Displaying publications 61 - 80 of 377 in total

Abstract:
Sort:
  1. Syed Najmuddin SU, Romli MF, Hamid M, Alitheen NB, Nik Abd Rahman NM
    BMC Complement Altern Med, 2016 Aug 24;16(1):311.
    PMID: 27558166 DOI: 10.1186/s12906-016-1290-y
    Annona muricata Linn which comes from Annonaceae family possesses many therapeutic benefits as reported in previous studies and to no surprise, it has been used in many cultures to treat various ailments including headaches, insomnia, and rheumatism to even treating cancer. However, Annona muricata Linn obtained from different cultivation area does not necessarily offer the same therapeutic effects towards breast cancer (in regards to its bioactive compound production). In this study, anti-proliferative and anti-cancer effects of Annona muricata crude extract (AMCE) on breast cancer cell lines were evaluated.
    Matched MeSH terms: Nitric Oxide/metabolism
  2. Syahida A, Israf DA, Permana D, Lajis NH, Khozirah S, Afiza AW, et al.
    Immunol Cell Biol, 2006 Jun;84(3):250-8.
    PMID: 16509831
    Many plant-derived natural compounds have been reported previously to inhibit the production of important pro-inflammatory mediators such as nitric oxide, prostaglandin E2, TNF-alpha and reactive oxygen species by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase pathway and nuclear translocation of critical transcription factors. This study evaluates the effects of atrovirinone [2-(1-methoxycarbonyl-4,6-dihydroxyphenoxy)-3-methoxy-5,6-di-(3-methyl-2-butenyl)-1,4-benzoquinone)], a benzoquinone that we have previously isolated from Garcinia atroviridis, on two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds, namely, RAW 264.7 macrophage cells and whole blood. Atrovirinone inhibited the production of both nitric oxide and prostaglandin E2 from LPS-induced and IFN-gamma-induced RAW 264.7 cells and whole blood, with inhibitory concentration (IC)50 values of 4.62 +/- 0.65 and 9.33 +/- 1.47 micromol/L, respectively. Analysis of thromboxane B2 (TXB2) secretion from whole blood stimulated by either the cyclooxygenase (COX)-1 or the COX-2 pathway showed that atrovirinone inhibits the generation of TXB2 by both pathways, with IC50 values of 7.41 +/- 0.92 and 2.10 +/- 0.48 micromol/L, respectively. Analysis of IC50 ratios showed that atrovirinone was more COX-2 selective in its inhibition of TXB2, with a ratio of 0.32. Atrovirinone also inhibited the generation of intracellular reactive oxygen species and the secretion of TNF-alpha from RAW 264.7 cells in a dose-responsive manner, with IC50 values of 5.99 +/- 0.62 and 11.56 +/- 0.04 micromol/L, respectively. Lipoxygenase activity was also moderately inhibited by atrovirinone. Our results suggest that atrovirinone acts on important pro-inflammatory mediators possibly by the inhibition of the nuclear factor-kappaB pathway and also by the inhibition of the COX/lipoxygenase enzyme activity.
    Matched MeSH terms: Nitric Oxide/metabolism*
  3. Swamy M, Suhaili D, Sirajudeen KN, Mustapha Z, Govindasamy C
    PMID: 25395704
    BACKGROUND: Increased nitric oxide (NO), neuronal inflammation and apoptosis have been proposed to be involved in excitotoxicity plays a part in many neurodegenerative diseases. To understand the neuro-protective effects of propolis, activities of Nitric oxide synthase (NOS) and caspase-3 along with NO and tumor necrosis factor-α (TNF-α) levels were studied in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) in rats supplemented with propolis prior to excitotoxic injury with kainic acid (KA).

    MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into four groups (n=6 rats per group) as Control, KA, Propolis and KA+Propolis. The control group and KA group have received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150 mg/kg body weight), five times every 12 hours. KA group and propolis +KA group were injected subcutaneously with kainic acid (15 mg/kg body weight) and were sacrificed after 2 hrs. CC, CB and BS were separated, homogenized and used for estimation of NOS, caspase-3, NO and TNF-α by commercial kits. Results were analyzed by one way ANOVA, reported as mean + SD (n=6 rats), and p<0.05 was considered statistically significant.

