Displaying publications 61 - 80 of 437 in total

Abstract:
Sort:
  1. Hakimi M, Omar MB, Ibrahim R
    Sensors (Basel), 2023 Jan 16;23(2).
    PMID: 36679816 DOI: 10.3390/s23021020
    The gas sweetening process removes hydrogen sulfide (H2S) in an acid gas removal unit (AGRU) to meet the gas sales' specification, known as sweet gas. Monitoring the concentration of H2S in sweet gas is crucial to avoid operational and environmental issues. This study shows the capability of artificial neural networks (ANN) to predict the concentration of H2S in sweet gas. The concentration of N-methyldiethanolamine (MDEA) and Piperazine (PZ), temperature and pressure as inputs, and the concentration of H2S in sweet gas as outputs have been used to create the ANN network. Two distinct backpropagation techniques with various transfer functions and numbers of neurons were used to train the ANN models. Multiple linear regression (MLR) was used to compare the outcomes of the ANN models. The models' performance was assessed using the mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). The findings demonstrate that ANN trained by the Levenberg-Marquardt technique, equipped with a logistic sigmoid (logsig) transfer function with three neurons achieved the highest R2 (0.966) and the lowest MAE (0.066) and RMSE (0.122) values. The findings suggested that ANN can be a reliable and accurate prediction method in predicting the concentration of H2S in sweet gas.
    Matched MeSH terms: Neural Networks (Computer)*
  2. Xinyan Z, Mamun AA, Ali MH, Siyu L, Yang Q, Hayat N
    Front Public Health, 2022;10:1016065.
    PMID: 36388276 DOI: 10.3389/fpubh.2022.1016065
    The world is witnessing an increasing number of senior adult residents who experience health issues. Healthcare innovation facilitates monitoring the health conditions of senior adults and reducing the burden on healthcare institutions. The study explored the effect of health improvement expectancy, effort expectancy, price value, perceived vulnerability, health consciousness, and perceived reliability on the intention and adoption of medical wearable devices (MWD) among senior adults in China. Furthermore, a cross-sectional design was adopted, while quantitative data was collected from 304 senior adults through an online survey. A hybrid approach of partial least square structural equational modeling and artificial neural network-based analysis technique was adopted. The findings demonstrated that health improvement expectancy, perceived vulnerability, price value, and perceived reliability significantly affected the intention to adopt MWDs. Moreover, the intention to adopt MWDs significantly positively affected the actual adoption of MWDs among senior adults. Although the moderating effect of the pre-existing conditions and income between the intention to use MWDs and actual adoption of MWDs was positive, it was not statistically significant. The artificial neural network analysis has proven that perceived reliability, price value, and vulnerability are the most critical factors contributing to the intention to use MWDs. The current study offered valuable insights into the factors affecting the intention and adoption of MWDs among senior adults. Following that, theoretical and practical contributions were documented to improve the ease of use and price value for the prospective users of MWDs. The correct healthcare policies could curtail the influx of senior adults into the hospital and empower these adults to track and manage their health issues at home.
    Matched MeSH terms: Neural Networks (Computer)*
  3. Raja Sekaran S, Pang YH, Ling GF, Yin OS
    F1000Res, 2021;10:1261.
    PMID: 36896393 DOI: 10.12688/f1000research.73175.1
    Background: In recent years, human activity recognition (HAR) has been an active research topic due to its widespread application in various fields such as healthcare, sports, patient monitoring, etc. HAR approaches can be categorised as handcrafted feature methods (HCF) and deep learning methods (DL). HCF involves complex data pre-processing and manual feature extraction in which the models may be exposed to high bias and crucial implicit pattern loss. Hence, DL approaches are introduced due to their exceptional recognition performance. Convolutional Neural Network (CNN) extracts spatial features while preserving localisation. However, it hardly captures temporal features. Recurrent Neural Network (RNN) learns temporal features, but it is susceptible to gradient vanishing and suffers from short-term memory problems. Unlike RNN, Long-Short Term Memory network has a relatively longer-term dependency. However, it consumes higher computation and memory because it computes and stores partial results at each level. Methods: This work proposes a novel multiscale temporal convolutional network (MSTCN) based on the Inception model with a temporal convolutional architecture. Unlike HCF methods, MSTCN requires minimal pre-processing and no manual feature engineering. Further, multiple separable convolutions with different-sized kernels are used in MSTCN for multiscale feature extraction. Dilations are applied to each separable convolution to enlarge the receptive fields without increasing the model parameters. Moreover, residual connections are utilised to prevent information loss and gradient vanishing. These features enable MSTCN to possess a longer effective history while maintaining a relatively low in-network computation. Results: The performance of MSTCN is evaluated on UCI and WISDM datasets using a subject independent protocol with no overlapping subjects between the training and testing sets. MSTCN achieves accuracies of 97.42 on UCI and 96.09 on WISDM. Conclusion: The proposed MSTCN dominates the other state-of-the-art methods by acquiring high recognition accuracies without requiring any manual feature engineering.
