, Meng LS, Yean CY, Banga Singh KK, et al.
    Anal Biochem, 2018 08 15;555:12-21.
    PMID: 29879415 DOI: 10.1016/j.ab.2018.05.031
    A miniaturized biosensing platform, based on monoclonal amyloid-beta antibodies (mAβab) that were immobilized on a disc-shaped platinum/iridium (Pt/Ir) microelectrode surface coupled with an impedimetric signal transducer, was developed for the label-free and sensitive detection of amyloid-beta peptide fragment 1-40 (Aβ40); a reliable biomarker for early diagnosis of Alzheimer's disease (AD). A Pt/Ir microelectrode was electropolymerized with poly (ortho-phenylenediamine), a conducting free amine-containing aromatic polymer; followed by crosslinking with glutaraldehyde for subsequent coupling of mAβab on the microelectrode surface. This modification strategy efficiently improved the impedimetric detection performance of Aβ40 in terms of charge transfer resistance (∼400-fold difference) and normalized impedance magnitude percentage change (∼40% increase) compared with a passive adsorption-based immobilization method. The sensitivity of the micro-immunosensing assay was found to be 1056 kΩ/(pg/mL)/cm2 and the limit of detection was found to be 4.81 pg/mL with a dynamic range of 1-104 pg/mL (R2 = 0.9932). The overall precision of the assay, as measured by relative standard deviation, ranged from 0.84 to 5.15%, demonstrating its reliability and accuracy; while in respect to assay durability and stability, the immobilized mAβab were able to maintain 80% of their binding activity to Aβ40 after incubation for 48 h at ambient temperature (25 °C). To validate the practical applicability, the assay was tested using brain tissue lysates prepared from AD-induced rats. Results indicate that the proposed impedimetric micro-immunosensing platform is highly versatile and adaptable for the quantitative detection of other disease-related biomarkers.
    Matched MeSH terms: Limit of Detection
  4. Choi JR, Hu J, Gong Y, Feng S, Wan Abas WA, Pingguan-Murphy B, et al.
    Analyst, 2016 05 10;141(10):2930-9.
    PMID: 27010033 DOI: 10.1039/c5an02532j
    Lateral flow assays (LFAs) have been extensively explored in nucleic acid testing (NAT) for medical diagnostics, food safety analysis and environmental monitoring. However, the amount of target nucleic acid in a raw sample is usually too low to be directly detected by LFAs, necessitating the process of amplification. Even though cost-effective paper-based amplification techniques have been introduced, they have always been separately performed from LFAs, hence increasing the risk of reagent loss and cross-contaminations. To date, integrating paper-based nucleic acid amplification into colorimetric LFA in a simple, portable and cost-effective manner has not been introduced. Herein, we developed an integrated LFA with the aid of a specially designed handheld battery-powered system for effective amplification and detection of targets in resource-poor settings. Interestingly, using the integrated paper-based loop-mediated isothermal amplification (LAMP)-LFA, we successfully performed highly sensitive and specific target detection, achieving a detection limit of as low as 3 × 10(3) copies of target DNA, which is comparable to the conventional tube-based LAMP-LFA in an unintegrated format. The device may serve in conjunction with a simple paper-based sample preparation to create a fully integrated paper-based sample-to-answer diagnostic device for point-of-care testing (POCT) in the near future.
    Matched MeSH terms: Limit of Detection
  5. Yan G, Li Q, Hong X, Gopinath SCB, Anbu P, Li C, et al.
    Mikrochim Acta, 2021 05 11;188(6):185.
    PMID: 33977395 DOI: 10.1007/s00604-021-04836-8
    An abdominal aortic aneurysm (AAA) is abnormal swelling in the abdominal aorta and a prevalent life-threatening disease. This research introduces a new interdigitated microelectrode (IDME)-sensing surface modified by iron oxide nanoworms (IONWs) for detecting the AAA biomarker insulin-like growth factor-1 (IGF1). A sandwich pattern was formulated with the IGF1 aptamer and IGFBP1 (IGF binding protein-1) on the IONW-constructed IDME hybrid to identify IGF1. The surface morphology of the IONWs revealed a uniform distribution of worm-like structures (80-100 nm) as confirmed by FESEM and FETEM analyses. Further, the presence of the major elements, Fe and O, was confirmed by EDX and XPS studies. The crystal planes that appeared in the IONW reflect cubic magnetite. IONW-modified IDME attained a limit of detection for IGF1 of 1 fM (3σ) with an aptamer-IGF1-IGFBP1 sandwich. This sandwich with IGFBP1 enhanced the current level at all concentrations of IGF1 and displayed linearity in the range 1 fM to 100 pM with a determination coefficient of R2 = 0.9373 [y = 3.38221x - 4.79]. Control experiments with complementary aptamer sequences, IGF2 and IGFBP3 did not show notable signal changes, indicating the specific detection of IGF1. This IONW constructed electrode helps to achieve the detection of low amounts of IGF1 and diagnose AAA at the stage prior to rupture.