    RESULTS: The concentration of NO, TNF-α, NOS and caspase-3 activity were increased significantly (p<0.001) in all the three brain regions tested in KA group compared to the control. Propolis supplementation significantly (p<0.001) prevented the increase in NOS, NO, TNF-α and caspase-3 due to KA.

    CONCLUSION: Results of this study clearly demonstrated that the propolis supplementation attenuated the NOS, caspase-3 activities, NO, and TNF-α concentration and in KA mediated excitotoxicity. Hence propolis can be a possible potential protective agent against excitotoxicity and neurodegenerative disorders.

    Matched MeSH terms: Nitric Oxide/metabolism*; Nitric Oxide Synthase/metabolism*
  4. Swamy M, Norlina W, Azman W, Suhaili D, Sirajudeen KN, Mustapha Z, et al.
    PMID: 25435633
    BACKGROUND: Propolis has been proposed to be protective on neurodegenerative disorders. To understand the neuroprotective effects of honeybee propolis, glutamine synthetase (GS) activity, nitric oxide (NO), thiobarbituric acid reactive substances (TBARS) and total antioxidant status (TAS) were studied in different brain regions-cerebral cortex (CC), cerebellum (CB) and brain stem (BS) of rats supplemented with propolis and subjected to kainic acid (KA) mediated excitotoxicity.

    MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into four groups; Control group and KA group received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150mg/kg body weight), five times every 12 hours. KA group and propolis + KA group were injected subcutaneously with kainic acid (15mg/kg body weight) and were sacrificed after 2 hrs and CC, CB and BS were separated homogenized and used for estimation of GS activity, NO, TBARS, and TAS concentrations by colorimetric methods. Results were analyzed by one-way ANOVA, reported as mean + SD from 6 animals, and p<0.05 considered statistically significant.

    RESULTS: NO was increased (p< 0.001) and GS activity was decreased (p< 0.001) in KA treated group compared to control group as well as propolis + KA treated group. TBARS was decreased and TAS was increased (p< 0.001) in propolis + KA treated group compared KA treated group.

    CONCLUSION: This study clearly demonstrated the restoration of GS activity, NO levels and decreased oxidative stress by propolis in kainic acid mediated excitotoxicity. Hence the propolis can be a possible potential candidate (protective agent) against excitotoxicity and neurodegenerative disorders.