    Matched MeSH terms: Neural Networks (Computer)*
  4. Malik NUR, Sheikh UU, Abu-Bakar SAR, Channa A
    Sensors (Basel), 2023 Mar 02;23(5).
    PMID: 36904953 DOI: 10.3390/s23052745
    Human action recognition (HAR) is one of the most active research topics in the field of computer vision. Even though this area is well-researched, HAR algorithms such as 3D Convolution Neural Networks (CNN), Two-stream Networks, and CNN-LSTM (Long Short-Term Memory) suffer from highly complex models. These algorithms involve a huge number of weights adjustments during the training phase, and as a consequence, require high-end configuration machines for real-time HAR applications. Therefore, this paper presents an extraneous frame scrapping technique that employs 2D skeleton features with a Fine-KNN classifier-based HAR system to overcome the dimensionality problems.To illustrate the efficacy of our proposed method, two contemporary datasets i.e., Multi-Camera Action Dataset (MCAD) and INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset was used in experiment. We used the OpenPose technique to extract the 2D information, The proposed method was compared with CNN-LSTM, and other State of the art methods. Results obtained confirm the potential of our technique. The proposed OpenPose-FineKNN with Extraneous Frame Scrapping Technique achieved an accuracy of 89.75% on MCAD dataset and 90.97% on IXMAS dataset better than existing technique.
    Matched MeSH terms: Neural Networks (Computer)*
  5. Kumar R, Khan FU, Sharma A, Siddiqui MH, Aziz IB, Kamal MA, et al.
    Environ Sci Pollut Res Int, 2021 Sep;28(34):47641-47650.
    PMID: 33895950 DOI: 10.1007/s11356-021-14028-9
    We are exposed to various chemical compounds present in the environment, cosmetics, and drugs almost every day. Mutagenicity is a valuable property that plays a significant role in establishing a chemical compound's safety. Exposure and handling of mutagenic chemicals in the environment pose a high health risk; therefore, identification and screening of these chemicals are essential. Considering the time constraints and the pressure to avoid laboratory animals' use, the shift to alternative methodologies that can establish a rapid and cost-effective detection without undue over-conservation seems critical. In this regard, computational detection and identification of the mutagens in environmental samples like drugs, pesticides, dyes, reagents, wastewater, cosmetics, and other substances is vital. From the last two decades, there have been numerous efforts to develop the prediction models for mutagenicity, and by far, machine learning methods have demonstrated some noteworthy performance and reliability. However, the accuracy of such prediction models has always been one of the major concerns for the researchers working in this area. The mutagenicity prediction models were developed using deep neural network (DNN), support vector machine, k-nearest neighbor, and random forest. The developed classifiers were based on 3039 compounds and validated on 1014 compounds; each of them encoded with 1597 molecular feature vectors. DNN-based prediction model yielded highest prediction accuracy of 92.95% and 83.81% with the training and test data, respectively. The area under the receiver's operating curve and precision-recall curve values were found to be 0.894 and 0.838, respectively. The DNN-based classifier not only fits the data with better performance as compared to traditional machine learning algorithms, viz., support vector machine, k-nearest neighbor, and random forest (with and without feature reduction) but also yields better performance metrics. In current work, we propose a DNN-based model to predict mutagenicity of compounds.