    Matched MeSH terms: Limit of Detection
  6. Wong FC, Ahmad M, Heng LY, Peng LB
    Talanta, 2006 Jun 15;69(4):888-93.
    PMID: 18970653 DOI: 10.1016/j.talanta.2005.11.034
    An optical biosensor consisting of a chromoionophore (ETH5294) (CM) doped sol-gel film interfaced with another sol-gel film immobilized with acetylcholinesterase (AChE) was employed to detect the insecticide dichlorvos. The main advantage of this optical biosensor is the use of a sol-gel layer with immobilized CM that possesses lipophilic property. The highly lipophilic nature of the CM and its compatibility with the sol-gel matrix has prevented leaching, which is frequently a problem in optical sensor construction based on pH indicator dyes. The immobilization of the indicator and enzyme was simple and need no chemical modification. The CM layer is pH sensitive and detects the pH changes of the acetylcholine chloride (AChCl) substrate when hydrolyzed by AChE layer deposited above. In the absence of the AChE layer, the pH response of the CM layer is linear from pH 6 to 8 (R(2)=0.98, n=3) and it showed no leaching of the lipophilic chromoionophore. When the AChE layer is deposited on top, the optical biosensor responds to AChCl with a linear dynamic range of 40-90mM AChCl (R(2)=0.984, n=6). The response time of the biosensor is 12min. Based on the optimum incubation time of 15min, a linear calibration curve of dichlorvos against the percentage inhibition of AChE was obtained from 0.5 to 7mg/L of dichlorvos (17-85% inhibition, R(2)=0.991, n=9). The detection limit for dichlorvos was 0.5mg/L. The results of the analysis of 1.7-6.0mg/L of dichlorvos using this optical biosensor agreed well with a gas chromatography-mass spectrometry detection method.
    Matched MeSH terms: Limit of Detection
  7. Ariffin EY, Lee YH, Futra D, Tan LL, Karim NHA, Ibrahim NNN, et al.
    Anal Bioanal Chem, 2018 Mar;410(9):2363-2375.
    PMID: 29504083 DOI: 10.1007/s00216-018-0893-1
    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10-12-1.0×10-2 μM, with a low detection limit of 8.17×10-14 μM (R2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.
    Matched MeSH terms: Limit of Detection
  8. Fang TY, Praveena SM, deBurbure C, Aris AZ, Ismail SN, Rasdi I
    Chemosphere, 2016 Dec;165:358-368.
    PMID: 27665296 DOI: 10.1016/j.chemosphere.2016.09.051
    In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples.
    Matched MeSH terms: Limit of Detection
  9. Alim S, Kafi AKM, Rajan J, Yusoff MM
    Int J Biol Macromol, 2019 Feb 15;123:1028-1034.
    PMID: 30465828 DOI: 10.1016/j.ijbiomac.2018.11.171
    This work reports on a novel glucose biosensor based on co-immobilization of glucose oxidase (GOx) and horseradish peroxidase with polymerized multiporous nanofiber (MPNFs) of SnO2 onto glassy carbon electrode with chitosan. Multiporous nanofibers of SnO2 were synthesized by electrospinning method from the tin precursor which possesses high surface area good electrical conductivity, and the nanofibers were polymerized with polyaniline (PANI). GOx and HRP were then co-immobilized with the nanofibers on the surface of the glassy carbon electrode by using chitosan. The polymerized nanofibers play a significant role in facilitating the direct electron transfer between the electroactive center of the immobilized enzyme and the electrode surface. The morphology of the nanofiber and polymerized nanofiber has been evaluated by field emission scanning electron microscopy (FESEM). Cyclic Voltammetry and amperometry were employed to study and optimize the performance of the fabricated biosensor. The PANI/SnO2-NF/GOx-HRP/Ch/GC biosensor displayed a linear amperometric response towards the glucose concentration range from 5 to 100 μM with a detection limit of 1.8 μM (S/N = 3). Also, the anti-interference study and real sample analysis was investigated. Furthermore, the biosensor reported in this work exhibited excellent stability, reproducibility, and repeatability.