    Matched MeSH terms: Nitric Oxide/metabolism*
  5. Swamy M, Sirajudeen KN, Chandran G
    Drug Chem Toxicol, 2009;32(4):326-31.
    PMID: 19793024 DOI: 10.1080/01480540903130641
    Neuronal excitation, involving the excitatory glutamate receptors, is recognized as an important underlying mechanism in neurodegenerative disorders. To understand their role in excitotoxicity, the nitric oxide synthase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite, thiobarbituric acid-reactive substances (TBARS), and total antioxidant status (TAS), were estimated in the cerebral cortex, cerebellum, and brain stem of rats subjected to kainic acid-mediated excitotoxicity. The results of this study clearly demonstrated the increased production of NO by increased activity of NOS. The increased activities of AS and AL suggest the increased and effective recycling of citrulline to arginine in excitotoxicity, making NO production more effective and contributing to its toxic effects. The decreased activity of GS may favor the prolonged availability of glutamic acid, causing excitotoxicity, leading to neuronal damage. The increased formation of TBARS and decreased TAS indicate the presence of oxidative stress in excitotoxicity.
    Matched MeSH terms: Nitric Oxide/metabolism*; Nitric Oxide Synthase/metabolism*
  6. Swamy M, Yusof WR, Sirajudeen KN, Mustapha Z, Govindasamy C
    J Physiol Biochem, 2011 Mar;67(1):105-13.
    PMID: 20960085 DOI: 10.1007/s13105-010-0054-2
    To understand their role in epilepsy, the nitric oxide synthetase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite (NOx), thiobarbituric acid reactive substances (TBARS), and total antioxidant status (TAS), were estimated in different regions of brain in rats subjected to experimental epilepsy induced by subcutaneous administration of kainic acid (KA). The short-term (acute) group animals were killed after 2 h and the long term (chronic) group animals were killed after 5 days of single injection of KA (15 mg/kg body weight). After decapitation of rats, the brain regions were separated and in their homogenates, the concentration of NOx, TBARS and TAS and the activities of NOS, AS, AL, arginase and glutamine synthetase were assayed by colorimetric methods. The results of the study demonstrated the increased activity of NOS and formation of NO in acute and chronic groups epilepsy. The activities of AS and AL were increased and indicate the effective recycling of citrulline to arginine. The activity of glutamine synthetase was decreased in acute and chronic groups of epilepsy compared to control group and indicate the modulation of its activity by NO in epilepsy. The activity of arginase was not changed in acute group; however it was decreased in chronic group and may favor increased production of NO in this condition. The concentration TBARS were increased and TAS decreased in acute and chronic groups of epilepsy and supports the oxidative stress in epilepsy.
    Matched MeSH terms: Nitric Oxide/biosynthesis; Nitric Oxide/metabolism*; Nitric Oxide Synthase/metabolism
  7. Swamy M, Zakaria AZ, Govindasamy C, Sirajudeen KN, Nadiger HA
    Neurosci Res, 2005 Oct;53(2):116-22.
    PMID: 16009439
    Nitric oxide (NO) is involved in many pathophysiological processes in the brain. NO is synthesized from arginine by nitric oxide synthase (NOS) enzymes. Citrulline formed as a by-product of the NOS reaction, can be recycled to arginine by successive actions of argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) via the citrulline-NO cycle. Hyperammonemia is known to cause poorly understood perturbations of the citrulline-NO cycle. To understand the role of citrulline-NO cycle in hyperammonemia, NOS, ASS, ASL and arginase activities, as well as nitrate/nitrite (NOx), arginine, ornithine, citrulline, glutamine, glutamate and GABA were estimated in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) of rats subjected to acute ammonia toxicity. NOx concentration and NOS activity were found to increase in all the regions of brain in acute ammonia toxicity. The activities of ASS and ASL showed an increasing trend whereas the arginase was not changed. The results of this study clearly demonstrated the increased formation of NO, suggesting the involvement of NO in the pathophysiology of acute ammonia toxicity. The increased activities of ASS and ASL suggest the increased and effective recycling of citrulline to arginine in acute ammonia toxicity, making NO production more effective and contributing to its toxic effects.
    Matched MeSH terms: Nitric Oxide/metabolism*; Nitric Oxide Synthase/drug effects; Nitric Oxide Synthase/metabolism
  8. Swamy M, Salleh MJ, Sirajudeen KN, Yusof WR, Chandran G
    Int J Med Sci, 2010 May 31;7(3):147-54.
    PMID: 20567615
    Nitric oxide is postulated to be involved in the pathophysiology of neurological disorders due to hypoxia/ anoxia in brain due to increased release of glutamate and activation of N-methyl-D-aspartate receptors. Reactive oxygen species have been implicated in pathophysiology of many neurological disorders and in brain function. To understand their role in anoxia (hypobaric hypoxia) and reperfusion (reoxygenation), the nitric oxide synthase, argininosuccinate synthetase, argininosuccinate lyase, glutamine synthetase and arginase activities along with the concentration of nitrate /nitrite, thiobarbituric acid reactive substances and total antioxidant status were estimated in cerebral cortex, cerebellum and brain stem of rats subjected to anoxia and reperfusion. The results of this study clearly demonstrated the increased production of nitric oxide by increased activity of nitric oxide synthase. The increased activities of argininosuccinate synthetase and argininosuccinate lyase suggest the increased and effective recycling of citrulline to arginine in anoxia, making nitric oxide production more effective and contributing to its toxic effects. The decreased activity of glutamine synthetase may favor the prolonged availability of glutamic acid causing excitotoxicity leading to neuronal damage in anoxia. The increased formation of thiobarbituric acid reactive substances and decreased total antioxidant status indicate the presence of oxidative stress in anoxia and reperfusion. The increased arginase and sustained decrease of GS activity in reperfusion group likely to be protective.
    Matched MeSH terms: Nitric Oxide/metabolism*
  9. Suwanprinya L, Morales NP, Sanvarinda P, Dieng H, Okabayashi T, Morales Vargas RE
    Jpn J Infect Dis, 2017 07 24;70(4):383-387.
    PMID: 28003593 DOI: 10.7883/yoken.JJID.2016.236
    Encephalitis has been described worldwide as a severe complication in patients infected by dengue virus. Reactive oxygen species (ROS) production is a key mechanism involved in the neuronal damage caused by viral encephalitis. In the present study, the capability of dengue virus serotypes 2 (DENV2) and DENV4 to induce ROS production was investigated in a rat microglial cell line, HAPI cells. The cells were infected with DENV2 and DENV4 at a multiplicity of infection of 0.1 for a 2-h adsorption period. Japanese encephalitis virus (JEV) was used as the reference. DENV2- and DENV4-induced microglial activation and significantly increased ROS production corresponded to decreased cell viability. The activity of DENV4 was significantly higher than the activities of DENV2 and JEV at 48 and 72 h post infection. DENV4 partly induced ROS production via an iron-induced Fenton reaction, as demonstrated by the treatment with an iron chelator, deferiprone. Despite the induction of increased inducible nitric oxide synthase expression and nitric oxide (NO) production by JEV, DENV2, and DENV4 did not induce NO production, suggesting the activation of different pathways in response to infections by different viruses. In conclusion, DENV2 and DENV4 have the capability to induce ROS production and activate microglia, which have been reported as the key components of neuronal damage.
    Matched MeSH terms: Nitric Oxide/metabolism
  10. Sur D, Mondal C, Balaraman AK, Haldar PK, Maji HS, Bala A
    Inflammopharmacology, 2023 Jun;31(3):1305-1317.
    PMID: 36826724 DOI: 10.1007/s10787-023-01165-5
    OBJECTIVE: This study aims to investigate the anti-inflammatory mechanism of monoamine oxidase inhibitor (MAOI) in carrageenan (CARR) induced inflammation models to reprofile their use. We also aimed to explore the role of monoamine oxidase (MAO)-mediated H2O2-NF-κB-COX-2 pathway in acute inflammation.