    Matched MeSH terms: Neural Networks (Computer)*
  6. Sheikh Khozani Z, Ehteram M, Mohtar WHMW, Achite M, Chau KW
    Environ Sci Pollut Res Int, 2023 Sep;30(44):99362-99379.
    PMID: 37610542 DOI: 10.1007/s11356-023-29406-8
    A wastewater treatment plant (WWTP) is an essential part of the urban water cycle, which reduces concentration of pollutants in the river. For monitoring and control of WWTPs, researchers develop different models and systems. This study introduces a new deep learning model for predicting effluent quality parameters (EQPs) of a WWTP. A method that couples a convolutional neural network (CNN) with a novel version of radial basis function neural network (RBFNN) is proposed to simultaneously predict and estimate uncertainty of data. The multi-kernel RBFNN (MKRBFNN) uses two activation functions to improve the efficiency of the RBFNN model. The salp swarm algorithm is utilized to set the MKRBFNN and CNN parameters. The main advantage of the CNN-MKRBFNN-salp swarm algorithm (SSA) is to automatically extract features from data points. In this study, influent parameters (if) are used as inputs. Biological oxygen demand (BODif), chemical oxygen demand (CODif), total suspended solids (TSSif), volatile suspended solids (VSSif), and sediment (SEDef) are used to predict EQPs, including CODef, BODef, and TSSef. At the testing level, the Nash-Sutcliffe efficiencies of CNN-MKRBFNN-SSA are 0.98, 0.97, and 0.98 for predicting CODef, BODef, and TSSef. Results indicate that the CNN-MKRBFNN-SSA is a robust model for simulating complex phenomena.
    Matched MeSH terms: Neural Networks (Computer)*
  7. Cimr D, Busovsky D, Fujita H, Studnicka F, Cimler R, Hayashi T
    Comput Methods Programs Biomed, 2023 Sep;239:107623.
    PMID: 37276760 DOI: 10.1016/j.cmpb.2023.107623
    BACKGROUND AND OBJECTIVES: Prediction of patient deterioration is essential in medical care, and its automation may reduce the risk of patient death. The precise monitoring of a patient's medical state requires devices placed on the body, which may cause discomfort. Our approach is based on the processing of long-term ballistocardiography data, which were measured using a sensory pad placed under the patient's mattress.

    METHODS: The investigated dataset was obtained via long-term measurements in retirement homes and intensive care units (ICU). Data were measured unobtrusively using a measuring pad equipped with piezoceramic sensors. The proposed approach focused on the processing methods of the measured ballistocardiographic signals, Cartan curvature (CC), and Euclidean arc length (EAL).

    RESULTS: For analysis, 218,979 normal and 216,259 aberrant 2-second samples were collected and classified using a convolutional neural network. Experiments using cross-validation with expert threshold and data length revealed the accuracy, sensitivity, and specificity of the proposed method to be 86.51 CONCLUSIONS: The proposed method provides a unique approach for an early detection of health concerns in an unobtrusive manner. In addition, the suitability of EAL over the CC was determined.

    Matched MeSH terms: Neural Networks (Computer)*
  8. Faysal A, Ngui WK, Lim MH, Leong MS
    Sensors (Basel), 2021 Dec 04;21(23).
    PMID: 34884120 DOI: 10.3390/s21238114
    Rotating machinery is one of the major components of industries that suffer from various faults due to the constant workload. Therefore, a fast and reliable fault diagnosis method is essential for machine condition monitoring. In this study, noise eliminated ensemble empirical mode decomposition (NEEEMD) was used for fault feature extraction. A convolution neural network (CNN) classifier was applied for classification because of its feature learning ability. A generalized CNN architecture was proposed to reduce the model training time. A sample size of 64×64×3 pixels RGB scalograms are used as the classifier input. However, CNN requires a large number of training data to achieve high accuracy and robustness. Deep convolution generative adversarial network (DCGAN) was applied for data augmentation during the training phase. To evaluate the effectiveness of the proposed feature extraction method, scalograms from related feature extraction methods such as ensemble empirical mode decomposition (EEMD), complementary EEMD (CEEMD), and continuous wavelet transform (CWT) are classified. The effectiveness of scalograms is also validated by comparing the classifier performance using grayscale samples from the raw vibration signals. All the outputs from bearing and blade fault classifiers showed that scalogram samples from the proposed NEEEMD method obtained the highest accuracy, sensitivity, and robustness using CNN. DCGAN was applied with the proposed NEEEMD scalograms to further increase the CNN classifier's performance and identify the optimal number of training data. After training the classifier using augmented samples, the results showed that the classifier obtained even higher validation and test accuracy with greater robustness. The proposed method can be used as a more generalized and robust method for rotating machinery fault diagnosis.