    Matched MeSH terms: Limit of Detection
  10. Othman N, Mohamed Z, Verweij JJ, Huat LB, Olivos-García A, Yeng C, et al.
    Foodborne Pathog Dis, 2010 Jun;7(6):637-41.
    PMID: 20132028 DOI: 10.1089/fpd.2009.0427
    Entamoeba histolytica is the second major cause of liver abscess disease in humans, particularly in developing countries. Recently, DNA molecular-based methods have been employed to enhance the detection of E. histolytica in either pus or stool specimens. In this study, the results of real-time polymerase chain reaction (PCR) to detect E. histolytica DNA in pus from liver abscess cases were compared with those of indirect hemagglutination assay on the corresponding serum samples. Bacterial cultures were also performed on the pus samples for the diagnosis of pyogenic liver abscess. The real-time PCR detected E. histolytica DNA in 23 of 30 (76.7%) pus samples, when compared with 14 of 30 (46.7%) serum samples in which anti-Entamoeba antibodies were detected by indirect hemagglutination assay and 4 of 30 (13.3%) pus samples that showed bacterial infection by culture. The use of real-time PCR is a promising detection method for diagnosis and epidemiology assessment of amoebic liver abscess.
    Matched MeSH terms: Limit of Detection
  11. Wang F, Gopinath SC, Lakshmipriya T
    Int J Nanomedicine, 2019;14:8469-8481.
    PMID: 31695375 DOI: 10.2147/IJN.S219976
    BACKGROUND: A pandemic influenza viral strain, influenza A/California/07/2009 (pdmH1N1), has been considered to be a potential issue that needs to be controlled to avoid the seasonal emergence of mutated strains.

    MATERIALS AND METHODS: In this study, aptamer-antibody complementation was implemented on a multiwalled carbon nanotube-gold conjugated sensing surface with a dielectrode to detect pandemic pdmH1N1. Preliminary biomolecular and dielectrode surface analyses were performed by molecular and microscopic methods. A stable anti-pdmH1N1 aptamer sequence interacted with hemagglutinin (HA) and was compared with the antibody interaction. Both aptamer and antibody attachments on the surface as the basic molecule attained the saturation at nanomolar levels.

    RESULTS: Aptamers were found to have higher affinity and electric response than antibodies against HA of pdmH1N1. Linear regression with aptamer-HA interaction displays sensitivity in the range of 10 fM, whereas antibody-HA interaction shows a 100-fold lower level (1 pM). When sandwich-based detection of aptamer-HA-antibody and antibody-HA-aptamer was performed, a higher response of current was observed in both cases. Moreover, the detection strategy with aptamer clearly discriminated the closely related HA of influenza B/Tokyo/53/99 and influenza A/Panama/2007/1999 (H3N2).

    CONCLUSION: The high performance of the abovementioned detection methods was supported by the apparent specificity and reproducibility by the demonstrated sensing system.

    Matched MeSH terms: Limit of Detection
  12. Ramanathan S, Gopinath SCB, Ismail ZH, Md Arshad MK, Poopalan P
    Biosens Bioelectron, 2022 Feb 01;197:113735.
    PMID: 34736114 DOI: 10.1016/j.bios.2021.113735
    In an aim of developing portable biosensor for SARS-CoV-2 pandemic, which facilitates the point-of-care aptasensing, a strategy using 10 μm gap-sized gold interdigitated electrode (AuIDE) is presented. The silane-modified AuIDE surface was deposited with ∼20 nm diamond and enhanced the detection of SARS-CoV-2 nucleocapsid protein (NCP). The characteristics of chemically modified diamond were evidenced by structural analyses, revealing the cubic crystalline nature at (220) and (111) planes as observed by XRD. XPS analysis denotes a strong interaction of carbon element, composed ∼95% as seen in EDS analysis. The C-C, CC, CO, CN functional groups were well-refuted from XPS spectra of carbon and oxygen elements in diamond. The interrelation between elements through FTIR analysis indicates major intrinsic bondings at 2687-2031 cm-1. The aptasensing was evaluated through electrochemical impedance spectroscopy measurements, using NCP spiked human serum. With a good selectivity the lower detection limit was evidenced as 0.389 fM, at a linear detection range from 1 fM to 100 pM. The stability, and reusability of the aptasensor were demonstrated, showing ∼30% and ∼33% loss of active state, respectively, after ∼11 days. The detection of NCP was evaluated by comparing anti-NCP aptamer and antibody as the bioprobes. The determination coefficients of R2 = 0.9759 and R2 = 0.9772 were obtained for aptamer- and antibody-based sensing, respectively. Moreover, the genuine interaction of NCP aptamer and protein was validated by enzyme linked apta-sorbent assay. The aptasensing strategy proposed with AuIDE/diamond enhanced sensing platform is highly recommended for early diagnosis of SARS-CoV-2 infection.