    METHODS: In vitro anti-inflammatory activity and hydrogen peroxide (H2O2) scavenging activity were performed according to the established procedure. Inflammation was induced using CARR in BALB/c mice at the foot paw and peritoneal cavity. Hourly measurement of paw swelling was performed. The level of nitric oxide (NO), myeloperoxidase (MPO), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) and nuclear factor κB (NF-κB) was determined using enzyme-linked immunosorbent assay (ELISA). Peritoneal fluid was collected to investigate total count, differential count of leukocytes, and capillary permeability.

    RESULTS: In vitro anti-inflammatory evaluations revealed the potential role of MAOI to inhibit heat-induced protein denaturation and human red cell membrane destabilization. H2O2 inhibition activity of MAOI also proved their powerful role as an H2O2 scavenger. Treatment with MAOI in CARR-induced mice significantly reduced paw edema, leukocyte extravasation, and total and differential leukocyte count. The result of ELISA showed MAOI effectively reduce the level of COX-2, PGE2 and NF-κB in inflamed tissue.

    CONCLUSIONS: In short, this study demonstrates that inhibition of H2O2 by MAOI alleviates CARR-induced paw edema possibly by inhibiting the H2O2-mediated NF-κB-COX-2 pathway. The present investigation identifies MAOI might reprofile for the treatment of acute inflammation also, the MAO enzyme may use as a novel therapeutic target to design and develop new class of anti-inflammatory agents.