    Matched MeSH terms: Neural Networks (Computer)*
  9. Amari A, Elboughdiri N, Ahmed Said E, Zahmatkesh S, Ni BJ
    J Environ Manage, 2024 Feb;351:119761.
    PMID: 38113785 DOI: 10.1016/j.jenvman.2023.119761
    The practice of aquaculture is associated with the generation of a substantial quantity of effluent. Microalgae must effectively assimilate nitrogen and phosphorus from their surrounding environment for growth. This study modeled the algal biomass film, NO3-N concentration, and pH in the membrane bioreactor using the response surface methodology (RSM) and an artificial neural network (ANN). Furthermore, it was suggested that the optimal condition for each parameter be determined. The results of ANN modeling showed that ANN with a structure of 5-3 and employing the transfer functions tansig-logsig demonstrated the highest level of accuracy. This was evidenced by the obtained values of coefficient (R2) = 0.998, R = 0.999, mean squared error (MAE) = 0.0856, and mean square error (MSE) = 0.143. The ANN model, characterized by a 5-5 structure and employing the tansig-logsig transfer function, demonstrates superior accuracy when predicting the concentration of NO3-N and pH. This is evidenced by the high values of R2 (0.996), R (0.998), MAE (0.00162), and MSE (0.0262). The RSM was afterward employed to maximize the performance of algal film biomass, pH levels, and NO3-N concentrations. The optimal conditions for the algal biomass film were a concentration of 2.884 mg/L and a duration of 6.589 days. Similarly, the most favorable conditions for the NO3-N concentration and pH were 2.984 mg/L and 6.787 days, respectively. Therefore, this research uses non-dominated sorting genetic algorithm II (NSGA II) to find the optimal NO3-N concentration, algal biomass film, and pH for product or process quality. The region has the greatest alkaline pH and lowest NO3-N content.
    Matched MeSH terms: Neural Networks (Computer)*
  10. Altharan YM, Shamsudin S, Lajis MA, Al-Alimi S, Yusuf NK, Alduais NAM, et al.
    PLoS One, 2024;19(3):e0300504.
    PMID: 38484005 DOI: 10.1371/journal.pone.0300504
    Direct recycling of aluminum waste is crucial in sustainable manufacturing to mitigate environmental impact and conserve resources. This work was carried out to study the application of hot press forging (HPF) in recycling AA6061 aluminum chip waste, aiming to optimize operating factors using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Genetic algorithm (GA) strategy to maximize the strength of recycled parts. The experimental runs were designed using Full factorial and RSM via Minitab 21 software. RSM-ANN models were employed to examine the effect of factors and their interactions on response and to predict output, while GA-RSM and GA-ANN were used for optimization. The chips of different morphology were cold compressed into billet form and then hot forged. The effect of varying forging temperature (Tp, 450-550°C), holding time (HT, 60-120 minutes), and chip surface area to volume ratio (AS:V, 15.4-52.6 mm2/mm3) on ultimate tensile strength (UTS) was examined. Maximum UTS (237.4 MPa) was achieved at 550°C, 120 minutes and 15.4 mm2/mm3 of chip's AS: V. The Tp had the largest contributing effect ratio on the UTS, followed by HT and AS:V according to ANOVA analysis. The proposed optimization process suggested 550°C, 60 minutes, and 15.4 mm2 as the optimal condition yielding the maximum UTS. The developed models' evaluation results showed that ANN (with MSE = 1.48%) outperformed RSM model. Overall, the study promotes sustainable production by demonstrating the potential of integrating RSM and ML to optimize complex manufacturing processes and improve product quality.