    Matched MeSH terms: Limit of Detection
  13. Fatariah, Z., Tengku Zulkhairuazha, T.Y., Wan Rosli, W.I.
    MyJurnal
    Ascorbic acid or vitamin C is mostly found in natural products such as fruits and vegetables. High performance liquid chromatography (HPLC) method has been developed and validated to compare the ascorbic acid content in Benincasa hispida (Bh) fruit extract with three different extraction solvents; i) 3% metaphosphoric acid, ii) 3% citric acid and iii) distilled water. The compound has been detected and quantified by the use of HPLC coupled with UV-Vis detector. The amount of ascorbic acid detected in Bh fruit extract prepared with different extraction solvents; 3% metaphosphoric acid, 3% citric acid and distilled water were 13.18, 7.91 and 9.42 mg/100g respectively. Total run time was 6 min and the retention time was 2.60 min. Calibration curve was linear with the concentration range 1.00 – 16.00 μg/ml. Limits of detection was 0.24 μg/ml, limit of quantification was 0.81 μg/ml and recovery was 93.52%. The result showed ascorbic acid content is higher in Bh fruit extract with 3% metaphosphoric acid, followed by extract with distilled water and 3% citric acid. Thus, Bh is another novel fruit/ vegetable potentially used as food ingredient as it contains a good source of ascorbic acid that can be good for one’s health.
    Matched MeSH terms: Limit of Detection
  14. Al Azzam KM, Saad B, Makahleah A, Aboul-Enein HY, Elbashir AA
    Biomed Chromatogr, 2010 May;24(5):535-43.
    PMID: 19739243 DOI: 10.1002/bmc.1323
    A micellar electrokinetic chromatography (MEKC) method for the simultaneous determination of the antiviral drugs acyclovir and valacyclovir and their major impurity, guanine, was developed. The influences of several factors (surfactant and buffer concentration, pH, applied voltage, capillary temperature and injection time) were studied. Using tyramine hydrochloride as internal standard, the analytes were all separated in about 4 min. The separation was carried out in reversed polarity mode at 28 degrees C, 25 kV and using hydrodynamic injection (15 s). The separation was effected in a fused-silica capillary 100 microm x 56 cm and a background electrolyte of 20 mM citric acid-1 M Tris solution (pH 2.75), containing 125 mM sodium dodecyl sulphate and detection at 254 nm. The method was validated with respect to linearity, limit of detection and quantification, accuracy, precision and selectivity. Calibration curves were linear over the range 0.1-1 microg/mL (guanine) and from 0.1 to 120 microg/mL for both valacyclovir and acyclovir. The relative standard deviations of intra- and inter-day migration times and corrected peak areas were less than 5.0%. The proposed method was successfully applied to the determination of the analytes in tablets and creams. From the previous study it is concluded that the stability-indicating method developed for acyclovir and valacyclovir can be used for analysis of the drug in various stability samples.
    Matched MeSH terms: Limit of Detection
  15. Hatamluyi B, Lorestani F, Es'haghi Z
    Biosens Bioelectron, 2018 Nov 30;120:22-29.
    PMID: 30144642 DOI: 10.1016/j.bios.2018.08.008
    The simultaneous measurement of the concentration of anticancer drugs with a fast, sensitive and accurate method in biological samples is a challenge for better monitoring of drug therapy and better determine the pharmacokinetics. An electrochemical sensor was developed for the simultaneous determination of anticancer drugs, Ifosfamide (IFO) and Etoposide (ETO) based on pencil graphite electrode modified with Au/Pd@rGO nanocomposite decorated with poly (L-Cysteine). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to study the properties of the modified electrode. The electrochemical behavior of IFO and ETO on the Au/Pd@rGO@p(L-Cys) modified electrode was investigated by cyclic voltammetry and differential pulse voltammetry (DPV) techniques and the obtained results confirmed its efficiency for the individual and simultaneous sensing of IFO and ETO. After optimization of electrochemical parameters, the fabricated sensor presented excellent performance in simultaneous determination of IFO and ETO with a wide linear range from 0.10 to 90.0 μM and 0.01 to 40.0 μM and low detection limits (3 Sb/m) of 9.210 nM and 0.718 nM, respectively. In addition, this study proved that the constructed sensor could be useful to simultaneous analysis of IFO and ETO in biological samples and pharmaceutical compounds.