    Matched MeSH terms: Nitric Oxide/metabolism; Nitric Oxide Synthase Type II/metabolism
  11. Sundar UM, Ugusman A, Chua HK, Latip J, Aminuddin A
    Front Pharmacol, 2019;10:1033.
    PMID: 31607906 DOI: 10.3389/fphar.2019.01033
    Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelial nitric oxide synthase (eNOS). ADMA is degraded by dimethylarginine dimethylaminohydrolase (DDAH). Elevated levels of ADMA lead to reduction in nitric oxide (NO) production, which is linked to endothelial dysfunction and atherosclerosis. Piper sarmentosum is an herb that has shown stimulation on endothelial NO production by increasing both expression and activity of eNOS. Thus, this study determined whether the positive effect of P. sarmentosum on NO production is related to its modulation on the DDAH-ADMA pathway in cultured human umbilical vein endothelial cells (HUVEC) exposed to tumor necrosis factor-α (TNF-α). HUVEC were divided into four groups: control, treatment with 250 µg/ml of aqueous extract of P. sarmentosum leaves (AEPS), treatment with 30 ng/ml of TNF-α, and concomitant treatment with AEPS and TNF-α for 24 h. After treatments, HUVEC were collected to measure DDAH1 messenger RNA (mRNA) expression using quantitative real-time polymerase chain reaction. DDAH1 protein level was measured using enzyme-linked immunosorbent assay (ELISA), and DDAH enzyme activity was measured using colorimetric assay. ADMA concentration was measured using ELISA, and NO level was measured using Griess assay. Compared to control, TNF-α-treated HUVEC showed reduction in DDAH1 mRNA expression (P < 0.05), DDAH1 protein level (P < 0.01), and DDAH activity (P < 0.05). Treatment with AEPS successfully increased DDAH1 mRNA expression (P < 0.05), DDAH1 protein level (P < 0.01), and DDAH activity (P < 0.05) in TNF-α-treated HUVEC. Treatment with TNF-α caused an increase in ADMA level (P < 0.01) and a decrease in endothelial NO production (P < 0.001). Whereas treatment with AEPS was able to reduce ADMA level (P < 0.01) and restore NO (P < 0.001) in TNF-α-treated HUVEC. The results suggested that AEPS promotes endothelial NO production by stimulating DDAH activity and thus reducing ADMA level in TNF-α-treated HUVEC.
    Matched MeSH terms: Nitric Oxide; Nitric Oxide Synthase Type III
  12. Sumathi S, Bhatia S, Lee KT, Mohamed AR
    J Hazard Mater, 2010 Apr 15;176(1-3):1093-6.
    PMID: 20018447 DOI: 10.1016/j.jhazmat.2009.11.037
    This work examines the impregnated carbon-based sorbents for simultaneous removal of SO(2) and NOx from simulated flue gas. The carbon-based sorbents were prepared using palm shell activated carbon (PSAC) impregnated with several metal oxides (Ni, V, Fe and Ce). The removal of SO(2) and NOx from the simulated flue gas was investigated in a fixed-bed reactor. The results showed that PSAC impregnated with CeO(2) (PSAC-Ce) reported the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NOx. PSAC-Ce showed the longest breakthrough time of 165 and 115 min for SO(2) and NOx, respectively. The properties of the pure and impregnated PSAC were analyzed by BET, FTIR and XRF. The physical-chemical features of the PSAC-Ce sorbent indicated a catalytic activity in both the sorption of SO(2) and NOx. The formation of both sulfate (SO(4)(2-)) and nitrate (NO(3-)) species on spent PSAC-Ce further prove the catalytic role played by CeO(2).
    Matched MeSH terms: Nitric Oxide/isolation & purification*
  13. Sukardi, S., Yaakub, H., Ganabadi, S., Cheng, L.H.
    Malays J Nutr, 2006;12(2):201-211.
    MyJurnal