    Matched MeSH terms: Neural Networks (Computer)*
  11. Fan D, Maliki NZB, Yu S, Jin F, Han X
    Environ Monit Assess, 2024 Apr 04;196(5):424.
    PMID: 38573531 DOI: 10.1007/s10661-024-12558-6
    This study employs an artificial neural network optimization algorithm, enhanced with a Genetic Algorithm-Back Propagation (GA-BP) network, to assess the service quality of urban water bodies and green spaces, aiming to promote healthy urban environments. From an initial set of 95 variables, 29 key variables were selected, including 17 input variables, such as water and green space area, population size, and urbanization rate, six hidden layer neurons, such as patch number, patch density, and average patch size, and one output variable for the comprehensive value of blue-green landscape quality. The results indicate that the GA-BP network achieves an average relative error of 0.94772%, which is superior to the 1.5988% of the traditional BP network. Moreover, it boasts a prediction accuracy of 90% for the comprehensive value of landscape quality from 2015 to 2022, significantly outperforming the BP network's approximate 70% accuracy. This method enhances the accuracy of landscape quality assessment but also aids in identifying crucial factors influencing quality. It provides scientific and objective guidance for future urban landscape structure and layout, contributing to high-quality urban development and the creation of exemplary living areas.
    Matched MeSH terms: Neural Networks (Computer)*
  12. Bera A, Bhattacharjee D, Krejcar O
    Sci Rep, 2024 Jul 05;14(1):15537.
    PMID: 38969738 DOI: 10.1038/s41598-024-66543-7
    Crop yield production could be enhanced for agricultural growth if various plant nutrition deficiencies, and diseases are identified and detected at early stages. Hence, continuous health monitoring of plant is very crucial for handling plant stress. The deep learning methods have proven its superior performances in the automated detection of plant diseases and nutrition deficiencies from visual symptoms in leaves. This article proposes a new deep learning method for plant nutrition deficiencies and disease classification using a graph convolutional network (GNN), added upon a base convolutional neural network (CNN). Sometimes, a global feature descriptor might fail to capture the vital region of a diseased leaf, which causes inaccurate classification of disease. To address this issue, regional feature learning is crucial for a holistic feature aggregation. In this work, region-based feature summarization at multi-scales is explored using spatial pyramidal pooling for discriminative feature representation. Furthermore, a GCN is developed to capacitate learning of finer details for classifying plant diseases and insufficiency of nutrients. The proposed method, called Plant Nutrition Deficiency and Disease Network (PND-Net), has been evaluated on two public datasets for nutrition deficiency, and two for disease classification using four backbone CNNs. The best classification performances of the proposed PND-Net are as follows: (a) 90.00% Banana and 90.54% Coffee nutrition deficiency; and (b) 96.18% Potato diseases and 84.30% on PlantDoc datasets using Xception backbone. Furthermore, additional experiments have been carried out for generalization, and the proposed method has achieved state-of-the-art performances on two public datasets, namely the Breast Cancer Histopathology Image Classification (BreakHis 40 × : 95.50%, and BreakHis 100 × : 96.79% accuracy) and Single cells in Pap smear images for cervical cancer classification (SIPaKMeD: 99.18% accuracy). Also, the proposed method has been evaluated using five-fold cross validation and achieved improved performances on these datasets. Clearly, the proposed PND-Net effectively boosts the performances of automated health analysis of various plants in real and intricate field environments, implying PND-Net's aptness for agricultural growth as well as human cancer classification.
    Matched MeSH terms: Neural Networks (Computer)*
  13. Saraswathy J, Hariharan M, Nadarajaw T, Khairunizam W, Yaacob S
    Australas Phys Eng Sci Med, 2014 Jun;37(2):439-56.