    Matched MeSH terms: Limit of Detection
  16. Ahmad H, Haseen U, Umar K, Ansari MS, Ibrahim MNM
    Mikrochim Acta, 2019 08 27;186(9):649.
    PMID: 31456042 DOI: 10.1007/s00604-019-3753-6
    The authors describe a method for solvent-free mechano-chemical synthesis of a bioinspired sorbent. A 2D ultra-thin carbon sheet similar to graphene oxide was prepared using a natural waste (onion sheet). The formation of 2D carbon sheets was confirmed by Raman spectroscopy, X-ray photoelectron spectroscopy and ATR-IR. The surface morphology was characterized by field emission scanning electron microscopy and high-resolution tunneling electron microscopy. The carbon sheets were decorated with crystalline MnFe2O4 nanoparticles by solid-state reaction at room temperature. The presence of magnetic particles in the final product was confirmed by vibrating sample magnetometry and electron microscopy. The synergistic effect of carbon sheets and MnFe2O4 led to an enhanced sorption of arsenic species compared to bare carbon sheets or to MnFe2O4 nanoparticles. A column was prepared for the simultaneous preconcentration and determination of trace levels of As(III) and As(V) from water samples. The preconcentration factors are between 900 and 833 for As(III) and As(V) species, respectively. The linearity of the calibration plot ranges from 0.4-10 ng mL-1. The detection limits (at 3σ) for both As(III) and As(V) are 30 pg mL-1. The Student's t values for the analysis of spiked samples are lower than the critical Student's t values at a 95% confidence level. The recoveries from spiked water samples range between 99 and 102.8%. Graphical abstract Schematic representation of the preparation of carbon sheets similar to graphene oxide from onion sheaths after pyrolysis at 800 °C. The prepared carbon sheet-MnFe2O4 composite shows excellent arsenic sorption and preconcentration down to the pg mL-1 concentration.
    Matched MeSH terms: Limit of Detection
  17. Gopinath SCB, Ismail ZH, Shapiai MI, Sobran NMM
    PMID: 33835514 DOI: 10.1002/bab.2164
    Artificial intelligence of things (AIoT) has become a potential tool for use in a wide range of fields, and its use is expanding in interdisciplinary sciences. On the other hand, in a clinical scenario, human blood-clotting disease (Royal disease) detection has been considered an urgent issue that has to be solved. This study uses AIoT with deep long short-term memory networks for biosensing application and analyzes the potent clinical target, human blood clotting factor IX, by its aptamer/antibody as the probe on the microscaled fingers and gaps of the interdigitated electrode. The earlier results by the current-volt measurements have shown the changes in the surface modification. The limit of detection (LOD) was noticed as 1 pM with the antibody as the probe, whereas the aptamer behaved better with the LOD at 100 fM. The time-series predictions from the AIoT application supported the obtained results with the laboratory analyses using both probes. This application clearly supports the results obtained from the interdigitated electrode sensor as aptamer to be the better option for analyzing the blood clotting defects. The current study supports a great implementation of AIoT in sensing application and can be followed for other clinical biomarkers.