    L-arginine is an amino acid, which serves as the sole substrate for nitric oxide (NO) synthesis with the concomitant formation of L-citrulline in biologic system. NO has been demonstrated to be involved in smooth muscle relaxation and vasodilation, immune regulation and neurotransmission. It also has an important function as both intercellular and intracellular signals in many physiological systems, including the reproductive system where NO mediates penis erection. This study was undertaken to determine the effects of L-arginine on sperm motility, sperm count, and the nitric oxide level in the seminal plasma. Twelve sexually matured male rabbits (Oryctolagus cuniculus) were randomly divided into four groups with three rabbits each, which were control, low, medium, and high concentration groups. The treatment groups were force-fed with 100mg/kg, 200mg/kg, and 300mg/kg body weight of L-arginine for four weeks, whereas the control group was force-fed with water. Semen samples were collected every three days alternatively for a week before starting treatment and then after four weeks of treatment. Pre-treatment and post-treatment results were compared. Semen samples were collected using artificial vaginas from each group for sperm analysis such as sperm motility, sperm count and NO level in seminal plasma. Sperm motility and sperm count were analysed manually under microscope (twenty power objective), using a Makler counting chamber. NO levels in the seminal plasma were determined using Griess reaction. The results obtained from this study showed that oral consumption of L-arginine exerted a significant (p
    Matched MeSH terms: Nitric Oxide
  14. Sugiatno E, Samsudin AR, Sosroseno W
    J Appl Biomater Biomech, 2009 Jan-Apr;7(1):29-33.
    PMID: 20740436
    The aim of this study was to test the hypothesis that the proliferation of hydroxyapatite (HA)-induced human osteoblast cell line (HOS cells) may be up-regulated by exogenous nitric oxide (NO).
    Matched MeSH terms: Nitric Oxide
  15. Sugiatno E, Samsudin AR, Ibrahim MF, Sosroseno W
    Biomed Pharmacother, 2006 May;60(4):147-51.
    PMID: 16581222
    The aim of the present study was to determine the effect of nitric oxide (NO) on the production of prostaglandin E2 (PGE2) by a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite. Cells were cultured on the HA surfaces with or without the presence of NO donors (SNAP and NAP) for 3 days. The effect of NO scavenger, carboxy PTIO, or endothelial nitric oxide synthase (eNOS) inhibitor, L-NIO, was assessed by adding this scavenger in the cultures of HA-stimulated HOS cells with or without the presence of SNAP. Furthermore, HOS cells were pre-treated with anti-human integrin alphaV antibody, indomethacin, a non-specific inhibitor, aspirin, a COX-1 inhibitor, or nimesulide, a COX-2 inhibitor, prior to culturing on HA surfaces with or without the presence of SNAP. The levels of PGE2 were determined from the 3 day culture supernatants. The results showed that the production of PGE2 by HA-stimulated HOS cells was augmented by SNAP. Carboxy PTIO suppressed but L-NIO only partially inhibited the production of PGE2 by HA-stimulated HOS cells with or without the presence of exogenous NO. Pre-treatment of the cells with anti-human integrin alphaV antibody, indomethacin or nimesulide but not aspirin suppressed the production of PGE2 by HA-stimulated HOS cells with or without the presence of NO. Therefore, the results of the present study suggest that NO may up-regulate the production of PGE2 by augmenting the COX-2 pathway initiated by the binding between HOS cell-derived integrin alphaV and HA surface.
    Matched MeSH terms: Nitric Oxide/pharmacology*; Nitric Oxide Donors/pharmacology
  16. Srivastava N, Mishra S, Iqbal H, Chanda D, Shanker K
    J Ethnopharmacol, 2021 May 10;271:113911.
    PMID: 33571614 DOI: 10.1016/j.jep.2021.113911
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga L. rhizome (KGR) is part of more than sixty-one Ayurvedic formulations and commonly known as 'Chandramula'. KGR is widely used in traditional Indian medicines to treat fever (jwar), rheumatism (Amavata), respiratory (Shwasa), hypertension (Vyanabala vaishamya) and cardiovascular disorders (Vyanavayu Dushtijanya Hrudrog). Although ethnomedicinal properties have extensively been demonstrated in traditional medicines of south-east countries i.e. China, India, Indonesia, and Malaysia, the chemico-biological validation are still lacking.