    PMID: 24691930 DOI: 10.1007/s13246-014-0264-y
    Wavelet theory is emerging as one of the prevalent tool in signal and image processing applications. However, the most suitable mother wavelet for these applications is still a relative question mark amongst researchers. Selection of best mother wavelet through parameterization leads to better findings for the analysis in comparison to random selection. The objective of this article is to compare the performance of the existing members of mother wavelets and to select the most suitable mother wavelet for accurate infant cry classification. Optimal wavelet is found using three different criteria namely the degree of similarity of mother wavelets, regularity of mother wavelets and accuracy of correct recognition during classification processes. Recorded normal and pathological infant cry signals are decomposed into five levels using wavelet packet transform. Energy and entropy features are extracted at different sub bands of cry signals and their effectiveness are tested with four supervised neural network architectures. Findings of this study expound that, the Finite impulse response based approximation of Meyer is the best wavelet candidate for accurate infant cry classification analysis.
    Matched MeSH terms: Neural Networks (Computer)*
  14. Jahidin AH, Megat Ali MS, Taib MN, Tahir NM, Yassin IM, Lias S
    Comput Methods Programs Biomed, 2014 Apr;114(1):50-9.
    PMID: 24560277 DOI: 10.1016/j.cmpb.2014.01.016
    This paper elaborates on the novel intelligence assessment method using the brainwave sub-band power ratio features. The study focuses only on the left hemisphere brainwave in its relaxed state. Distinct intelligence quotient groups have been established earlier from the score of the Raven Progressive Matrices. Sub-band power ratios are calculated from energy spectral density of theta, alpha and beta frequency bands. Synthetic data have been generated to increase dataset from 50 to 120. The features are used as input to the artificial neural network. Subsequently, the brain behaviour model has been developed using an artificial neural network that is trained with optimized learning rate, momentum constant and hidden nodes. Findings indicate that the distinct intelligence quotient groups can be classified from the brainwave sub-band power ratios with 100% training and 88.89% testing accuracies.
    Matched MeSH terms: Neural Networks (Computer)*
  15. Hariharan M, Sindhu R, Yaacob S
    Comput Methods Programs Biomed, 2012 Nov;108(2):559-69.
    PMID: 21824676 DOI: 10.1016/j.cmpb.2011.07.010
    Crying is the most noticeable behavior of infancy. Infant cry signals can be used to identify physical or psychological status of an infant. Recently, acoustic analysis of infant cry signal has shown promising results and it has been proven to be an excellent tool to investigate the pathological status of an infant. This paper proposes short-time Fourier transform (STFT) based time-frequency analysis of infant cry signals. Few statistical features are derived from the time-frequency plot of infant cry signals and used as features to quantify infant cry signals. General Regression Neural Network (GRNN) is employed as a classifier for discriminating infant cry signals. Two classes of infant cry signals are considered such as normal cry signals and pathological cry signals from deaf infants. To prove the reliability of the proposed features, two neural network models such as Multilayer Perceptron (MLP) and Time-Delay Neural Network (TDNN) trained by scaled conjugate gradient algorithm are also used as classifiers. The experimental results show that the GRNN classifier gives very promising classification accuracy compared to MLP and TDNN and the proposed method can effectively classify normal and pathological infant cries.
    Matched MeSH terms: Neural Networks (Computer)*
  16. Abdul Rahman MB, Chaibakhsh N, Basri M, Salleh AB, Abdul Rahman RN
    Appl Biochem Biotechnol, 2009 Sep;158(3):722-35.
    PMID: 19132557 DOI: 10.1007/s12010-008-8465-z
    In this study, an artificial neural network (ANN) trained by backpropagation algorithm, Levenberg-Marquadart, was applied to predict the yield of enzymatic synthesis of dioctyl adipate. Immobilized Candida antarctica lipase B was used as a biocatalyst for the reaction. Temperature, time, amount of enzyme, and substrate molar ratio were the four input variables. After evaluating various ANN configurations, the best network was composed of seven hidden nodes using a hyperbolic tangent sigmoid transfer function. The correlation coefficient (R2) and mean absolute error (MAE) values between the actual and predicted responses were determined as 0.9998 and 0.0966 for training set and 0.9241 and 1.9439 for validating dataset. A simulation test with a testing dataset showed that the MAE was low and R2 was close to 1. These results imply the good generalization of the developed model and its capability to predict the reaction yield. Comparison of the performance of radial basis network with the developed models showed that radial basis function was more accurate but its performance was poor when tested with unseen data. In further part of the study, the feedforward backpropagation model was used for prediction of the ester yield within the given range of the main parameters.