    Matched MeSH terms: Limit of Detection
  18. Ahmad W, Husain I, Ahmad N, Amir M, Sarafroz M, Ansari MA, et al.
    3 Biotech, 2020 Apr;10(4):165.
    PMID: 32206499 DOI: 10.1007/s13205-020-2154-1
    Boerhavia diffusa (BD) Linn. (Nyctaginaceae) is one of the most commonly used herbs in the Indian traditional system of medicine for the urinary disorders. The aim of the current investigation was to carry out initiation, development, and maintenance of BD callus cultures and quantitative estimation of punarnavine in plant and callus extracts. Leaves and stem of BD were used as explant for the tissue culture studies using Murashige and Skoog (MS) basal medium. MS Media comprising 2,4-Dichlorophenoxy acetic acid (2,4-D) (1 ppm) and 2,4-D (1 ppm) + Indole-3-acetic acid (IAA) (1.0 ppm) were found to yield friable callus from leaf explant; similarly, 2,4-D (0.3 ppm) + IAA (0.75 ppm) + Kinetin (0.3 ppm) and 2,4-D (0.5 ppm) + Naphthalene acetic acid (NAA) (1.5 ppm) + Kinetin (0.3 ppm) were found to yield friable callus from the stem explant. High-performance thin-layer chromatography method was been developed for the quantitative estimation of punarnavine (Rf = 0.73) using mobile phase containing toluene: ethyl acetate: formic acid in the ratio (7.0:2.5:0.7, v/v/v) at 262 nm. The validated method was found linear (r2 = 0.9971) in a wide range (100-1000 ng spot-1), precise, accurate, and robust. The values of limit of detection, LOD = 30.3 ng spot-1, and limit of quantification, LOQ = 100.0 ng spot-1. The robustness of the method was proved by applying the Box-Behnken design (BBD). The developed method found appropriate for the quality control of medicinal plants containing punarnavine as a constituent.
    Matched MeSH terms: Limit of Detection
  19. Abboud AS, Sanagi MM, Ibrahim WAW, Keyon ASA, Aboul-Enein HY
    J Chromatogr Sci, 2018 Feb 01;56(2):177-186.
    PMID: 29186451 DOI: 10.1093/chromsci/bmx095
    In this study, caged calcium alginate-caged multiwalled carbon nanotubes dispersive microsolid phase extraction was described for the first time for the extraction of polycyclic aromatic hydrocarbons (PAHs) from water samples prior to gas chromatographic analysis. Fluorene, phenanthrene and fluoranthene were selected as model compounds. The caged calcium alginate-caged multiwalled carbon nanotubes was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and thermal gravimetry analyses. The effective parameters namely desorption solvent, solvent volume, extraction time, desorption time, the mass of adsorbent and sample volume were optimized. Under the optimum extraction conditions, the developed method showed good linearity in the range of 0.5-50 ng mL-1 (R2 ≥ 0.996), low limits of detection and quantification (0.42-0.22 ng mL-1) (0.73-1.38 ng mL-1) respectively, good relative recoveries (71.2-104.2%) and reproducibility (RSD 1.8-12.4%, n = 3) for the studied PAHs in water sample. With high enrichment factor (1,000), short extraction time (<30 min), low amounts of adsorbent (100 mg) and low amounts of solvent (0.1 mol) have proven that the microsolid phase extraction method based on calcium alginate-caged multiwalled carbon nanotubes are environmentally friendly and convenient extraction method to use as an alternative adsorbent in the simultaneous preconcentration of PAHs from environmental water samples.
    Matched MeSH terms: Limit of Detection
  20. Wong YF, Saad B, Makahleh A
    J Chromatogr A, 2013 May 17;1290:82-90.
    PMID: 23578483 DOI: 10.1016/j.chroma.2013.03.014
    A capillary electrophoresis (CE)-capacitively coupled contactless conductivity detection (C(4)D) method for the simultaneous separation of eleven underivatized fatty acids (FAs), namely, lauric, myristic, tridecanoic (internal standard), pentadecanoic, palmitic, stearic, oleic, elaidic, linoleic, linolenic and arachidic acids is described. The separation was carried out in normal polarity mode at 20 °C, 30 kV and using hydrodynamic injection (50 mbar for 1 s). The separation was achieved in a bare fused-silica capillary (70 cm × 75 μm i.d.) using a background electrolyte of methyl-β-cyclodextrin (~6 mM) and heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (~8 mM) dissolved in a mixture of Na2HPO4/KH2PO4 (5 mM, pH 7.4):ACN:MeOH:n-octanol (3:4:2.5:0.5, v/v/v/v). C(4)D parameters were set at fixed amplitude of 100 V and frequency of 1000 kHz. The developed method was validated. Calibration curves of the ten FAs were well correlated (r(2)>0.99) within the range of 5-250 μg mL(-1) for lauric acid, and 3-250 μg mL(-1) for the other FAs. The method was simple and sensitive with detection limits (S/N=3) of 0.9-1.9 μg mL(-1) and good relative standard deviations of intra- and inter-day for migration times and peak areas (≤9.7%) were achieved. The method was applied to the determination of FAs in margarine samples. The proposed method offers distinct advantages over the GC and HPLC methods, especially in terms of simplicity (without derivatization) and sensitivity.
    Matched MeSH terms: Limit of Detection
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links