    AIM OF THE STUDY: Chemico-biological standardization with respect to its vasorelaxation potential is the main objective of the present study. To investigate the vasorelaxation potential of key phytochemical of KGR, i.e., ethyl-p-methoxycinnamate (EPMC) and to study it's the mechanism of action.

    MATERIALS AND METHODS: A HPLC method was developed and validated for the quality assessment of KGR using its two major phytochemicals i.e. ethyl-p-methoxycinnamate (EPMC) and ethyl cinnamate (EC) in KGR. The vasorelaxation effect of major phytochemicals of KGR was evaluated on the main mesenteric arteries isolated from male Wistar rats. Specific BKca channel blocker tetraethylammonium (TEA), receptor antagonist, nitric oxide scavenging capacity, and antioxidant potential were also evaluated for its plausible mechanism.

    RESULTS: Present validated HPLC method facilitates simultaneous quantitation of EPMC and EC faster than classical GC techniques. EPMC has shown a dose-dependent relaxation in rat main mesenteric arteries (MMA) contracted by U46619 with an Emax of 58.68 ± 3.31%. Similarly, in endothelium-denuded MMA rings, relaxation was also observed (Emax of 61.83 ± 3.38%). Moreover, relaxation response to EPMC has strongly inhibited (Emax 14.76 ± 2.29%) when the tissue exposed to depolarizing high K+ containing buffer for the contraction. The point correlation dimension (pD2) values were also significantly decreased in high K+ treated arterial rings compared to control. Interestingly, when MMA rings incubated with a specific BKca channel blocker (TEA, 1 mM), the relaxation response to EPMC was also significantly blocked.

    CONCLUSIONS: The first time this study demonstrated the chemical standardization of K. galanga rhizome and EPMC is responsible for its vasorelaxation potential as demonstrated by the endothelium-independent response mediated by Ca2+ dependent potassium channels.