    Matched MeSH terms: Neural Networks (Computer)*
  17. Lalitha V, Eswaran C
    J Med Syst, 2007 Dec;31(6):445-52.
    PMID: 18041276
    Monitoring the depth of anesthesia (DOA) during surgery is very important in order to avoid patients' interoperative awareness. Since the traditional methods of assessing DOA which involve monitoring the heart rate, pupil size, sweating etc, may vary from patient to patient depending on the type of surgery and the type of drug administered, modern methods based on electroencephalogram (EEG) are preferred. EEG being a nonlinear signal, it is appropriate to use nonlinear chaotic parameters to identify the anesthetic depth levels. This paper discusses an automated detection method of anesthetic depth levels based on EEG recordings using non-linear chaotic features and neural network classifiers. Three nonlinear parameters, namely, correlation dimension (CD), Lyapunov exponent (LE) and Hurst exponent (HE) are used as features and two neural network models, namely, multi-layer perceptron network (feed forward model) and Elman network (feedback model) are used for classification. The neural network models are trained and tested with single and multiple features derived from chaotic parameters and the performances are evaluated in terms of sensitivity, specificity and overall accuracy. It is found from the experimental results that the Lyapunov exponent feature with Elman network yields an overall accuracy of 99% in detecting the anesthetic depth levels.
    Matched MeSH terms: Neural Networks (Computer)*
  18. Ibrahim F, Taib MN, Abas WA, Guan CC, Sulaiman S
    Comput Methods Programs Biomed, 2005 Sep;79(3):273-81.
    PMID: 15925426
    Dengue fever (DF) is an acute febrile viral disease frequently presented with headache, bone or joint and muscular pains, and rash. A significant percentage of DF patients develop a more severe form of disease, known as dengue haemorrhagic fever (DHF). DHF is the complication of DF. The main pathophysiology of DHF is the development of plasma leakage from the capillary, resulting in haemoconcentration, ascites, and pleural effusion that may lead to shock following defervescence of fever. Therefore, accurate prediction of the day of defervescence of fever is critical for clinician to decide on patient management strategy. To date, no known literature describes of any attempt to predict the day of defervescence of fever in DF patients. This paper describes a non-invasive prediction system for predicting the day of defervescence of fever in dengue patients using artificial neural network. The developed system bases its prediction solely on the clinical symptoms and signs and uses the multilayer feed-forward neural networks (MFNN). The results show that the proposed system is able to predict the day of defervescence in dengue patients with 90% prediction accuracy.
    Matched MeSH terms: Neural Networks (Computer)*
  19. Musa KH, Abdullah A, Al-Haiqi A
    Food Chem, 2016 Mar 1;194:705-11.
    PMID: 26471610 DOI: 10.1016/j.foodchem.2015.08.038
    A new computational approach for the determination of 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity (DPPH-RSA) in food is reported, based on the concept of machine learning. Trolox standard was mix with DPPH at different concentrations to produce different colors from purple to yellow. Artificial neural network (ANN) was trained on a typical set of images of the DPPH radical reacting with different levels of Trolox. This allowed the neural network to classify future images of any sample into the correct class of RSA level. The ANN was then able to determine the DPPH-RSA of cinnamon, clove, mung bean, red bean, red rice, brown rice, black rice and tea extract and the results were compared with data obtained using a spectrophotometer. The application of ANN correlated well to the spectrophotometric classical procedure and thus do not require the use of spectrophotometer, and it could be used to obtain semi-quantitative results of DPPH-RSA.
    Matched MeSH terms: Neural Networks (Computer)*
  20. Jahed Armaghani D, Hajihassani M, Marto A, Shirani Faradonbeh R, Mohamad ET
    Environ Monit Assess, 2015 Nov;187(11):666.
    PMID: 26433903 DOI: 10.1007/s10661-015-4895-6
    Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques.
    Matched MeSH terms: Neural Networks (Computer)*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links