    Matched MeSH terms: Nitric Oxide/antagonists & inhibitors
  17. Sosroseno W, Bird PS, Seymour GJ
    Anaerobe, 2011 Oct;17(5):246-51.
    PMID: 21736946 DOI: 10.1016/j.anaerobe.2011.06.006
    Nitric oxide (NO) may play a crucial role in the pathogenesis of periodontal disease and, hence, the aim of the present study was to test the hypothesis that Aggregatibacter actinomycetemcomitans surface-associated material (SAM) stimulates inducible nitric oxide synthase (iNOS) activity and NO production by the murine macrophage cell line RAW264.7. Cells were stimulated with untreated or heat-treated A. actinomycetemcomitans SAM and with or without pre-treatment with L-N(6)-(1-Iminoethyl)-lysine (L-NIL) (an iNOS inhibitor), polymyxin B, interferon-gamma (IFN-γ) and Interleukin-4 (IL-4), IL-10, genistein [a protein tyrosine kinase (PTK) inhibitor], bisindolylmaleimide [a protein kinase C (PKC) inhibitor], bromophenacyl bromide (BPB) [a phospholipase A(2) (PLA2) inhibitor] or wortmannin [phosphatidylinositol 3-kinase (PI-3K) inhibitor]. The iNOS activity and nitrite production in the cell cultures were determined. Untreated but not heat-treated A. actinomycetemcomitans SAM-stimulated both iNOS activity and nitrite production in RAW264.7 cells. L-NIL, IL-4, IL-10, genistein, bisindolylmaleimide, or BPB, suppressed but IFN-γ enhanced both iNOS activity and nitrite production by A. actinomycetemcomitans SAM-stimulated cells. Wortmannin and polymyxin B failed to alter both iNOS activity or nitrite production by A. actinomycetemcomitans SAM treated cells. Therefore, the present study suggests that a heat-sensitive protein constituent(s) of A. actinomycetemcomitans SAM stimulates both iNOS activity and nitrite production by RAW264.7 cells in a cytokine, PTK, PKC, and PLA(2) but not PI-3K-dependent fashion.
    Matched MeSH terms: Nitric Oxide/biosynthesis*; Nitric Oxide Synthase Type II/antagonists & inhibitors; Nitric Oxide Synthase Type II/immunology; Nitric Oxide Synthase Type II/metabolism
  18. Sosroseno W, Bird PS, Seymour GJ
    Anaerobe, 2009 Jun;15(3):95-8.
    PMID: 19402196 DOI: 10.1016/j.anaerobe.2009.01.002
    The aim of this study was to determine the effect of exogenous nitric oxide (NO) on the induction of murine splenic immune response to Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) in vitro. BALB/c mice were immunized with A. actinomycetemcomitans LPS and a control group was sham-immunized. Spleen cells were obtained, cultured and stimulated with A. actinomycetemcomitans LPS with or without the presence of S-nitroso acetyl-penicillamine (SNAP), a NO donor, and carboxy-PTIO, an NO scavenger. Culture supernatants were assessed for inducible nitric oxide synthase (iNOS) activity, specific IgG subclass levels, and both IFN-gamma and IL-4 levels. The results showed that in A. actinomycetemcomitans LPS-stimulated cells, SNAP enhances iNOS activity but inhibits the levels of specific IgG2a and IFN-gamma suggesting a Th1 response. The effect of SNAP on these immune parameters was ablated by carboxy-PTIO. These results suggest that exogenous NO may suppress the Th1-like immune response of A. actinomycetemcomitans LPS-stimulated murine spleen cells.
    Matched MeSH terms: Nitric Oxide/pharmacology*; Nitric Oxide Synthase Type II/secretion
  19. Sosroseno W, Bird PS, Seymour GJ
    Oral Microbiol. Immunol., 2009 Feb;24(1):50-5.
    PMID: 19121070 DOI: 10.1111/j.1399-302X.2008.00475.x
    Human osteoblasts induced by inflammatory stimuli express an inducible nitric oxide synthase (iNOS). The aim of the present study was to test the hypothesis that Aggregatibacter actinomycetemcomitans lipopolysaccharide stimulates the production of nitric oxide (NO) by a human osteoblast-like cell line (HOS cells).
    Matched MeSH terms: Nitric Oxide/biosynthesis*; Nitric Oxide Synthase Type II/antagonists & inhibitors; Nitric Oxide Synthase Type II/metabolism*
  20. Sosroseno W, Sugiatno E, Samsudin AR, Ibrahim F
    J Oral Implantol, 2008;34(4):196-202.
    PMID: 18780564 DOI: 10.1563/0.910.1
    The aim of the present study was to test the hypothesis that the proliferation of a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite (HA) may be regulated by nitric oxide (NO). The cells were cultured on the surface of HA. Medium or cells alone were used as controls. L-arginine, D-arginine, 7-NI (an nNOS inhibitor), L-NIL (an iNOS inhibitor), L-NIO (an eNOS inhibitor) or carboxy PTIO, a NO scavenger, was added in the HA-exposed cell cultures. The cells were also precoated with anti-human integrin alphaV antibody. The levels of nitrite were determined spectrophotometrically. Cell proliferation was assessed by colorimetric assay. The results showed increased nitrite production and cell proliferation by HA-stimulated HOS cells up to day 3 of cultures. Anti-integrin alphaV antibody, L-NIO, or carboxy PTIO suppressed, but L-arginine enhanced, nitrite production and cell proliferation of HA-stimulated HOS cells. The results of the present study suggest, therefore, that interaction between HA and HOS cell surface integrin alphaV molecule may activate eNOS to catalyze NO production which, in turn, may regulate the cell proliferation in an autocrine fashion.
    Matched MeSH terms: Nitric Oxide/pharmacology*; Nitric Oxide Synthase/antagonists & inhibitors; Nitric Oxide Synthase Type II/antagonists & inhibitors; Nitric Oxide Synthase Type III/antagonists & inhibitors
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links